初二数学上学期期末试卷
初二数学上期末试卷及解析

一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边,且a+b+c=10,a+c=8,则b的值为()A. 1B. 2C. 3D. 4解析:由a+c=8,得b=10-(a+c)=2。
故选B。
2. 若x²+4x+4=0,则x的值为()A. 2B. -2C. 1D. -1解析:由x²+4x+4=(x+2)²=0,得x=-2。
故选B。
3. 若a、b、c是等差数列的前三项,且a+b+c=12,b+c=8,则a的值为()A. 2B. 3C. 4D. 5解析:由b+c=8,得b=4。
由a+b+c=12,得a+c=8,即2c=8,得c=4。
由等差数列的性质,得b-a=c-b,即a=2。
故选A。
4. 若x=1+√2,y=1-√2,则x+y的值为()A. 0B. 2C. -2D. 4解析:由x=1+√2,y=1-√2,得x+y=2。
故选B。
5. 若m、n、p是等比数列的前三项,且m+n+p=12,n²=4,则m的值为()A. 2B. 3C. 4D. 6解析:由n²=4,得n=±2。
由m+n+p=12,得m+p=10。
若n=2,则m+p=10,得m=8,p=2。
若n=-2,则m+p=10,得m=6,p=4。
由等比数列的性质,得m/p=n/m,即m²=np。
若n=2,则m²=4,得m=±2。
若n=-2,则m²=-8,无实数解。
故选A。
6. 若x²-2x+1=0,则x的值为()A. 1B. -1C. 0D. 2解析:由x²-2x+1=(x-1)²=0,得x=1。
故选A。
7. 若a、b、c是等差数列的前三项,且a+b+c=12,b+c=8,则a的值为()A. 2B. 3C. 4D. 5解析:由b+c=8,得b=4。
由a+b+c=12,得a+c=8,即2c=8,得c=4。
由等差数列的性质,得b-a=c-b,即a=2。
八年级上学期期末考试数学试卷(附答案解析)

八年级上学期期末考试数学试卷(附答案解析)一、选择题1.下列各式中,无论x取何值,分式都有意义的是()A. xx2+2x+4B. 2x22x+1C. x+1x2D. x2x2.已知△ABC(如图1),按图2图3所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形ABCD是平行四边形的依据是()A. 两组对边分别平行的四边形是平行四边形B. 对角线互相平分的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 两组对边分别相等的四边形是平行四边形3.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是()A. 15,16B. 15,15C. 15,15.5D. 16,154.若关于x的方程x−1x−2=mx−2+2产生增根,则m的值是()A. 2B. 0C. 1D. −15.如图,在正方形ABCD内,以BC为边作等边三角形BCM,连接AM并延长交CD于N,则下列结论不正确的是()A. ∠DAN =15°B. ∠CMN =45°C. AM =MND. MN =NC6. 如图,在△ABC 中,点M 为BC 的中点,AD 为∠BAN 的平分线,且AD ⊥BD ,若AB =6,AC =9,则MD 的长为( )A. 3B. 92C. 5D. 152 7. 如图,△ABC 中,AD 垂直BC 于点D ,且AD =BC ,BC 上方有一动点P 满足S △PBC =12S △ABC ,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A. 30°B. 45°C. 60°D. 90°8. 如图,AD ⊥BC ,BD =DC ,点C 在AE 的垂直平分线上,则AB ,AC ,CE 的长度关系为( )A. AB >AC =CEB. AB =AC >CEC. AB >AC >CED. AB =AC =CE 9. 若x 2=y 7=z 5,则x+y−z x 的值是( ) A. 1 B. 2C. 3D. 4 10. 如图,在△ABC 中,∠A =40°,D 点是∠ABC 和∠ACB 角平分线的交点,则∠BDC =( )A. 110°B. 100°C. 90°D. 80°11. 如果把分式2xy x+y 中的x 和y 都扩大3倍,那么分式的值( )A. 扩大3倍B. 缩小3倍C. 缩小6倍D. 不变 12. 已知x 为整数,且分式2x−2x 2−1的值为整数,满足条件的整数x 的个数有( )A. 1个B. 2个C. 3个D. 4个13. 如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =16,F 是线段DE 上一点,连接AF 、CF ,DE =4DF ,若∠AFC =90°,则AC 的长度是( )A. 6B. 8C. 10D. 12二、填空题14.数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、100分、90分,则小红一学期的数学平均成绩是______分.15.如图(1)是长方形纸带,∠DEF=20°,将纸带沿EF折叠图(2)形状,则∠FGD等于______度.16.若a:b=1:3,b:c=2:5,则a:c=______.17.已知点A(a,1)与点B(5,b)关于y轴对称,则ba +ab=______.18.如图,在梯形ABCD中,AD//BC,若AB=AD=DC=3,∠A=120°,则梯形ABCD的周长为______.19.如图,依据尺规作图的痕迹,计算∠α=______°.三、解答题(20.(1)计算:1−x−2yx+y ÷x2−4xy+4y2x2−y2(2)先化简,再求值:(9x+3+x−3)÷(xx2−9),其中x=−2.21.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=6,AC=10,EC=254,求EF的长.参考答案和解析1.【答案】A【解析】解:A、xx2+2x+4=x(x+1)2+3,(x+1)2≥0,则(x+1)2+3≥3,无论x取何值,分式都有意义,故此选项正确;B、当x=−12时,分式分母=0,分式无意义,故此选项错误;C、x=0时,分式分母=0,分式无意义,故此选项错误;D、x=0时,分式分母=0,分式无意义,故此选项错误;故选:A.2.【答案】B【解析】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:B.3.【答案】C【解析】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,=15.5岁,∴中位数为15+162故选:C.4.【答案】C【解析】解:分式方程去分母得:x−1=m+2x−4,根据题意得:x−2=0,即x=2,代入整式方程得:2−1=m+4−4,解得:m=1.故选C5.【答案】D【解析】解:作MG⊥BC于G.∵四边形ABCD是正方形,∴BA=BC,∠ABC=∠DAB=°∠DCB=90°∵△MBC是等边三角形,∴MB=MC=BC,∠MBC=∠BMC=60°,∵MG⊥BC,∴BG=GC,∵AB//MG//CD,∴AM=MN,∴∠ABM=30°,∵BA=BM,∴∠MAB=∠BMA=75°,∴∠DAN=90°−75°=15°,∠CMN=180°−75°−60°=45°,故A,B,C正确,故选:D.6.【答案】D【解答】解:延长BD交CA的延长线于E,∵AD为∠BAE的平分线,BD⊥AD,∴BD=DE,AB=AE=6,∴CE=AC+AE=9+6=15,又∵M为△ABC的边BC的中点,∴DM是△BCE的中位线,∴MD=12CE=12×15=7.5.故选:D.7.【答案】B【解析】解:∵S△PBC=12S△ABC,∴P在与BC平行,且到BC的距离为12AD的直线l上,∴l//BC,作点B关于直线l的对称点B′,连接B′C交l于P,如图所示:则BB′⊥l,PB=PB′,此时点P到B、C两点距离之和最小,作PM⊥BC于M,则BB′=2PM=AD,∵AD⊥BC,AD=BC,∴BB′=BC,BB′⊥BC,∴△BB′C是等腰直角三角形,∴∠B′=45°,∵PB=PB′,∴∠PBB′=∠B′=45°,∴∠PBC=90°−45°=45°;故选:B.8.【答案】D【解答】解:∵AD⊥BC,BD=DC,∴AD垂直平分BC,∴AB=AC,又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE.故选D.9.【答案】B【解答】解:设x2=y7=z5=k,则x=2k,y=7k,z=5k,把x=2k,y=7k,z=5k代入x+y−zx =2k+7k−5k2k=2,故选B.10.【答案】A【解析】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∴∠ABC+∠ACB=180°−40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°−70°=110°,故选:A.11.【答案】A【解析】解:把原分式中的x换成3x,把y换成3y,那么2⋅3x⋅3y 3x+3y =6xyx+y=3×2xyx+y.故选:A.12.【答案】C【解析】解:∵原式=2(x−1)(x+1)(x−1)=2x+1,∴x+1为±1,±2时,2x+1的值为整数,∵x2−1≠0,∴x≠±1,∴x为−2,0,−3,个数有3个.故选:C.13.【答案】D【解析】解:∵D、E分别是AB、AC的中点,BC=8,∴DE=12∵DE=4DF,DE=2,∴DF=14∴EF=DE−DF=6,∵∠AFC=90°,点E是AC的中点,∴AC=2EF=12,故选:D.14.【答案】93【解析】解:根据题意得:90×3+100×3+90×4=93(分),3+3+4答:小红一学期的数学平均成绩是93分;故答案为:93.15.【答案】40【解析】解:根据折叠可知:∠AEG=180°−20°×2=140°,∵AE//BF,∴∠EGB=180°−∠AEG=40°,∴∠FGD=40°.故答案为:40.16.【答案】2:15【解析】解:∵a:b=1:3=2:6,b:c=2:5=6:15,∴a:c=2:15,故答案为:2:1517.【答案】−265【解析】解:∵点A(a,1)与点A′(5,b)关于y轴对称,∴a=−5,b=1,∴ba +ab=−15+(−5)=−265,故答案为:−265.18.【答案】15【解析】解:过点A作AE//CD,交BC于点E,∵AD//BC,∴四边形AECD是平行四边形,∠B=180°−∠BAD=180°−120°=60°,∴AE=CD,CE=AD=3,∵AB=DC,∴△ABE是等边三角形,∴BE=AB=3,∴BC=BE+CE=6,∴梯形ABCD的周长为:AB+BC+CD+AD=15.故答案为:15.首先过点A作AE//CD,交BC于点E,由AB=AD=DC=2,∠A=120°,易证得四边形AECD 是平行四边形,△ABE是等边三角形,继而求得答案.19.【答案】56【分析】本题考查的是作图−基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.先根据矩形的性质得出AD//BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD//BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=12∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°−34°=56°,∴∠α=56°.故答案为:56.20.【答案】解:(1)原式=1−x−2yx+y ⋅(x+y)(x−y)(x−2y)2=1−x−yx−2y=x−2yx−2y−x−yx−2y=−y2x−y;(2)原式=(9x+3+x2−9x+3)÷x(x+3)(x−3)=x2x+3⋅(x+3)(x−3)x=x(x−3),当x=−2时,原式=(−2)×(−2−3)=10.【解析】(1)根据分式的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.21.【答案】解:(1)∵四边形ABCD是矩形,∴AD//BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO =CO ,在△AOF 和△COE 中,{∠ACB =∠DACAO =CO ∠AOF =∠COE,∴△AOF ≌△COE(ASA),∴OE =OF ,且AO =CO ,∴四边形AECF 是平行四边形,又∵EF ⊥AC ,∴四边形AECF 是菱形;(2)∵菱形AECF 的面积=EC ×AB =12AC ×EF ,又∵AB =6,AC =10,EC =254, ∴254×6=12×10×EF ,解得EF =152.【解析】(1)由矩形的性质可得∠ACB =∠DAC ,然后利用“ASA ”证明△AOF 和△COE 全等,根据全等三角形对应边相等可得OE =OF ,即可证四边形AECF 是菱形;(2)由菱形的性质可得:菱形AECF 的面积=EC ×AB =12AC ×EF ,进而得到EF 的长.。
2024北京海淀区初二(上)期末数学试卷及答案

2024北京海淀初二(上)期末数 学2024.01学校_____________ 班级______________ 姓名______________第1-8题均有四个选项,符合题意的选项只有一个.1.榫卯拼接木艺是中国建筑的智慧结晶,仅靠木头之间的相互作用力就可以让建筑或家具牢固、美观.下列榫卯拼接截面示意图中,是轴对称图形的是A .B .C .D .2.杭州亚运会主火炬以零碳甲醇作为燃料,在亚运史上首次实现废碳再生、循环内零碳排放.甲醇的密度很小,1 cm 3甲醇的质量约为0.000 79 kg ,将0.000 79用科学记数法表示应为 A .47910−⨯ B .47.910−⨯C .57910−⨯D .30.7910−⨯3.下列运算正确的是A. 235a a a ⋅=B. 235()a a =C. 33(2)2a a −=−D. 933a a a ÷=4.如图,点E ,C ,F ,B 在一条直线上,AB ∥ED ,∠A =∠D ,添加下列条件不能..判定△ABC ≌△DEF 的是 A. AC ∥DF B. AB =DE C. EC =BF D. AC =DF5.若正多边形的一个外角是72°,则该正多边形的边数为 A. 4 B. 5 C. 6 D. 76.如图是折叠凳及其侧面示意图. 若AC =BC=18 cm ,则折叠凳的宽AB 可能为 A .70 cm B .55 cm C .40 cm D .25 cm7.下列各式从左到右变形正确的是A. y y x x−=−− B. 1133x x +=+ C. 22142xxx +=−− D. 221xy x y = 8.如图,在△ABC 中,∠BAC =90°,P 是△ABC 内一点,点D ,E ,F 分别是点P 关于直线AC ,AB ,BC 的对称点,给出下面三个结论:① AE =AD ; ② ∠DPE =90°;③ ∠ADC +∠BFC +∠BEA =270°. 上述结论中,所有正确结论的序号是 A.①② B.①③ C.②③ D. ①②③ 二、填空题(本题共16分,每小题2分) 9.若代数式31x −有意义,则实数x 的取值范围是___________. 10.分解因式:32____________________a ab −=.11.在平面直角坐标系xOy 中,已知点A (-1,-1)关于x 轴的对称点'A 的坐标为____________.12.计算:322(69)3a a a −÷=_____________.13.已知等腰三角形的一个内角为40°,则它的顶角度数为_____________°. 14.如图,在△ABC 中,DE 是BC 边的垂直平分线. 若AB =8,AC =13,则△ABD 的周长为____________.15.把一张长方形纸片沿对角线折叠,使折叠后的图形如图所示.若 ∠BAC =35°,则∠CBD =_____________°.16.请阅读关于“乐数”的知识卡片,并回答问题: 乐 数我们将同时满足下列条件的分数称为“乐数”. a . 分子和分母均为正整数; b . 分子小于分母;c . 分子、分母均为两位数,且分子的个位数字与分母的十位数字相同;d .去掉分子的个位数字与分母的十位数字后,得到的分数与原来的分数相等. 例如:1664去掉相同的数字6之后,得到的分数14恰好与原来的分数相等,则1664是一个“乐数”.(1)判断:1339___________(填“是”或“不是”)“乐数”; (2)写出一个分子的个位数字与分母的十位数字同为9的“乐数”_____________.三、解答题(本题共60分,第17题5分,第18题10分,第19-23题每题5分,第24题6分,第25、26题每题7分)17.计算:12+21(3)(2024)2π−⎛⎫−+ ⎪⎝−−−⎭.18.(1)已知2220x x +−=,求代数式2(2)(3)−++x x x 的值.(2)计算: 21121121x x x x x ⎛⎫+÷ ⎪−+−+⎝⎭. 19.小明用自制工具测量花瓶内底的宽.他将两根木条AC ,BD 的中点连在一起(即AO =CO ,BO =DO ),如图所示放入花瓶内底. 此时,只需测量点 与点 之间的距离,即为该花瓶内底的宽,请证明你的结论.20.如图,在△ABC 中,∠C =90°,∠A =30°.在线段AC 上求作一点D ,使得CD =12AD .小明发现作∠ABC 的平分线交AC 于点D ,点D 即为所求. (1)使用直尺和圆规,依小明的思路作出点D (保留作图痕迹); (2)完成下面的证明.证明:∵∠A =30°,∠C =90°, ∴∠ABC =_________°.∵BD 平分∠ABC ,∴∠ABD =∠CBD =12∠ABC =30°. ∴∠ABD =∠A .∴AD=_________.在Rt △BCD 中,∠CBD =30°,∴CD =12BD (____________________________________________)(填推理依据).∴CD =12AD .21. 如图所示的4×4网格是正方形网格,顶点是网格线交点的三角形称为格点三角形. 如图 1,△ABC 为格点三角形. (1)∠ABC =__________°;(2)在图2和图3中分别画出一个以点1C ,2C 为顶点,与△ABC 全等,且位置互不相同的格点三角形.22.列方程解应用题无人配送以其高效、安全、低成本等优势,正在成为物流运输行业的新趋势.某物流园区使用1辆无人配送车平均每天配送的包裹数量是1名快递员平均每天配送包裹数量的5倍.要配送6 000件包裹,使用1辆无人配送车所需时间比4名快递员同时配送所需时间少2天,求1名快递员平均每天可配送包裹多少件? 23.如图,四边形ABCD 中,AB =AC ,∠D =90°,BE ⊥AC 于点F ,交CD 于点E ,连接EA ,EA 平分∠DEF .(1)求证:AF=AD;(2)若BF=7, DE=3,求CE的长.24.小明设计了一个净水装置,将杂质含量为n的水用m单位量的净水材料过滤一次后,水中的杂质含量为1nm+. 利用此净水装置,小明进行了进一步的探究:现有杂质含量为1的水.(1)用2单位量的净水材料将水过滤一次后,水中杂质含量为_______;(2)小明共准备了6a单位量的净水材料,设计了如下的三种方案:方案A是将6a单位量的净水材料一次性使用,对水进行过滤;方案B和方案C均为将6a单位量的净水材料分成两份,对水先后进行两次过滤. 三种方案的具体操作及相关数据如下表所示:①②通过计算回答:在这三种方案中,哪种方案的最终过滤效果最好?(3)当净水材料总量为6a单位量不变时,为了使两次过滤后水中的杂质含量最少,小明应将第一次净水材料用量定为________________(用含a的式子表示).25.如图,在△ABC中,∠ACB=90°,AB=BC,作直线AP,使得45°<∠P AC<90°.过点B作BD⊥AP于D,在DA的延长线上取点E,使DE=BD. 连接BE,CE.(1)依题意补全图形;(2)若∠ABD=α,求∠CBE(用含α的式子表示);(3)用等式表示线段AE,CE,DE之间的数量关系,并证明.26.在平面直角坐标系xOy中,直线l过原点且经过第三、第一象限,l与x轴所夹锐角为n°. 对于点P和x 轴上的两点M,N,给出如下定义:记点P关于直线l的对称点为Q,若点Q的纵坐标为正数,且△MNQ 为等边三角形,则称点P为M,N的n°点.(1)如图1,若点M(2,0),N(4,0),点P为M,N的45°点,连接OP,OQ.①∠POQ=________________°;②求点P的纵坐标;(2)已知点M(m,0),N(m+t,0).①当t=2时,点P为M,N的60°点,且点P的横坐标为-2,则m=____________________;②当m=-2时,点P为M,N的30°点,且点P的横坐标为2,则t=___________________.参考答案一、选择题 (共24分,每小题3分)二、填空题(共16分,每小题2分) 9. 1x ≠; 10. ()()a a b a b +−; 11. (1,1)−; 12. 23a −; 13. 40或100; 14. 21; 15. 20; 16.(1)不是;(2)1995(答案不唯一). 三、解答题(本题共60分,第17题5分,第18题10分,第19-23题每题5分,第24题6分,第25、26题每题7分) 17.(本题满分5分)解:原式=9122−++ ………………………………………………………………4分=12 . …………………………………………………………………………5分18.(1)(本题满分5分)解:原式=22269x x x x −+++ ………………………………………………………2分 =2249x x ++. ………………………………………………………………3分∵2220x x +−=,∴222x x +=. ………………………………………………………………4分 ∴2244x x +=.∴原式=4913+=. 5分(2)(本题满分5分)解:原式=211(1)(1)(1)(1)(1)2x x x x x x xx ⎡⎤+−−+⋅⎢⎥−+−+⎣⎦ ……………………………………3分 =22(1)(1)(1)2x x x x x−⋅−+ …………………………………………………4分 =11x x −+. ………………………………………………………………5分19.(本题满分5分)解:C , D ; …………………………………………………………………………1分 理由如下:连接CD .在△COD 和△AOB 中,AD,,,OC OA COD AOB OD OB =⎧⎪∠=∠⎨⎪=⎩∴△COD ≌△AOB (SAS ). …………………………………………………4分 ∴CD AB =.∴点C 与点D 的距离为该花瓶内底的宽. …………………………………5分20.(本题满分5分)解:(1)…………………………………………………2分∴点D 即为所求.(2)60; ……………………………………………………………………………3分BD ; …………………………………………………………………………4分在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.…………………………………………………………………5分21.(本题满分5分)解:(1)90; …………………………………………………………………………2分 (2)答案不唯一.…………………………………………5分22.(本题满分5分)解:设1名快递员平均每天配送包裹x 件. ……………………………………………1分依题意,得60006000254x x+=. ………………………………………………………3分 解得 150x =. …………………………………………………………4分 经检验,150x =是原分式方程的解且符合题意.答:1名快递员平均每天可配送包裹150件.…………………………………………5分23.(本题满分5分)(1)证明:∵∠D =90°, ∴AD ⊥ED .∵BE ⊥AC 于点F , EA 平分∠DEF , ∴AF =AD . …………………2分(2)解:∵BE ⊥AC 于点F ,B∴∠AFB =90°.在Rt △AFB 和Rt △ADC 中,,,AB AC AF AD =⎧⎨=⎩∴△AFB ≌△ADC (HL ). ………………………………………………3分 ∴BF =CD .∵BF =7,∴CD =7. ………………………………………………………………4分 ∵DE =3,∴CE =CD −DE =7−3=4. …………………………………………………5分24.(本题满分6分)(1)13; …………………………………………………………………………………1分(2)①114a +,()()11412a a ++; ……………………………………………………3分 ② 解:116a −+()()1151a a ++=()()()2516151a a a a +++. ∵0a >,∴250a >,()()()16151a a a +++0>.∴()()()2516151a a a a +++0>. ∴116a +>()()1151a a ++. 同理,可得()()1151a a ++>()()11412a a ++. ∴()()11412a a ++<()()1151a a ++<116a+. ∴方案C 的最终过滤效果最好. ………………………………………………5分 (3)3a. …………………………………………………………………………………6分 25.(本题满分7分) (1)依题意补全图形…………………………………………………………1分(2)解:∵BD ⊥AP 于D ,∴∠BDE =90°. ∵BD =DE ,∴∠DBE =∠DEB =45°. ∵∠ABD =α,∴∠ABE =∠DBE −∠ABD =45°−α. ∵∠ABC =90°,∴∠CBE =∠ABC −∠ABE =45°+α.…………………………………………………3分 (3)AE+CE=2DE . ……………………………………………………………………4分 证明:如图,在AD 延长线上取点F ,使DF=AD ,连接BF . ∵BD ⊥AP ,AD=DF , ∴BA=BF . ∴∠FBD =∠ABD =α. ∵∠DBE =45°, ∴∠EBF =∠DBE+∠DBF =45°+α. ∴∠EBF =∠CBE . ∵AB=BC , ∴BF=BC . ∵BE=BE ,∴△BEF ≌△BEC (SAS ). ∴FE =CE.∵AE =DE −AD , CE =FE =DE+DF , AD =DF ,∴AE+CE =2DE. ………………………………………………………………………7分 26.(本题满分7分)(1)①∠POQ =30°; ………………………………………………………………………1分 ②解:过点P 作P A ⊥y 轴于A ,过点Q 作QB ⊥x 轴于B , ∴∠P AO =∠QBO =90°.∵点P 为线段MN 的45°点,∴PO =QO ,∠AOC =∠BOC =45°,∠POC =∠QOC . ∴∠AOP =∠BOQ . 在△OP A 和△OQB 中,PAO QBO AOP BOQ OP OQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△OP A ≌△OQB (AAS ). ∴AO =BO .E DCBAPBAC .E FDB A P∵△MNQ是等边三角形,点M(2,0),点N(4,0),∴OM=MN=2.∵QB⊥MN,∴112BM MN==.∴AO=BO=3.∴P点纵坐标为3. ………………………………………………………………………4分(2)①m=6;………………………………………………………………………5分②t=3或t=-6.………………………………………………………………………7分。
初二上册数学期末考试试卷

初二上册数学期末考试试卷一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.5B. πC. 0.333...D. √42. 如果一个角的补角是120°,那么这个角的度数是多少?A. 60°B. 30°C. 90°D. 120°3. 以下哪个选项表示的是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 1/xD. y = √x4. 一个等腰三角形的两边长分别为5和8,那么第三边的长度是多少?A. 3B. 5C. 8D. 105. 一个数的平方根是它本身的数有几个?A. 0个C. 2个D. 3个6. 已知一个圆的半径为3,那么这个圆的面积是多少?A. 9πB. 18πC. 27πD. 36π7. 一个数的绝对值是它本身,这个数是正数还是负数?A. 正数B. 负数C. 非负数D. 非正数8. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 109. 以下哪个选项是不等式?A. 2x + 3 = 7B. 2x + 3 > 7C. 2x + 3 < 7D. 2x + 3 ≤ 710. 一个数的立方根是它本身,这个数是以下哪个?A. 0B. 1D. 8二、填空题(每题2分,共20分)11. 一个角的余角是45°,那么这个角的度数是________。
12. 一个数的平方是25,那么这个数是________或________。
13. 一个直角三角形的两个锐角的度数之和是________。
14. 一个数的绝对值是5,那么这个数是________或________。
15. 一个数的立方是-8,那么这个数是________。
16. 一个数的倒数是1/3,那么这个数是________。
17. 一个等腰三角形的底角是40°,那么顶角的度数是________。
18. 一个圆的周长是2πr,那么这个圆的半径是________。
人教版八年级上学期期末考试数学试卷(附带答案)精选全文

精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
人教版八年级上数学期末考试试卷(免费、15套)

八年级(上)数学期末综合测试(1)一、相信你一定能选对!(每小题3分,共36分)1.下列各式成立的是()A.a-b+c=a-(b+c)B.a+b-c=a-(b-c)C.a-b-c=a-(b+c)D.a-b+c-d=(a+c)-(b-d)2.直线y=kx+2过点(-1,0),则k的值是()A.2 B.-2 C.-1 D.13.和三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点4.一个三角形任意一边上的高都是这边上的中线,•则对这个三角形最准确的判断是()A.等腰三角形B.直角三角形C.正三角形D.等腰直角三角形5.下图所示的扇形图是对某班学生知道父母生日情况的调查,A•表示只知道父亲生日,B表示只知道母亲生日,C表示知道父母两人的生日,D表示都不知道.•若该班有40名学生,则知道母亲生日的人数有()A.25% B.10 C.22 D.126.下列式子一定成立的是()A.x2+x3=x5; B.(-a)2·(-a3)=-a5C.a0=1 D.(-m3)2=m57.黄瑶拿一张正方形的纸按右图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是()8.已知x2+kxy+64y2是一个完全式,则k的值是()A.8 B.±8 C.16 D.±169.下面是一组按规律排列的数:1,2,4,8,16,……,则第2005个数是()A.22005B.22004C.22006D.2200310.已知(x+a)(x+b)=x2-13x+36,则a+b的值分别是()A.13 B.-13 C.36 D.-3611.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD交EF于F,若BF=AC,则∠ABC等于()A.45° B.48° C.50° D.60°(11题) (12题) (19题)12.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC•的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm二、你能填得又对又快吗?(每小题3分,共24分)13.计算:1232-124×122=_________.14.在实数范围内分解因式:3a3-4ab2=__________.15.已知△ABC≌△DEF,若∠A=60°,∠F=90°,DE=6cm,则AC=________.16.点P关于x轴对称的点是(3,-4),则点P关于y轴对称的点的坐标是_______.17.已知a2+b2=13,ab=6,则a+b的值是________.18.直线y=ax+2和直线y=bx-3交于x轴同一点,则a与b的比值是________.19.如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)•展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+_____a3b+_____a2b2+______ab3+b420.如图所示,一个窗户被装饰布挡住了一部分,其中窗户的长a与宽b的比是3:2,装饰布由一个半圆和两个四分之一圆组成,圆的直径都是0.5b,那么当b=4时,•这个窗户未被遮挡的部分的面积是__________.三、认真解答,一定要细心哟!(共60分)21.(5分)先化简再求值:[(x+2y)(x-2y)-(x+4y)2]÷(4y),其中x=5,y=2.22.(7分)求证:等腰三角形两腰上的高的交点到底边两端的距离相等.23.(8分)已知图7中A、B分别表示正方形网格上的两个轴对称图形(阴影部分),其面积分别记为S1、S2(网格中最小的正方形的面积为一个单位面积),请你观察并回答问题.(1)填空:S1:S2的值是__________.(2)请你在图C中的网格上画一个面积为8个平方单位的轴对称图形.24.(9分)每年6月5日是“世界环境日”,保护地球生态环境是世界各国政府和人民应尽的义务.下表是我国近几年来废气污染排放量统计表,请认真阅读该表后,•解答题后的问题.(1)请你在图8中用虚线、实线、粗线分别画出二氧化硫排放总量、烟尘排放总量和工业粉尘排放量的折线走势图;(2)2003年相对于1999年,全国二氧化硫排放总量、•烟尘排放总量和工业粉尘排放量的增长率分别为_________、________、_________(精确到1个百分点).(3)简要评价这三种废气污染物排放量的走势(要求简要说明:总趋势,增减的相对快慢).25.(9分)某批发商欲将一批海产品由A地运往B地,•汽车货运公司和铁路货运公司均开办了海产品运输业务.已知运输路程为120千米,•汽车和火车的速度分别为60千米/时和100千米/时.两货物公司的收费项目和收费标准如下表所示:运输工具运输费单价(元/吨·千米)冷藏费单价(元/吨·小时)过路费(元)装卸及管理费(元)汽车 2 5 200 0火车 1.8 5 0 1600注:“元/吨·千米”表示每吨货物每千米的运费;“元/•吨小时”表示每吨货物每小时的冷藏费.(1)设该批发商待运的海产品有x(吨),•汽车货运公司和铁路货运公司所要收取的费用分别为y1(元)和y2(元),试求出y1和y2和与x的函数关系式;(2)若该批发商待运的海产品不少于30吨,为节省运费,•他应该选择哪个货运公司承担运输业务?26.(10分)如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB•交CE 于点F,DF的延长线交AC于点G,求证:(1)DF∥BC;(2)FG=FE.27.(12分)如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x轴垂直.(1)求点C的坐标,并回答当x取何值时y1>y2?(2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.(3)当x为何值时,直线m平分△COB的面积?答案:1.C 2.A 3.D 4.C 5.C 6.B 7.C 8.D 9.B 10.B 11.A 12.C 13.•1 14.a3a+2b)3) 15.3m 16.(-3,4) 17.±5 18.-2319.4;6;4 20.24- 21.-20 22.略 23.①9:11;②略24.①略;②-8%,-30%,-29%;③评价:•总体均成下降趋势;二氧化硫排放量下降趋势最小;烟尘排放量下降趋势最大.25.①y1=2×120x+5×(120÷60)x+200=250x+200y2=1.8×120x+5×(120•÷100)x+1600=222x+1600;②若y1=y2,则x=50.∴当海产品不少于30吨但不足50吨时,选择汽车货运公司合算;当海产品恰好是50吨时选择两家公司都一样,没有区别;•当海产品超过50吨时选择铁路货运公司费用节省一些.26.①证△ACF≌△ADF得∠ACF=∠ADF,∵∠ACF=∠B , ∴∠ADF=∠B , ∴DF ∥BC ;②∵DF ∥BC ,BC ⊥AC , ∴FG ⊥AC , ∵FE ⊥AB ,又AF 平分∠CAB , ∴FG=FE 27.(1)解方程组26y x y x =⎧⎨=-+⎩ 得22x y =⎧⎨=⎩∴C 点坐标为(2,2);(2)作CD ⊥x 轴于点D ,则D (2,0).①s=12x 2(0<x ≤2); ②s=-x 2+6x-6(2<x<3); (3)直线m 平分△AOB 的面积, 则点P 只能在线段OD ,即0<x<2. 又△COB•的面积等于3, 故12x 2=3×12,解之得八年级(上)数学期末测试(2)一、选择题(每小题3分,共30分) 1. 反映某种股票的涨跌情况,应选择 ( )A .条形统计图B .折线统计图C .扇形统计图D .直方图2. 下列各式从左往右计算正确的是 ( ) A .()a b c a b c -+=-+ B .22)2(4-=-x xC .bc ac ab a c a b a -+-=+-2))((D .)0()(33≠=÷-x x x x 3. 如图是跷跷板的示意图,支柱OC 与地面垂直,点O是横板AB 的中点,AB 可以绕着点O 上下转动,当A端落地时,∠OAC =20°,横板上下可转动的最大角度 (即∠A ′OA )是( )A .80°B .60°C .40°D .20° 4. 一个容量为80的样本中,最大值是141,最小值是50,取组距为10,则这个样本可以成( )A .10组B .9组C .8组D .7组5. 下列命题中,不正确的是 ( )A .关于直线对称的两个三角形一定全等B .角是轴对称图形C .等边三角形有3条对称轴D .等腰三角形一边上的高、中线及这边所对角的角平分线重合 6. 等腰三角形的一个内角是50°,则这个三角形的底角的大小是 ( )A .65°或50°B .80°或40°C .65°或80°D .50°或80° 7.使两个直角三角形全等的条件是 ( )A .一锐角对应相等B .两锐角对应相等C .一条边对应相等D .两条直角边对应相等 8. 直线62-=x y 关于y 轴对称的直线的解析式为 ( )A .62+=x yB .62+-=x yC .62--=x yD .62-=x y9. 如图,AB=AC ,AD=AE ,∠B=50°,∠AEC=120°,则∠DAC 的度数等于( ) A .120° B .70° C .60° D .50°10.已知如图,图中最大的正方形的面积是( )A .2aB .22b a +C .222b ab a ++D .22b ab a ++二、填空题(每小题3分,共24分)11.多项式132-+x x 是 次 项式.12.若1)7(0=-x ,则x 的取值范围为__________________. 13.在一幅扇形统计图中,扇形表示的部分占总体的百分比为20%,则此扇形的圆心角为 °. 14.已知一次函数1-=kx y ,请你补充一个条件______________,使函数图象经过第二、三、四象限.15.已知在一个样本中有50个数据,它们分别落在5个组内,第一、二、三、四、C(第9AB D E (第10题)五组数据的个数分别为2,8,15,x ,5,则x 等于______,第四组的频率为_________. 16.Rt △ABC 中,∠C=90°,∠B=2∠A ,BC=3cm ,AB=_________cm . 17.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10cm , BD=7cm ,则点D 到AB 的距离为_____________cm . 18.在平面直角坐标系xOy 中,已知点A (2,-2),在y 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的有_______个. 三、解答题(共20分)19.(4分)计算:(1))22(4)25(22a a a +-+; (2))1)(1(52-+x x x .20.(4分)用乘法公式计算:(1)2.608.59⨯; (2)2198.21.(12分)分解因式:(1)x x -22; (2)1162-x ;(3)32296y y x xy --; (4)2)(9)(124y x y x -+-+.四、解答题(本题共3小题;共14分)22.(5分)先化简,再求值:x y x y x y x 2)])(()[(2÷-++-,其中x =2005,y =2004.23.(5分)求证:等腰三角形两底角相等.24.(4分)作图题(不写作图步骤,保留作图痕迹).已知:如图,求作点P ,使点P 到A 、B 两点的距离相等,且P 到∠MON 两边的距离也相等.五、解答题(42分)25.(9分)已知一次函数的图象经过(3,5)和(-4,-9)两点. (1)求这个一次函数的解析式;(2)画出这个一次函数的图象; (3)若点(a ,2)在这个函数图象上,求a 的值.26.(7分)金鹰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图). (1)利用图中提供的信息,回答下列问题:在专业知识方面3人得分谁是最过硬的?在工作经验方面3人得分谁是最丰富的?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10∶7∶3, (3)在(2)的条件下,你对落聘者有何建议?27.(6分)已知A (5,5),B (2,4),M 是x 轴上一动点,求使得M A +MB 最小时的点M 的坐标.28.(8分)某市的A 县和B 县春季育苗,急需化肥分别为90吨和60吨,该市的C 县和D 县分别储存化肥100吨和50吨,全部调配给A 县和B 县,已知C 、D 两县运化肥到A 、B 两县的运费(元/吨)如下表所示.(第17题)CBAD仪表形象(第26题)专业知识 工作经验 (第24题)ONM ·· A B(1)设C 县运到A 县的化肥为x 吨,求总运费W (元)与x (吨)的函数解析式,并写出自变量x 的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.29.(12分)如图,直线y=-2x +4分别与x 轴、y 轴相交于点A 和点B ,如果线段CD 两端点在坐标轴上滑动(C 点在 y 轴上,D 点在x 轴上),且CD=AB . (1)当△COD 和△AOB 全等时,求C 、D 两点的坐标;(2)是否存在经过第一、二、三象限的直线CD ,使CD ⊥AB ?如果存在,请求出直线CD八年级(上)数学参考答案一、选择题(每小题3分,共30分)1.B 2.C 3.C 4.A 5.D 6.A 7.D 8.C 9.B 10.C 二、填空题(每小题3分,共24分)11.二、三 12.x ≠7 13.72° 14.0<k 15.20,0.4 16.3217.3 18.4三、解答题(共76分)19.(1)原式=228825a a a --+ …………………………………………………1分=8232-+-a a . …………………………………………………2分(2)原式=)1(522-x x ………………………………………………………1分 =2455x x -. ………………………………………………………2分 20.(1)原式=(60-0.2 )(60+0.2) ……………………………………………1分=222.060-=3599.96. …………………………………………………2分(2)原式=2)2200(- ……………………………………………………………1分=22222002200+⨯⨯-=39204. ………………………………………2分21.(1)原式=)12(-x x . ………………………………………………………3分 (2)原式=)14)(14(-+x x . …………………………………………………3分 (3)原式=)96(22y x xy y -- ………………………………………………1分 =)69(22y xy x y +-- ………………………………………………2分=2)3(y x y --. ………………………………………………………3分(4)原式=[]2)(32y x -+ ………………………………………………………2分=2)233(+-y x . …………………………………………………………3分22.原式=x y x y xy x 2)2(2222÷-++-……………………………………………2分 =x xy x 2)22(2÷-……………………………………………………………3分 =y x -. ……………………………………………………………………4分 当2005x =,2004y =时,原式=2005-2004 =1. …………………………………………………………5分(第29题)23.已知:如图,△ABC 中,AB=AC (包括画图).求证:∠B=∠C . ………………………………………………………………2分 证明:略. ………………………………………………………………………5分 24.作图题.略,角平分线和线段的垂直平分线每画对一个得2分. 25.(1)设一次函数解析式为b kx y +=,由题意,得3549.k b k b +=⎧⎨-+=-⎩,…………………………………………………………………2分解之,得2,1.k b =⎧⎨=-⎩………………………………………………………………4分因此一次函数的解析式为12-=x y .………………………………………5分 (2)图略. ………………………………………………………………………7分 (3)将(a ,2)代入12-=x y ,得212=-a . ……………………………8分解得23=a . ………………………………………………………………9分26.点B 关于x 轴对称的点的坐标是B ′(2,-4).连AB ′,则AB ′与x 轴的交点即为所求. …………………………………1分 设AB ′所在直线的解析式为b kx y +=, 则55,2 4.k b k b +=⎧⎨+=-⎩ ………………………………………………………………2分则3,10.k b =⎧⎨=-⎩ ……………………………………………………………………3分所以直线AB 的解析式为103-=x y . ……………………………………4分 当0=y 时,310=x .故所求的点为)0,310(M . …………………………6分27.(1)乙,甲,丙; ……………………………………………………………3分 (2)甲14.75,乙15.9,丙15.35,录取乙; ………………………………5分(3)略. …………………………………………………………………………7分 28.(1)由题意,得 )40(45)100(30)90(4035-+-+-+=x x x x W104800(4090)x x =+≤≤. …………………………6分 (2)因为W 随着x 的减小而减小,所以当40=x 时,W 最小=10×40+4800=5200(元).答:略. …………………………8分 29.(1)由题意,得A (2,0),B (0,4),即AO =2,OB =4. …………………………………………………………2分 ①当线段CD 在第一象限时,点C (0,4),D (2,0)或C (0,2),D (4,0).………………………4分 ②当线段CD 在第二象限时,点C (0,4),D (-2,0)或C (0,2),D (-4,0).…………………6分 ③当线段CD 在第三象限时,点C (0,-4),D (-2,0)或C (0,-2),D (-4,0).……………8分 ④当线段CD 在第一象限时,点C (0,-4),D (2,0)或C (0,-2),D (4,0) ………………10分 (2)C (0,2),D (-4,0).直线CD 的解析式为221+=x y .…………12分AB CD八 年 级 (上)数 学 期 末 综 合 测 试3一、选择题(每小题3分,共30分)1.下列平面图形中,不是轴对称图形的是 ( )2.关于函数12+-=x y ,下列结论正确的是 ( )A . 图象必经过)1,2(-B . 当21>x 时,0<yC . 图象经过第一、二、三象限D . y 随x 的增大而增大3.一个样本中有80个数据,最大值是141,最小值是50,取组距为10,则样本可分成( )A .10组B .9组C .8组D .7组4.下列计算中,错误的是 ( )A 22221138y x y x =+ B 222594x x x -=- C 05522=-ba b a D m m m 5)2(3=--5.若x 的多项式5382+-x x 与352323+-+x mx x 相加后,不含2x 项,则m 等于( ) A . 2 B . -2 C . -4 D . -86.已知:在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD :DC =9:7,则D 到AB 边的距离为 ( ) A .18 B .16 C .14 D .127.若三点)1,6(),,2(),4,1(-p 在一条直线上,则p 的值为 ( ) A . 2 B . 3 C .-7 D .08.已知:如图,△ABC 与△DEF 是全等三角形,则图中相等的线段的组数是 ( )A .3B . 4C .5D .6(第8题) (第9题) (第10题)9.如图,在∠AOB 的两边上截取AO=BO ,CO=DO ,连接AD ,BC 交于点P ,那么在结论①△AOD ≌△BOC ;②△APC ≌△BPD ;③点P 在∠AOB 的平分线上.其中正确的是 ( ) A .只有① B . 只有② C . 只有①② D . ①②③ 10.如图,D ,E 分别是△ABC 的边BC ,AC ,上的点,若AB=AC ,AD=AE ,则 ( )A .当∠B 为定值时,∠CDE 为定值 B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值 二、填空题(每小题3分,共30分) 11.函数x x y -++=24中,自变量x 的取值范围是 .12.在某次考试中全班50人中有10人获得优秀等级,那么绘制扇形图描述成绩时,优秀等级所在的扇形的圆心角是____________度.A B E CF D O DCA B P A B D C Eαγ β13.已知12335+n b a 与314b a m --的和是单项式,则=m ,=n . 14.如图,△ABC ≌△ADE ,∠EAC =25°,则∠BAD = °15.如图,D ,E 是边BC 上的两点,AD =AE ,请你再添加一个条件: 使△ABE ≌△ACD16.把点A (a ,3)向上平移三个单位正好在直线y =-x +1上,则a 的值是 .17.已知,2,522-=+=+b ab ab a 那么=-22b a .18.等腰三角形一腰上的高与另一腰的夹角为40°19.如图,△ABC中,DE 是AC 的垂直平分线,AE =3cm,△ABD 则△ABC 的周长为__________cm .20.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,CF 平分∠ACB ,CF ,BE 交于点P ,AC =4cm ,BC =3cm ,AB =5cm ,则△CPB 的面积为 2cm三、解答题(本大题共60分)21.①(5分)计算: )2(3)3(2)2(2222xy y x xy y xy x -+---+-② (5分)化简求值:[]{})24(32522222b a ab ab b a b a ----其中5.0,3=-=b a22.(5分)如图,A 、B 、C 三点表示3个村庄,为了解决村民子女就近入学问题,计划新建一所小学,要使学校到3个村庄的距离相等,请你在图中有尺规确定学校的位置.(保留作图痕迹,写出画法) 画法:23.(7分)已知直线1+=x y 与直线4+=kx y 交于点),1(n p ,求n k ,的值,及两直线与两坐标轴所围成的四边形的面积.24.(7分)如图,BD 平分∠MBN ,A ,C 分别为BM ,BN 上的点,且BC >BA ,E 为BD 上的一点,AE =CE ,求证 ∠BAE +∠BCE =180°25.(7分) 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求△ABC 各角的度数.26.(7分)初三某班对最近的一次数学考试成绩(得分取整数)进行统计分析,将所有成绩由低到高分成5组,并绘制成如图所示的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有___________(2)在该频数分布直方图中画出频数折线图; (3)若这次考试中,成绩80分以上(不含80分) 为优秀,那么该班这次数学考试的优秀率是多少?27.(8分)如图,在△ABC 中,∠ACB =90°,CE ⊥AB 于点E ,AD=AC ,AF 平分∠CAB •交CEADBE CBDE CA(第14题)(第15题)CAB···C 50.60.70.90.80.100.5B C NDEMA于点F ,DF 的延长线交AC 于点G ,求证:(1)DF ∥BC ;(2)FG =FE .28.(本题9分) 如图, △ABC 为等边三角形,AE =CD ,AD 、BE 相交于点P ,BQ ⊥AD 与Q ,PQ =4,PE =1 (1)求证 ∠BPQ =60° (2)求AD 的长八年级(上)数学期末测试4一 耐心填一填(30分)1 .函数y= 中,自变量x 的取值范围是_______________2 若直线y=-x+a 和直线y=x+b 的交点坐标为(m,8),则a+b=_______________.3 对直线y=3x-15,当x____________时,y<0; 当x__________时,y>0.4 常用的统计图有 __________ , __________ , __________。
2023—2024学年最新人教新版八年级上学期数学期末考试试卷(含答卷)

2023—2024学年最新人教新版八年级上学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列图形是轴对称图形的是()A.B.C.D.2、北京2022年冬奥会上的“雪花”图案向世界展现了一起向未来的美好愿景.单个“雪花”的质量约为0.00000024千克.将0.00000024用科学记数法表示正确的是()A.﹣2.4×108B.2.4×10﹣7C.﹣2.4×107D.2.4×10﹣83、下列长度的三根小木棒能构成三角形的是()A.7cm,4cm,2cm B.5cm,5cm,6cmC.3cm,4cm,8cm D.2cm,3cm,5cm4、如果把分式中的x,y都扩大3倍,那么分式的值()A.扩大3倍B.缩小3倍C.不变D.扩大6倍5、三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形6、若(x+a)(x﹣6)的积中不含有x的一次项,则a的值为()A.0B.6C.﹣6D.﹣6或07、如图,AC和BD相交于O点,若OA=OD,不能证明△AOB≌△DOC的是()A.AB=DC B.OB=OC C.∠A=∠D D.∠B=∠C8、如图,在等边△ABC中,AB=4cm,BD平分∠ABC,点E在BC的延长线上,且∠E=30°,则CE的长是()A.1cm B.2cm C.3cm D.4cm9、已知,则分式的值为()A.8B.C.D.410、如图,已知在等边△ABC中,AD⊥BC,AB=8,若点P在线段AD上运动,当AP+BP有最小值时,最小值为()A.B.C.10D.12第7题图第8题图第10题图二、填空题(每小题3分,满分18分)11、因式分解:2a2﹣8=.12、一个正多边形的每个内角为135°,则这个正多边形的边数为.13、在平面直角坐标系中,点A(a﹣2,2a+3)到y轴的距离为4,则a的值为.14、已知a m=2,a n=3(m,n为正整数),则a3m+n=.15、若关于x的分式方程+2的解为正数,则m的取值范围是.16、如图所示,AC平分∠BAD,∠B+∠D=180°,CE⊥AD于点E,AD=10cm,AB=7cm,那么DE的长度为cm.最新人教新版八年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、先化简,再求值:,其中x=2.19、已知实数m,n满足m+n=6,mn=﹣3.(1)求(m﹣2)(n﹣2)的值;(2)求m2+n2的值.20、如图,在平面直角坐标系xOy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案)A1B1C1(3)求△ABC的面积.21、已知在△ABC中,∠ACB的平分线CD交AB于点D,DE∥BC.(1)如图1,求证:△CDE是等腰三角形;(2)如图2,若DE平分∠ADC交AC于E,∠ABC=30°,在BC边上取点F使BF=DF,若BC=12,求DF的长.22、甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过 5.2万元,甲工程队至少修路多少天?23、如图,在等腰Rt△ABC中,∠C=90°,BC=AC=8,点F是AB边上的中点,点D、E分别在线段AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中.(1)求证:△DFE是等腰三角形;(2)求证:∠DFE=90°;(3)在点D、E运动的过程中,四边形CDFE的面积是否为定值,如果是,请求出这个定值,如果不是,请说明理由.24、我们定义:如果两个多项式M与N的和为常数,则称M与N互为“对消多项式”,这个常数称为它们的“对消值”.如MF=2x2﹣x+6与N=﹣2x2+x﹣1互为“对消多项式”,它们的“对消值”为5.(1)下列各组多项式互为“对消多项式”的是(填序号):①3x2+2x与3x2+2;②x﹣6与﹣x+2;③﹣5x2y3+2xy与5x2y3﹣2xy﹣1.(2)多项式A=(x﹣a)2与多项式B=﹣bx2﹣2x+b(a,b为常数)互为“对消多项式”,求它们的“对消值”;(3)关于x的多项式C=mx2+6x+4与D=﹣m(x+1)(x+n)互为“对消多项式”,“对消值”为t.若a﹣b=m,b﹣c=mn,求代数式a2+b2+e2﹣ab﹣bc﹣ac+2t的最小值.25、如图,在平面直角坐标系中,已知点A(a,0)、B(0,b)分别为x轴和y轴上一点,且a,b满足,过点B作BE⊥AC于点E,延长BE至点D,使得BD=AC,连接OC、OD,CE平分∠OCD.(1)A点的坐标为;∠OAB的度数为.(2)如图1,若点C在第四象限,试判断OC与OD的数量关系与位置关系,并说明理由.(3)如图2,连接CD,CE平分∠OCD,若点C的坐标为(4,3),连接AC 交BD于点E,AC与OD交于点F.①求D点的坐标;②试判断DE与CF的数量关系,并说明理由.。
2024北京东城区初二(上)期末数学试卷及答案

2024北京东城初二(上)期末数 学2024.1一、 选择题(本题共30分,每小题3分)下面各题均有四个选项,符合题意的选项只有..一个. 1.已知三角形的两边长分别为3和6,则这个三角形的第三边长可以是A .3B .6C .9D .122.在2023年中国国际智能汽车展览上,吉利控股集团正式宣布中国首款7纳米车规级SoC 芯片“龙鹰一号””的量产和供货.7纳米=0.000000007米,0.000000007 可用科学记数法表示为 A . ⨯−7109 B .⨯7109C .⨯−7108D . ⨯71083.下列计算正确的是 A .⋅=a a a 234B .=a a 393)( C .=ab a b ()33D .÷=a a a 8244. 中国“二十四节气”已被列入联合国教科文组织人类非物质文化遗产代表作名录,下列四幅作品分别代表“立春”、“立夏”、“芒种”、“大雪”,其中不是..轴对称图形的是 A.B.C. D.5.一个多边形的内角和等于其外角和的两倍,那么这个多边形是 A .三边形 B .四边形 C .五边形 D .六边形6. 图中的四边形均为长方形,用等式表示下图中图形面积的运算为A. −=−+a b a ab b 2222)(B. +−=−a b a b a b 22)()(C. +=+a a b a ab 2)(D. +=++a b a ab b 222)(7. 如图,在△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,若AD=4 ,则BC=A .8B .10C .12D .148.某社区正在建设一批精品小公园.如图,∆ABC 是一个正在修建的小公园,现要在公园里修建一座凉亭H ,使该凉亭H 到公路AB 、AC 的距离相等,且满足和∆∆ABH BCH 面积相等,则凉亭H 是A. ∠ABC 的角平分线与AC 边上中线的交点B. ∠ABC 的角平分线与BC 边上中线的交点C. ∠BAC 的角平分线与AB 边上中线的交点D. ∠BAC 的角平分线与AC 边上中线的交点9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,在BC 的延长线上取点E ,连接AE ,已知∠BAD =32°,∠BAE =84°,则∠CAE 为A .20°B .32°C .38°D .42°10. 如图,∠MAN=30°,点B 是射线 AN 上的定点,点P 是直线AM 上的动点,要使△PAB 为等腰三角形,则满足条件的点 P 共有 A 、1 个B 、2 个C 、3 个D 、4 个二、填空题:(本题共16分,每小题2分)11.如图,钢架桥的设计中采用了三角形的结构,其中蕴含的数学道理是 .12. 若分式1x+1有意义,则x 的取值范围是 .13. 分解因式:−+=x y xy y 44223.14. 如图,B 、E 、C 、F 四个点在一条直线上.∠B=∠DEF ,AB=DE ,请添加一个条件使△ABC △DEF ,则添加的条件可以是 .15.如图,在△ABC 中,∠B =39°,点D 是AB 的垂直平分线与BC 的交点,将△ABD 沿着AD 翻折得到△AED ,则∠CDE = .16. 某“数学乐园”展厅的WIFI 密码被设计成如图数学问题.小明在参观时认真思索,输入密码后顺利地连接到网络,则他输入的密码是 .17.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,AB =5,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是 .FEC B AD18. “回文诗”就是能够回还往复,正读倒读皆成章句的诗篇,是我国古典文学作品中的一种有趣的特殊体裁.如“遥望四边云接水,碧峰千点数鸿轻”,倒过来读,便是“轻鸿数点千峰碧,水接云边四望遥”.在数学中也有这样一类正读倒读都一样的自然数,我们称之为“回文数”.例如11,343等. (1)在所有三位数中,“回文数”共有 个;(2)任意一个四位数的“回文数”一定是 的倍数(1除外).三、解答题(本题共54分,19题4分,20-25题每题5分,26题6分,27-28题每题7分)解答应写出文字说明,证明过程或演算步骤19. 尺规作图“三等分角”是在公元前五世纪由古希腊人提出来的难题,该命题已经被数学家证明是不可能的.热爱数学的小明同学也设计了一个用尺规三等分90°角的方案,老师认为他的想法是正确的.请你根据小明的做法补全图形,并帮助小明完善证明过程:已知:∠AOB=90°求作:射线OC 、OD ,使得∠AOC=∠COD=∠DOB=30° 作法:① 在射线OB 上取一点M ,分别以点O 、点M 为圆心,OM 长为半径画弧,两弧在∠AOB 内部交于点C ,连接CM ,画射线OC ;② 作∠COM 的平分线OD. 射线OC 、OD 为所求作射线. 证明:∵ , ∴△MOC 为等边三角形. ∴∠_______=60° ∵∠AOB=90° ∴∠AOC=30° ∵OD 平分∠COM ∴∠COD=∠DOB=30° ∴∠AOC=∠COD=∠DOB=30°20.如图,在平面直角坐标系中,顶点A 坐标为),(-33,顶点B 坐标为),(-51,顶点C 坐标为),(-21,(1)作ABC 关于y 轴的对称图形'''A B C ,(其中A 、B 、C 的对称点分别是A 'B 'C ');并写出点B '的坐标;(2)画出两个..与△ABC 全等且有公共顶点C 为顶点且的三角形.(要求:三角形顶点的横纵坐标都是整数)21.如图,点D 在AB 上,点E 在AC 上,且AD=AE ,BD=EC, 求证:∠B=∠C24. 已知+−=x x 220,求代数式)(+++x x x -3(5)(1)的值 25. 列分式方程解应用题:在杭州第19届亚运会上,中国女篮第七次获得亚运会冠军,女篮运动员的拼搏精神激励了众多球迷.某校篮球社团人数迅增,需要购进A ,B 两种品牌篮球,已知A 品牌篮球单价比B 品牌篮球单价的2倍少48元,采购相同数量的A ,B 两种品牌篮球分别需要花费9600元和7200元.求A ,B 两种品牌篮球的单价.26.利用整式的乘法运算法则推导得出:(ax+b )(cx+d )=acx 2+(ad+bc )x+bd .我们知道因式分解是与整式乘法方向相反的变形,利用这种关系可得acx 2+(ad +bc )x +bd =(ax +b )(cx +d ).通过观察可把acx 2+(ad +bc )x +bd 中看作以x 为未知数.a 、b 、c 、d 为常数的二次三项式,此种因式分解是把二次三项式的二项式系数ac 与常数项bd 分别进行适当的分解来凑一次项的系数.分解过程可形象地表述为“竖乘得首、尾,叉乘凑中项”,如图1,这种分解的方法称为十字相乘法.例如:将二次三项式x x 2+11+122的二项式系数2与常数项12分别进行适当的分解,如图2,则(++x x x x 2+11+12=4)(23)2根据阅读材料解决下列问题:(1)用十字相乘法分解因式:+−x x 6272;(2)用十字相乘法分解因式:−x x 67-32;(3)结合本题知识,分解因式:(+7(20++−x y x y ))62;27. 如图1, △ABC 中,AC=BC, ∠ABC=α,点D 在AC 上,连接BD ,在BD 的上方作∠BDE=α,且BD=ED ,连接BE. 做点A 关于BC 的对称点F ,连接EF ,交BC 于点M. (1)补全图形,连接CF 并写出∠BCF=____________(用含α的式子表示); (2)当α=60°时,如图2, ① 证明:EM=FM;② 直接写出BM 与AD 的数量关系:_______________________.28. 在平面直角坐标系xOy 中,对于点P 和点A ,若存在点Q ,使得∠=︒PAQ 90,且=AQ AP ,则称点Q 为点P 关于点A 的“链垂点”. (1)如图1,①若点A 的坐标为2,1)(,则点A 关于点O 的“链垂点”坐标为__________;②若点B (5,3)为点O 关于点C 的“链垂点”,且点C 位于x 轴上方,试求点C 的坐标;(2)如图2,图形G 是端点为,10)(和,21)(的线段,图形H 是以点O 为中心,各边分别与坐标轴平行且边长为6的正方形,点D 为图形G 上的动点,对于点,E t 0)((t <0),存在点D,使得点D 关于点E 的“链垂点”恰好在图形H 上,请直接写出t 的取值范围.参考答案二、 选择题(本题共30分,每小题3分)11.三角形的稳定性 12. ≠−x 1 −y x y 13.(2)214.答案不唯一,如BC=EF 等 ︒15.24 16.2024 517.1218.90,11 三、解答题(本题共54分,19题4分,20-25题每题5分,26题6分,27-28题每题7分)19. 答案:画图 --------2分 ∵OM=OC=CM ,--------3分 ∴△MOC 为等边三角形. ∴∠COM=60° --------4分 ∵∠AOB=90°, ∴∠AOC=30°. ∵OD 平分∠COM , ∴∠COD=∠DOB=30°. ∴∠AOC=∠COD=∠DOB=30°.20.1'(5,1)3(2)15分分分图个每,略图,略图)(B.4.15AD AE BD EC ===分≌分,中和在:明证1.,分2∴∠=∆∠∴∆⎩=⎪⎨∠=∠⎪⎧=∆∆∴B C BE AC AB AC A D AE AD A A AB AC ABE ACD .,,,,2341=-5分分分分式原,时当(x-2)):解=−−=−+−=⨯−+⎣⎦−++−⎢⎥=−⨯++⎡⎤⎝⎭−−+ ⎪−÷⎛⎫−x x x x x x x x x x x x x x x x x 3121(2)(2)1(1)(2)(2)(2)(2123(2)24222.13122.3 2.5=−≠分是解的程方式分以所分.4,时当:验检分:得解得,乘都边两程方:解23.=−=−=−+−−=+x x x x x x x x x x 22-102-121 3.2121132=x 21521224143+2x=2241422-14=10.5x 分分分)(∴+−=⨯−=+−+−++++++x x x x x x x x x x 24.-3(5)(1)2222225. 解:设B 品牌篮球单价为x 元,则A 品牌篮球单价为(2x ﹣48)元,…… 1分 由题意,可得:=x x2-4896007200…… 2分 解得:x =72. …… 3分经检验,x =72是所原方程的解. …… 4分所以A 品牌篮球的单价为:2×72﹣48=96(元).…… 5分 答:A 品牌篮球单价为96元,B 品牌篮球单价为72元.26.(1)627=3)(9)2(2)67-323)(31)4320)7()6(443)(552)6分()(分(分(+++−=+++−−=−++−−+x y x y x y x y x x x x x x x x 22227. (1)如图,∠BCF=︒−α2901------------ 2分(2)连接AM、AE∵AB=AC, ∠ABC=60°,BD=BE, ∠BDE=60°∴△ABC是等边三角形、△DBE是等边三角形.∴BA=BC BE=BD ∠ABC=∠∴∠ABC-∠ABD=∠EBD-∠ABD即∠DBC=∠EBA∴△DBC≌△EBA ----------- 3分∴∠EAB=∠DCB=60°∴∠EAB=∠ABC∴AE∥BC ----------- 4分∴∠AEM=∠FMC, ∠EAM=∠AMC∵点A关于BC的对称点是点F,∴AM=FM .∠AMC=∠FMC. ----------- 5分∴∠AEM=∠EAM∴EM=AM.∴EM=FM. ----------- 6分② AD=2BM ----------- 7分28.第11页/共11页 (1)−1,2)(,−1,2)(……2分;(2)依题意得,点C 位置如图所示……3分设点C x y ,)(易证(OCM CBN AAS ≅) ∴====BN CM x CN OM y , ()5,3B⎩−=⎨∴⎧+=y x x y 35 解得⎩=⎨∴⎧=y x 4.1, ∴C 1,4)(……5分(3)−≤≤−t 31……7分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学上学期期末试卷 一、选择题 1.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .22.下列志愿者标识中是中心对称图形的是( ).A .B .C .D .3.下列实数中,无理数是( )A .0B .﹣4C .5D .174.以下列各组线段为边作三角形,不能构成直角三角形的是( )A .1,2,5B .3,4,5C .3,6,9D .23,7,61 5.关于x 的分式方程7m 3x 1x 1+=--有增根,则增根为( ) A .x=1B .x=-1C .x=3D .x=-3 6.7的平方根是( )A .±7B .7C .-7D .±7 7.下列标志中属于轴对称图形的是( )A .B .C .D .8.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .159.小明体重为 48.96 kg ,这个数精确到十分位的近似值为( )A .48 kgB .48.9 kgC .49 kgD .49.0 kg10.如图:若△ABE ≌△ACD ,且AB =6,AE =2,则EC 的长为( )A .2B .3C .4D .6二、填空题11.如图,在平面直角坐标系中,点P (﹣1,a )在直线y =2x +2与直线y =2x +4之间,则a 的取值范围是_____.12.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.13.点()2,3A 关于y 轴对称点的坐标是______.14.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.15.如图,已知点M (-1,0),点N (5m ,3m +2)是直线AB :4y x =-+右侧一点,且满足∠OBM=∠ABN ,则点N 的坐标是_____.16.化简 2(0,0)3b a b a>≥结果是_______ . 17.如图,△ABC 中,AB =AC ,AB 的垂直平分线分别交边AB ,BC 于D ,E 点,且AC =EC ,则∠BAC =_____.18.平行四边形的周长是20,两条对角线相交于O ,△AOB 的周长比△BOC 的周长大2,则AB 的长为_____.19.函数y =-3x +2的图像上存在一点P ,点P 到x 轴的距离等于3,则点P 的坐标为________.20.如图,平面直角坐标系中,若点A (3,0)、B (4,1)到一次函数y =kx +4(k ≠0)图象的距离相等,则k 的值为_____.三、解答题21.如图,ABC ∆为等边三角形,D 为ABC ∆内一点,且ABD DAC ∠=∠,过点C 作AD 的平行线,交BD 的延长线于点E ,BD EC =,连接AE .(1)求证:ABD ACE ∆∆≌;(2)求证:ADE ∆为等边三角形.22.正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点.(1)在图①中,画一个面积为10的正方形;(2)在图②、③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.23.如图,在ABC ∆中,90C ∠=︒,边AC 的垂直平分线分别交AC ,AB 于点,D E . (1)求证:E 为AB 的中点;(2)若60,3A CD ∠==°,求BE 的长.24.计算:()()023163.1422781π-+-- 25.某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车 乙种客车 载客量(座/辆)60 45 租金(元/辆) 550 450(1)设租用甲种客车x 辆,租车总费用为y 元.求出y (元)与x (辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元.四、压轴题26.在ABC 中,AB AC =,D 是直线BC 上一点(不与点B 、C 重合),以AD 为一边在AD 的右侧作ADE ,AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当 D 在线段BC 上时,求证:BD CE =.(2)如图,若点D 在线段CB 的延长线上,BCE α∠=,BAC β∠=.则α、β之间有怎样的数量关系?写出你的理由.(3)如图,当点D 在线段BC 上,90BAC ∠=︒,4BC =,求DCE S 最大值.27.如图(1),AB =4cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3cm .点 P 在线段 AB 上以 1/cm s 的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为 t (s ).(1)若点 Q 的运动速度与点 P 的运动速度相等,当t =1 时,△ACP 与△BPQ 是否全等,请说明理由, 并判断此时线段 PC 和线段 PQ 的位置关系;(2)如图(2),将图(1)中的“AC ⊥AB ,BD ⊥AB”为改“∠CAB =∠DBA =60°”,其他条件不变.设点 Q 的运动速度为x /cm s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.28.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DB BC的值.29.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由. (3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).30.如图,在平面直角坐标系中,直线AB 经过点A 332)和B 3,0),且与y 轴交于点D ,直线OC 与AB 交于点C ,且点C 3.(1)求直线AB 的解析式;(2)连接OA ,试判断△AOD 的形状;(3)动点P 从点C 出发沿线段CO 以每秒1个单位长度的速度向终点O 运动,运动时间为t 秒,同时动点Q 从点O 出发沿y 轴的正半轴以相同的速度运动,当点Q 到达点D 时,P ,Q 同时停止运动.设PQ 与OA 交于点M ,当t 为何值时,△OPM 为等腰三角形?求出所有满足条件的t 值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.2.C解析:C【解析】【分析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故选项错误;B、不是中心对称图形,故选项错误;C、是中心对称图形,故选项正确;D、不是中心对称图形,故选项错误.故选:C.本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.C解析:C【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【详解】解:0,﹣4是整数,属于有理数;17 故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 4.C解析:C【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A 、∵12+222,故A 选项能构成直角三角形;B 、∵32+42=52,故B 选项能构成直角三角形;C 、∵32+62≠92,故C 选项不能构成直角三角形;D 、∵72+()22,故D 选项能构成直角三角形.故选:C .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5.A解析:A【解析】当x =1时,分母为零,没有意义,所以是增根.故选A .6.D解析:D【解析】根据乘方运算,可得一个正数的平方根.【详解】)2=7,∴7.故选:D.【点睛】本题考查了平方根,利用了乘方运算求一个正数的平方根,注意一个正数有两个平方根.7.C解析:C【解析】【分析】根据对称轴的定义,关键是找出对称轴即可得出答案.【详解】解:根据对称轴定义A、没有对称轴,所以错误B、没有对称轴,所以错误C、有一条对称轴,所以正确D、没有对称轴,所以错误故选 C【点睛】此题主要考查了对称轴图形的判定,寻找对称轴是解题的关键.8.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE;接下来,依据AE=CE可将△ABE的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC的周长为24,ABE的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键.9.D解析:D【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】解:48.96≈49.0(精确到十分位).故选:D.【点睛】本题考查了近似数:近似数与精确数的接近程度,可以用精确度表示,精确到哪位,就是对它后边的一位进行四舍五入.10.C解析:C【解析】【分析】根据全等三角形的对应边相等解答即可.【详解】解:∵△ABE≌△ACF,∴AC=AB=6,∴EC=AC﹣AE=6-2=4,故选:C.【点睛】本题考查的知识点是全等三角形的性质,熟记性质内容是解此题的关键.二、填空题11.【解析】【分析】计算出当P在直线上时a的值,再计算出当P在直线上时a的值,即可得答案.【详解】解:当P在直线上时,,当P在直线上时,,则.故答案为【点睛】此题主要考查了一次函数与<<解析:0a2【解析】【分析】计算出当P 在直线y 2x 2=+上时a 的值,再计算出当P 在直线y 2x 4=+上时a 的值,即可得答案.【详解】解:当P 在直线y 2x 2=+上时,()a 212220=⨯-+=-+=,当P 在直线y 2x 4=+上时,()a 214242=⨯-+=-+=,则0a 2<<.故答案为0a 2<<【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等.12.150【解析】【分析】连接OP ,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.13.(−2,3)【解析】【分析】平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点的坐标是(−x ,y ),即关于y 轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y 轴对解析:(−2,3)【解析】【分析】平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点的坐标是(−x ,y ),即关于y 轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y 轴对称的点的坐标是(−2,3),故答案为(−2,3).【点睛】本题主要考查了平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y 轴对称的点,纵坐标相同,横坐标互为相反数,关于x 轴对称的点,横坐标相同,纵坐标互为相反数.【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【解析:11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是212,由B到C运动的路程为3,∴321 222 AD AB AD⨯⨯==解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴2222345,CD CE DE=+=+=∴点P从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.15.【解析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x 轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q(解析:5,3 3⎛⎫ ⎪⎝⎭【解析】【分析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q (5,1),易得直线BQ的解析式,所以将点N代入该解析式来求m的值即可.【详解】解:在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M(-1,0),∴OP=OM=1,∴BP=BM,∴∠OBP=∠OBM=∠ABN,∴∠PBQ=∠OBA=45°,∴PB=PQ,∴△OBP≌△RPQ(AAS),∴RQ=OP=1,PR=OB=4,∴OR=5,∴Q(5,1),∴直线BN的解析式为y=−35x+4,将N(5m,3m+2)代入y=−35x+4,得3m+2=﹣35×5m+4解得 m=13,∴N5,33⎛⎫ ⎪⎝⎭.故答案为:5,3 3⎛⎫ ⎪⎝⎭【点睛】本题考查了一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,全等三角形的判定与性质,坐标与图形性质,两点间的距离公式等知识点,难度较大.16.【解析】【分析】首先将被开方数的分子和分母同时乘以3a,然后再依据二次根式的性质化简即可.【详解】解:原式=,故答案为:.【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握相关知解析:6 3 ab a【解析】【分析】首先将被开方数的分子和分母同时乘以3a,然后再依据二次根式的性质化简即可.【详解】解:原式236 33b a ab a a⋅=⋅6ab.【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握相关知识是解题的关键.17.108°【解析】【分析】连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.【详解】连接AE,如图所示:∵AB解析:108°【解析】【分析】连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.【详解】连接AE,如图所示:∵AB=AC,∴∠B=∠C,∵AB的垂直平分线分别交边AB,BC于D,E点,∴AE=BE,∴∠B=∠BAE,∵AC=EC,∴∠EAC=∠AEC,设∠B=x°,则∠EAC=∠AEC=2x°,则∠BAC=3x°,在△AEC中,x+2x+2x=180,解得:x=36,∴∠BAC=3x°=108°,故答案为:108°.【点睛】此题主要考查等腰三角形的性质,解题关键是利用三角形内角和构建方程.18.6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-解析:6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-OC-BC=2,∵ABCD是平行四边形,∴OA=OC,∴AB-BC=2,∵平行四边形ABCD的周长是20,∴AB+BC=10,∴AB=6.故答案为:6.【点睛】此题主要考查学生对平行四边形的性质的理解及运用,熟记性质是解题的关键.19.或【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,解析:1,33⎛⎫⎪⎝⎭或533⎛⎫⎪⎝⎭,【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,∴点P的纵坐标为3或﹣3,当y=3时,﹣3x+2=3,解得,x=﹣13; 当y=﹣3时,﹣3x+2=﹣3,解得x=53; ∴点P 的坐标为(﹣13,3)或(53,﹣3). 故答案为(﹣13,3)或(53,﹣3). 【点睛】 本题考查一次函数图象上点的坐标特征,利用数形结合思想解题是本题的关键,注意分类讨论.20.k =±1.【解析】【分析】根据一次函数y=kx+4(k≠0)图象一定过点(0,4),点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,可分为两种情况进行解答,即,①当 解析:k =±1.【解析】【分析】根据一次函数y =kx +4(k ≠0)图象一定过点(0,4),点A (3,0)、B (4,1)到一次函数y =kx +4(k ≠0)图象的距离相等,可分为两种情况进行解答,即,①当直线y =kx +4(k ≠0)与直线AB 平行时,②当直线y =kx +4(k ≠0)与直线AB 不平行时分别进行解答即可.【详解】一次函数y =kx +4(k ≠0)图象一定过(0,4)点,①当直线y =kx +4(k ≠0)与直线AB 平行时,如图1,设直线AB 的关系式为y =kx +b ,把A (3,0),B (4,1)代入得,3041k b k b +=⎧⎨+=⎩,解得,k =1,b =﹣3, ∴一次函数y =kx +4(k ≠0)中的k =1;②当直线y =kx +4(k ≠0)与直线AB 不平行时,如图2,根据题意,直线y =kx +4(k ≠0)垂直平分线段AB ,此时一定经过点C ,∴点C 的坐标为(4,0),代入得,4k +4=0,解得,k =﹣1,因此,k =1或k =﹣1.故答案为:k =±1.【点睛】本题考查了一次函数的图象和性质,掌握两条平行直线的k 值相等和一次函数的图象和性质是解决问题的关键.三、解答题21.(1)见解析(2)见解析【解析】【分析】(1)先证明∠ACE=∠CAD=∠ABD ,再根据SAS 证明ABD ACE ∆∆≌即可;(2)由ADB AEC ∆∆≌可得AD AE =,BAD CAE ∠=∠再证明60DAE ︒∠=即可.【详解】(1)ABC ∆为等边三角形,,60AB AC BAC ︒∴=∠=//AD ECDAC ACE ∴∠=∠又ABD DAC ∠=∠ABD ACE ∴∠=∠在BAD ∆与CAE ∆中,AB AC ABD ACE BD EC =⎧⎪∠=∠⎨⎪=⎩()ADB AEC SAS ∴∆∆≌(2)()ADB AEC SAS ∆∆≌,AD AE BAD CAE ∴=∠=∠CAE DAC BAD DAC ∴∠+∠=∠+∠60DAE BAC ︒∴∠=∠=ADE ∴∆为等边三角形.【点睛】此题主要考查了全等三角形的判定与性质以及等边三角形的判定,熟练掌握定理与性质是解此题的关键.22.作图见解析.【解析】试题分析:(1)根据正方形的面积为10可得正方形边长为10,画一个边长为10正方形即可;(2)①画一个边长为2,22,10的直角三角形即可;②画一个边长为5,5,10的直角三角形即可;试题解析:(1)如图①所示:(2)如图②③所示.考点:1.勾股定理;2.作图题.23.(1)详见解析;(2)23.【解析】【分析】(1)连接CE ,根据垂直平分线的性质得到EC=EA ,再根据等腰三角形的性质得到EC=EB ,进而即可得解;(2)根据含有30°角的直角三角形的性质即可得解.【详解】(1)如下图,连接EC ,∵DE 是AC 的垂直平分线∴EA =EC∴A ECA ∠=∠∵90C ∠=︒∴9090A B ECA ECB ∠+∠=︒∠+∠=︒,∴B ECB ∠=∠∴EC=EB∴EB=EA∴E 为AB 的中点;(2)∵DE 是AC 的垂直平分线,CD =∴=AD CD =∵60A ∠=︒∴AE =∵BE=AE∴BE =【点睛】本题主要考查了垂直平分线的性质及等腰三角形的性质,以及含有30°角的直角三角形的性质,熟练掌握相关三角形的性质是解决本题的关键. 24.49- 【解析】【分析】原式利用零指数幂法则,平方根、立方根定义计算即可求出值.【详解】解:原式=1+2﹣49+(﹣3) =﹣49. 【点睛】 本题考查了实数的运算,涉及到了零指数幂、平方根、立方根定义,熟练掌握法则是解题的关键25.(1)y=100x+3150;(2)5,3650.【解析】【分析】(1)y=租甲种车的费用+租乙种车的费用,由题意代入相关数据即可得;(2)根据题意确定出x 的取值范围,再根据一次函数的增减性即可得.【详解】解:(1)由题意,得y=550x+450(7﹣x ),化简,得y=100x+3150,即y (元)与x (辆)之间的函数表达式是y=100x+3150;(2)由题意,得60x+45(7﹣x )≥380,解得,x ≥133. ∵y=100x+3150,∴k=100>0,∴x=5时,租车费用最少,最少为:y=100×5+3150=3650(元),即当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是3650元.四、压轴题26.(1)见解析;(2)αβ=,理由见解析;(3)2【解析】【分析】(1)证明()ABD ACE SAS ≅△△,根据全等三角形的性质得到BD CE =;(2)同(1)先证明()ABD ACE SAS ≅△△,得到∠ACE=∠ABD ,结合等腰三角形的性质和外角和定理用不同的方法表示∠ACE ,得到α和β关系式;(3) 同(1)先证明()ABD ACE SAS ≅△△,得到ABC ADCE S S ∆=四边形,那么DCE ADE ADCE S S S ∆∆=-四边形,当AD BC ⊥时,ADE S ∆最小,即DCE S ∆最大.【详解】解:(1)∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,∴BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS ≅△△,∴BD CE =;(2)同(1)的方法得()ABD ACE SAS ≅△△,∴∠ACE=∠ABD ,∠BCE=α,∴∠ACE=∠ ACB+∠BCE=∠ACB+α,在ABC 中,∵AB= AC ,∠BAC=β,∴∠ACB=∠ABC =12(180°-β)= 90°-12β, ∴∠ABD= 180°-∠ABC= 90°+12β, ∴∠ACE=∠ACB +α= 90°-12β+α, ∵∠ACE=∠ABD = 90°+12β,∴90°-12β+α= 90°+12β, ∴α = β;(3)如图,过A 做AH BC ⊥于点H ,∵AB AC =,90BAC ∠=︒,∴45ABC ∠=︒,122BH AH BC ===, 同(1)的方法得,()ABD ACE SAS ≅△△,AEC ABD S S ∆∆∴=,AEC ADC ABD ADC S S S S ∆∆∆∆+=+,即142ABC ADCE S S BC AH ∆==⋅=四边形, ∴DCE ADE ADCE S S S ∆∆=-四边形,当ADE S ∆最小时,DCE S ∆最大,∴当AD BC ⊥2AD =,时最小,2122ADE S AD ∆==, 422DCE S ∆∴=-=最大.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质,三角形的外角和定理,解题的关键是抓住第一问中的那组全等三角形,后面的问题都是在这个基础上进行证明的.27.(1)全等,垂直,理由详见解析;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)在t =1的条件下,找出条件判定△ACP 和△BPQ 全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC 和线段 PQ 的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又∠A=∠B= 90°,在△ACP 和△BPQ 中,{AP BQA B AC BP=∠=∠=∴△ACP ≌△BPQ(SAS).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP = 90*.∴∠CPQ= 90°,即线段PC 与线段PQ 垂直;(2)①若△ACP ≌△BPQ ,则AC= BP ,AP= BQ ,34t t xt =-⎧⎨=⎩解得11t x =⎧⎨=⎩; ②若△ACP ≌△BQP ,则AC= BQ ,AP= BP ,34xt t t =⎧⎨=-⎩解得:232t x =⎧⎪⎨=⎪⎩ 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.28.(1)见详解,(2)2BD CF =,证明见详解,(3)23. 【解析】【分析】(1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可;(2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题; (3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠,DAC CBF ∴∠=∠,BC AC =,BCF ACD ∴∆≅∆(AAS ),BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,EHF BCF ∴∆≅∆,FH FC ∴=,2BD CH CF ∴==.(3)如图3中,作EH AC ⊥于交AC 延长线于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =,EHM BCM ∴∆≅∆,MH MC ∴=,2BD CH CM ∴==.3AC CM =,设CM a =,则3AC CB a ==,2BD a =,∴2233DB a BC a ==.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.29.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP 与△ODQ 的面积相等;(3)2∠GOA+∠ACE=∠OHC ,理由见解析.【解析】【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t ,OP=8-2t ,根据△ODP 与△ODQ 的面积相等列方程求解即可;(3)由∠AOC=90°,y 轴平分∠GOD 证得OG ∥AC ,过点H 作HF ∥OG 交x 轴于F ,得到∠FHC=∠ACE ,∠FHO=∠GOD ,从而∠GOD+∠ACE=∠FHO+∠FHC ,即可证得2∠GOA+∠ACE=∠OHC.【详解】(1280a b b -+-=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A (0,6),C (8,0);故答案为:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴114222ODQ DS OQ x t t=⨯=⨯=△,11823123 22ODP DS OP y t t=⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.30.(1)y=﹣3x +2;(2)△AOD 为直角三角形,理由见解析;(3)t =23或3. 【解析】【分析】 (1)将点A 、B 的坐标代入一次函数表达式:y =kx +b ,即可求解;(2)由点A 、O 、D 的坐标得:AD 2=1,AO 2=3,DO 2=4,故DO 2=OA 2+AD 2,即可求解; (3)点C,1),∠DBO =30°,则∠ODA =60°,则∠DOA =30°,故点C1),则∠AOC =30°,∠DOC =60°,OQ =CP =t ,则OP =2﹣t .①当OP =OM 时,OQ =QH +OH(2﹣t )+12(2﹣t )=t ,即可求解;②当MO =MP 时,∠OQP =90°,故OQ =12O P ,即可求解;③当PO =PM 时,故这种情况不存在. 【详解】 解:(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b 得:320b b ⎧+⎪⎨⎪=+⎩,解得:=2k b ⎧⎪⎨⎪=⎩故直线AB 的表达式为:y+2; (2)直线AB 的表达式为:y+2,则点D (0,2), 由点A 、O 、D 的坐标得:AD 2=1,AO 2=3,DO 2=4,故DO 2=OA 2+AD 2,故△AOD 为直角三角形;(3)直线AB 的表达式为:y=﹣3x +2,故点C,1),则OC =2, 则直线AB 的倾斜角为30°,即∠DBO =30°,则∠ODA =60°,则∠DOA =30° 故点C1),则OC =2,则点C 是AB 的中点,故∠COB =∠DBO =30°,则∠AOC =30°,∠DOC =60°, OQ =CP =t ,则OP =OC ﹣PC =2﹣t ,①当OP =OM 时,如图1,则∠OMP=∠MPO=12(180°﹣∠AOC)=75°,故∠OQP=45°,过点P作PH⊥y轴于点H,则OH=12OP=12(2﹣t),由勾股定理得:PH=3(2﹣t)=QH,OQ=QH+OH=32(2﹣t)+12(2﹣t)=t,解得:t=23;②当MO=MP时,如图2,则∠MPO=∠MOP=30°,而∠QOP=60°,∴∠OQP=90°,故OQ=12OP,即t=12(2﹣t),解得:t=23;③当PO=PM时,则∠OMP=∠MOP=30°,而∠MOQ=30°,故这种情况不存在;综上,t =23. 【点睛】本题考查等腰三角形的性质、一次函数解析式、勾股定理、含30°的角的直角三角形的性质等知识点,还利用了方程和分类讨论的思想,综合性较强,难度较大,解题的关键是学会综合运用性质进行推理和计算.。