【冲刺卷】初二数学下期末试卷(含答案)

合集下载

【冲刺卷】八年级数学下期末一模试卷(带答案)

【冲刺卷】八年级数学下期末一模试卷(带答案)

【冲刺卷】八年级数学下期末一模试卷(带答案)一、选择题1.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:型号(厘383940414243米)数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()A.平均数B.中位数C.众数D.方差2.要使函数y=(m﹣2)x n﹣1+n是一次函数,应满足()A.m≠2,n≠2B.m=2,n=2C.m≠2,n=2D.m=2,n=0 3.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形4.下列计算正确的是()A.2(4)-=2B.52=3÷⨯D.62=3-C.52=105.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.当x值增大时,y的值随着x增大而减小B.函数图象与y轴的交点坐标为(0,2)C.函数图象经过第一、二、四象限D.图象经过点(1,5)6.已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是()A.1.5B.2C.2.5D.-67.如图,菱形中,分别是的中点,连接,则的周长为()A.B.C.D.8.如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD 为菱形的是()A .BA =BCB .AC 、BD 互相平分 C .AC =BD D .AB ∥CD9.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数 B .平均数C .中位数D .方差10.如图,一次函数y =mx +n 与y =mnx (m ≠0,n ≠0)在同一坐标系内的图象可能是( )A .B .C .D .11.正方形具有而菱形不一定具有的性质是( ) A .对角线互相平分 B .每条对角线平分一组对角 C .对边相等 D .对角线相等12.如图,函数y =ax +b 和y =kx 的图像交于点P ,关于x ,y 的方程组0y ax bkx y -=⎧⎨-=⎩的解是( )A .23x y =-⎧⎨=-⎩B .32x y =-⎧⎨=⎩C .32x y =⎧⎨=-⎩D .32x y =-⎧⎨=-⎩二、填空题13.如图,在ABC V 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC V 中再添加一个条件为__________.14.在函数4x y -=中,自变量x 的取值范围是______. 15.将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__.16.化简24的结果是__________.17.在平面直角坐标系xOy 中,一次函数y =kx 和y =﹣x +3的图象如图所示,则关于x 的一元一次不等式kx <﹣x +3的解集是_____.18.函数x____.19.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试 面试 体能 甲 83 79 90 乙 85 80 75 丙809073该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用. 20.已知3a b +=,2ab =a bb a的值为_________. 三、解答题21.如图,在平面直角坐标系中,直线4y x =-+过点(6,m)A 且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与3y x =平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.22.如图,在ABC ∆中,13,23AB AC ==,点D 在AC 上,若10BD CD ==,AE 平分BAC ∠. (1)求AE 的长;(2)若F 是BC 中点,求线段EF 的长.23.求证:三角形的一条中位线与第三边上的中线互相平分.要求:(1)根据给出的ABC ∆和它的一条中位线DE ,在给出的图形上,请用尺规作出BC 边上的中线AF ,交DE 于点O .不写作法,保留痕迹; (2)据此写出已知,求证和证明过程.24.设a 8x =-b 3x 4=+c x 2=+(1)当x 取什么实数时,a ,b ,c 都有意义;(2)若Rt △ABC 三条边的长分别为a ,b ,c ,求x 的值.25.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2.C解析:C【解析】【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.3.D解析:D【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.4.C解析:C【解析】【分析】根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得.【详解】,故A选项错误;不是同类二次根式,不能合并,故B选项错误;C选项正确;D选项错误,故选C.【点睛】本题考查了二次根式的化简、二次根式的加减运算、乘除运算,解题的关键是掌握二次根式的性质与运算法则.5.D解析:D【解析】【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、利用一次函数图象上点的坐标特征,可得出:函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、由k=﹣3<0,b=2>0,利用一次函数图象与系数的关系可得出:一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、利用一次函数图象上点的坐标特征,可得出:一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.此题得解.【详解】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:D.【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.6.A解析:A【解析】【分析】根据一次函数的系数k=-0.5<0,可得出y随x值的增大而减小,将x=1代入一次函数解析式中求出y值即可.【详解】在一次函数y=-0.5x+2中k=-0.5<0,∴y随x值的增大而减小,∴当x=1时,y取最大值,最大值为-0.5×1+2=1.5,故选A.【点睛】本题考查了一次函数的性质,牢记“k<0,y随x的增大而减小”是解题的关键.7.D解析:D【解析】【分析】首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【详解】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD=2cm,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD,∴∠BAE=∠DAF=30°,∴∠EAF=60°,BE=AB=1cm,∴△AEF是等边三角形,AE=,∴周长是.故选:D.【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.8.B解析:B【解析】【分析】【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC、BD互相垂直,则需添加条件:AC、BD互相平分故选:B9.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

【冲刺卷】八年级数学下期末试卷(及答案)

【冲刺卷】八年级数学下期末试卷(及答案)

【冲刺卷】八年级数学下期末试卷(及答案)一、选择题1.当12a <<时,代数式2(2)1a a -+-的值为( ) A .1B .-1C .2a-3D .3-2a 2.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,),则点C 的坐标为( )A .(-,1)B .(-1,)C .(,1)D .(-,-1)3.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形 ④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分 其中正确的有( )个.A .4B .3C .2D .1 4.如图,在四边形ABCD 中,AB ∥CD ,要使得四边形ABCD 是平行四边形,可添加的条件不正确的是 ( )A .AB=CDB .BC ∥ADC .BC=AD D .∠A=∠C 5.三角形的三边长为22()2a b c ab +=+,则这个三角形是( )A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形 6.将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒7.如图,在△ABC 中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH ⊥BC 于H ,FD =8,则HE 等于( )A .20B .16C .12D .8 8.若一个直角三角形的两边长为12、13,则第三边长为( ) A .5B .17C .5或17D .5或 9.若正比例函数的图象经过点(,2),则这个图象必经过点( ).A .(1,2)B .(,)C .(2,)D .(1,) 10.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,以下说法不一定成立的是( )A .∠ABC=90°B .AC=BDC .OA=OBD .OA=AD11.如图,在▱ABCD 中,AB =6,BC =8,∠BCD 的平分线交AD 于点E ,交BA 的延长线于点F ,则AE +AF 的值等于( )A .2B .3C .4D .612.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A .10mB .15mC .18mD .20m二、填空题13.24的结果是__________.14.若x <222)x (﹣x|的正确结果是__.15.已知y 关于x 的函数图象如图所示,则当y <0时,自变量x 的取值范围是______.16.已知0,0a b <>,化简2()a b -=________17.若二次根式2019x -在实数范围内有意义,则x 的取值范围是_____.18.已知数据:﹣1,4,2,﹣2,x 的众数是2,那么这组数据的平均数为_____.19.一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.20.将一组数据中的每一个数都加上1得到一组新的数据,那么在众数、中位数、平均数、方差这四个统计量中,值保持不变的是_____.三、解答题21.如图,▱ABCD 的对角线AC ,BD 相交于点O .E ,F 是AC 上的两点,并且AE=CF ,连接DE ,BF .(1)求证:△DOE ≌△BOF ;(2)若BD=EF ,连接DE ,BF .判断四边形EBFD 的形状,并说明理由.22.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折. ()1求每套队服和每个足球的价格是多少?()2若城区四校联合购买100套队服和a(a 10)>个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花的费用;()3在()2的条件下,若a 60=,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?23.计算:32231(2)(4)()272----. 24.如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 离点C5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B 去吃一滴蜜糖,需要爬行的最短距离是多少?25.如图,已知菱形ABCD ,AB=AC ,E 、F 分别是BC 、AD 的中点,连接AE 、CF . (1)求证:四边形AECF 是矩形;(2)若AB=6,求菱形的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:首先由2(2)a -,即可将原式化简,然后由1<a <2,去绝对值符号,继而求得答案.详解:∵1<a <2, 2(2)a -(a-2),|a-1|=a-1, 2(2)a -(a-2)+(a-1)=2-1=1.故选A .点睛:此题考查了二次根式的性质与化简以及绝对值的性质,解答本题的关键在于熟练掌握二次根式的性质.2.A解析:A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A 作AD ⊥x 轴于D ,过点C 作CE ⊥x 轴于E ,根据同角的余角相等求出∠OAD=∠COE ,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A.考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.3.C解析:C【解析】【分析】【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.4.C解析:C【解析】【分析】根据平行四边形的判定方法,逐项判断即可.【详解】∵AB∥CD,∴当AB=CD时,由一组对边平行且相等的四边形为平行四边形可知该条件正确;当BC∥AD时,由两组对边分别平行的四边形为平行四边形可知该条件正确;当∠A=∠C时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件正确;当BC=AD时,该四边形可能为等腰梯形,故该条件不正确;故选:C.【点睛】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.5.C解析:C【解析】【分析】利用完全平方公式把等式变形为a2+b2=c2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案.【详解】∵22()2a b c ab +=+,∴a 2+2ab+b 2=c 2+2ab ,∴a 2+b 2=c 2,∴这个三角形是直角三角形,故选:C .【点睛】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角. 6.C解析:C【解析】【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义)∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90°即CBD ∠=90°故选:C .【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.7.D解析:D【解析】【分析】根据三角形中位线定理得出AC 的长,再根据直角三角形斜边上的中线等于斜边的一半即可求出【详解】∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=12 AC;∵FD=8∴AC=16又∵E是线段AC的中点,AH⊥BC,∴EH=12 AC,∴EH=8.故选D.【点睛】本题综合考查了三角形中位线定理、直角三角形斜边上的中线.熟记性质与定理并准确识图是解题的关键.8.D解析:D【解析】【分析】根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【详解】当12,13为两条直角边时,第三边==,当13,12分别是斜边和一直角边时,第三边==5.故选D.【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.9.D解析:D【解析】设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(-1,2),所以2=-k,解得:k=-2,所以y=-2x,把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,所以这个图象必经过点(1,-2).10.D解析:D【解析】【分析】根据矩形性质可判定选项A 、B 、C 正确,选项D 错误.【详解】∵四边形ABCD 为矩形,∴∠ABC=90°,AC=BD ,OA=OB ,故选D【点睛】本题考查了矩形的性质,熟练运用矩形的性质是解决问题的关键.11.C解析:C【解析】【分析】【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD=BC=8,CD=AB=6,∴∠F=∠DCF ,∵∠C 平分线为CF ,∴∠FCB=∠DCF ,∴∠F=∠FCB ,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C12.C解析:C【解析】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m ,AB=12m , ∴22AB BC +22125+=13m ,∴这棵树原来的高度=BC+AC=5+13=18m.二、填空题13.4【解析】【分析】根据二次根式的性质直接化简即可【详解】故答案为:4【点睛】此题主要考查了运用二次根式的性质进行化简注意:解析:4【解析】【分析】根据二次根式的性质直接化简即可.【详解】|4|4=.故答案为:4.【点睛】(0)||0 (0)(0)a aa aa a⎧⎪===⎨⎪-⎩><.14.5-2x【解析】【分析】本题首先根据题意得出x-203-x0然后根据绝对值的性质进行化简从而得出答案【详解】解:+|3﹣x|=+|3﹣x|∵x<2∴x-203-x0∴原式=2-x+3-x=5-2x故解析:5-2x【解析】【分析】本题首先根据题意得出x-2<0,3-x>0,然后根据绝对值的性质进行化简,从而得出答案.【详解】解:﹣x|=2x-+|3﹣x|∵x<2∴x-2<0,3-x>0∴原式=2-x+3-x=5-2x故答案为:5-2x【点睛】本题主要考查的就是二次根式的化简.2的区别,第一个a的取值范围为全体实数,第二个a的取值范围为非负数,第一个的运算结果为a,然后根据a的正负性进行去绝对值,第二个的运算结果就是a.本题我们知道原式=x2-+3x-,然后根据x的取值范围进行化简.15.﹣1<x<1或x>2【解析】【分析】观察图象和数据即可求出答案【详解】y<0时即x轴下方的部分∴自变量x的取值范围分两个部分是−1<x<1或x>2【点睛】本题考查的是函数图像熟练掌握图像是解题的关键解析:﹣1<x<1或x>2.【解析】【分析】观察图象和数据即可求出答案.【详解】y<0时,即x轴下方的部分,∴自变量x的取值范围分两个部分是−1<x<1或x>2.【点睛】本题考查的是函数图像,熟练掌握图像是解题的关键.16.【解析】【分析】根据二次根式的性质得出|a−b|根据绝对值的意义求出即可【详解】∵a<0<b∴|a−b|=b−a故答案为:【点睛】本题主要考查对二次根式的性质绝对值等知识点的理解和掌握能根据二次根式-解析:b a【解析】【分析】根据二次根式的性质得出|a−b|,根据绝对值的意义求出即可.【详解】∵a<0<b,=|a−b|=b−a.-.故答案为:b a【点睛】本题主要考查对二次根式的性质,绝对值等知识点的理解和掌握,能根据二次根式的性质正确进行计算是解此题的关键.17.x>2019【解析】【分析】根据二次根式的定义进行解答【详解】在实数范围内有意义即x-20190所以x的取值范围是x2019【点睛】本题考查了二次根式的定义熟练掌握二次根式的定义是本题解题关键解析:x>2019【解析】【分析】根据二次根式的定义进行解答.【详解】x-2019≥ 0,所以x的取值范围是x≥ 2019.【点睛】本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.18.【解析】试题分析:数据:﹣142﹣2x 的众数是2即的2次数最多;即x=2则其平均数为:(﹣1+4+2﹣2+2)÷5=1故答案为1考点:1众数;2算术平均数 解析:【解析】试题分析:数据:﹣1,4,2,﹣2,x 的众数是2,即的2次数最多;即x=2.则其平均数为:(﹣1+4+2﹣2+2)÷5=1.故答案为1.考点:1.众数;2.算术平均数.19.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3, 3,32. 【解析】【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键. 20.方差【解析】【分析】设原数据的众数为a 中位数为b 平均数为方差为S2数据个数为n 根据数据中的每一个数都加上1利用众数中位数的定义平均数方差的公式分别求出新数据的众数中位数平均数方差与原数据比较即可得答 解析:方差【解析】【分析】设原数据的众数为a 、中位数为b 、平均数为x 、方差为S 2,数据个数为n ,根据数据中的每一个数都加上1,利用众数、中位数的定义,平均数、方差的公式分别求出新数据的众数、中位数、平均数、方差,与原数据比较即可得答案.【详解】设原数据的众数为a 、中位数为b 、平均数为x 、方差为S 2,数据个数为n , ∵将一组数据中的每一个数都加上1,∴新的数据的众数为a+1,中位数为b+1,平均数为1n(x1+x2+…+x n+n)=x+1,方差=1n[(x1+1-x-1)2+(x2+1-x-1)2+…+(x n+1-x-1)2]=S2,∴值保持不变的是方差,故答案为:方差【点睛】本题考查的知识点众数、中位数、平均数、方差,熟练掌握方差和平均数的计算公式是解答本题的关键.三、解答题21.(2)证明见解析;(2)四边形EBFD是矩形.理由见解析.【解析】分析:(1)根据SAS即可证明;(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,OD OBDOE BOFOE OF⎧⎪∠∠⎨⎪⎩===,∴△DOE≌△BOF.(2)结论:四边形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(1) 每套队服150元,每个足球100元;(2) 购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算.【解析】试题分析:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)当在两家商场购买一样合算时,100a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算考点:一元一次方程的应用.23.-31【解析】【分析】根据整数指数幂,二次根式立方根的定义,化简计算即可.【详解】=-⨯+-原式8443=+-3243=-31故答案是-31.【点睛】本题考查了实数的运算,将二次根式及整数指数幂化简是解决本题的关键.24.需要爬行的最短距离是2cm.【解析】【分析】先将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB;或将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,然后分别在Rt△ABD与Rt△ABH,利用勾股定理求得AB的长,比较大小即可求得需要爬行的最短路程.【详解】解:将长方体沿CF 、FG 、GH 剪开,向右翻折,使面FCHG 和面ADCH 在同一个平面内,连接AB ,如图1,由题意可得:BD=BC+CD=5+10=15cm ,AD=CH=15cm ,在Rt △ABD 中,根据勾股定理得:22BD AD +2cm ;将长方体沿DE 、EF 、FC 剪开,向上翻折,使面DEFC 和面ADCH 在同一个平面内, 连接AB ,如图2,由题意得:BH=BC+CH=5+15=20cm ,AH=10cm ,在Rt △ABH 中,根据勾股定理得:22BH AH +5,则需要爬行的最短距离是2cm .连接AB ,如图3,由题意可得:BB′=B′E+BE=15+10=25cm ,AB′=BC=5cm ,在Rt △AB ′B 中,根据勾股定理得:22BB AB ''+26,∵2<526∴则需要爬行的最短距离是2cm .考点:平面展开-最短路径问题.25.(1)证明见解析;(2)3【解析】试题分析:(1)首先证明△ABC 是等边三角形,进而得出∠AEC=90°,四边形AECF 是平行四边形,即可得出答案;(2)利用勾股定理得出AE 的长,进而求出菱形的面积.试题解析:(1)∵四边形ABCD 是菱形,∴AB=BC ,又∵AB=AC ,∴△ABC 是等边三角形,∵E是BC的中点,∴AE⊥BC,∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=12AD,EC=12BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形,又∵∠AEC=90°,∴四边形AECF是矩形;(2)在Rt△ABE中,AE==,所以,S菱形ABCD考点:1.菱形的性质;2..矩形的判定.。

2020-2021学年人教版八年级下册数学期末冲刺试题【含答案】

2020-2021学年人教版八年级下册数学期末冲刺试题【含答案】

2020-2021学年人教新版八年级下册数学期末冲刺试题一.选择题(共6小题,满分18分,每小题3分)1.下列二次根式中,无论x取什么值都有意义的是( )A.B.C.D.2.如果正比例函数y=(a﹣1)x(a是常数)的图象在第一、三象限,那么a的取值范围是( )A.a<0B.a>0C.a<1D.a>13.若样本x1,x2,x3,…,x n的平均数为10,方差为4,则对于样本x1﹣3,x2﹣3,x3﹣3,…,x n﹣3,下列结论正确的是( )A.平均数为10,方差为2B.众数不变,方差为4C.平均数为7,方差为2D.中位数变小,方差不变4.已知直角三角形的两条直角边的长分别为1和2,则斜边的长为( )A.B.C.3D.55.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为( )A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)6.如图,用正方形制作的“七巧板”拼成了一只小猫,若小猫头部(图中涂色部分)的面积是100cm2,则原正方形的边长为( )A.10cm B.15cm C.20cm D.25cm二.填空题(共6小题,满分18分,每小题3分)7.若最简根式与是可以合并的二次根式,则a的值是 .8.如图,已知直线y=ax+b和直线y=kx交于点P,若二元一次方程组的解为x、y,则关于x+y= .9.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种5kg,乙种10kg,丙种10kg混在一起,则售价应定为每千克 .10.如图所示,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC、BD相交于点O,E、F分别是AB、AO的中点,则△AEF的周长是 cm.11.如图,在△ABC中,已知AB=2,AD⊥BC,垂足为D,BD=2CD.若E是AD的中点,则EC= .12.A、B两地之间为直线距离且相距600千米,甲开车从A地出发前往B地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B地的距离为 千米.三.解答题(共5小题,满分30分,每小题6分)13.计算题:(1)()×;(2)(+1)(﹣1)﹣()2.14.如图,用两个面积为200cm2的小正方形拼成一个大的正方形.(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为4:3,且面积为360cm2?15.已知一次函数y=(m﹣2)x|m|﹣1﹣m+10.(1)求出m的值;(2)当一次函数与x轴、y轴的交点分别为A和B时,求△AOB的面积.16.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.求:△ABC的周长.17.如图,AD是△ABC的角平分线,请利用尺规作图法,在AB,AC边上分别求作点E、点F,使四边形AEDF是菱形.(保留作图痕迹,不写作法)四.解答题(共3小题,满分24分,每小题8分)18.如图,在▱AB CD中,点P在对角线AC上一动点,过点P作PM∥DC,且PM=DC,连接BM,CM,AP,BD.(1)求证:△ADP≌△BCM;(2)若PA=PC,设△ABP的面积为S,四边形BPCM的面积为T,求的值.19.2020年3月,有关部门颁布了《关于全面加强新时代大中小学劳动教育的意见》,某地教育局发布了“普通中小学校劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,在该校七、八年级中各随机抽取20名学生进行调查,并将结果整理描述和分析,下面给出了部分信息.七年级20名学生的一周劳动次数为:22233333333445556677八年级20名学生的一周劳动次数条形统计图如图.七、八年级抽取的学生的一周劳动次数的平均数、众数,中位数、5次及以上人数所占百分比如表所示:年级平均数众数中位数5次及以上人数所占百分比七年级 3.95a335%八年级 3.953b c根据以上信息,解答下列问题:(1)直接写出上述表中的a,b,c的值;(2)若规定:每名学生的劳动次数的绝对差=|劳动次数﹣平均数|,则七年级这20名学生的劳动次数的绝对差的总和 八年级这20名学生的劳动次数的绝对差的总和(填“>”、“=”或“<”);(3)若一周劳动次数3次及以上为合格,该校七年级有600名学生,八年级有800名学生,估计该校七年级和八年级一周劳动次数合格的学生总人数是多少.20.定义:若三角形三个内角的度数分别是x、y和z,满足x2+y2=z2,则称这个三角形为勾股三角形.(1)根据上述定义,“直角三角形是勾股三角形”是真命题还是假命题;(2)已知一勾股三角形三个内角从小到大依次为x、y和z,且xy=2160,求x+y的值;(3)如图,△ABC中,AB=,BC=2,AC=1+,求证:△ABC是勾股三角形.五.解答题(共2小题,满分18分,每小题9分)21.在“一带一路”倡议的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10千克A级茶和20千克B级茶的利润为4000元,销售20千克A级茶和10千克B级茶的利润为3500元.(1)求每千克A级茶、B级茶的利润分别为多少元?(2)若该经销商一次决定购进A、B两种级别的茶叶共200千克用于出口,设购进A 级茶x千克,销售总利润为y元.①求y与x之间的函数关系式;②若其中B级别茶叶的进货量不超过A级别茶叶的3倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.22.已知,四边形ABCD是菱形,∠B=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB上任意一点时(点E不与B,C重合),求证:BE=CF;(2)如图2,当点E在线段CB的延长线上,连接AC,在不添加任何辅助线的情况下,直接写出图2中三对相等的线段(菱形ABCD相等的边除外).六.解答题(共1小题,满分12分,每小题12分)23.如图,直线y=﹣x﹣4交x轴和y轴于点A和点C,点B(0,2)在y轴上,连接AB,点P为直线AB上一动点.(1)直线AB的解析式为 ;(2)若S△APC=S△AOC,求点P的坐标;(3)当∠BCP=∠BAO时,求直线CP的解析式及CP的长.答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.解:A、当x=1时,无意义,故此选项错误;B、当x=1时,无意义,故此选项错误;C、当x<0时,无意义,故此选项错误;D、无论x取什么值,都有意义,故此选项正确;故选:D.2.解:因为正比例函数y=(a﹣1)x(a是常数)的图象在第一、三象限,所以a﹣1>0,解得:a>1,故选:D.3.解:∵样本x1,x2,x3,…,x n的平均数为10,方差为4,∴样本x1﹣3,x2﹣3,x3﹣3,…,x n﹣3的平均数为7,方差为4,众数和中位数变小.故选:D.4.解:∵直角三角形的两条直角边的长分别为1和2,∴斜边的长为:.故选:B.5.解:∵点P位于第二象限,∴点的横坐标为负数,纵坐标为正数,∵点距离x轴5个单位长度,距离y轴3个单位长度,∴点的坐标为(﹣3,5).故选:D.6.解:100÷=400(cm2),=20(cm).∴原正方形的边长为20cm.故选:C.二.填空题(共6小题,满分18分,每小题3分)7.解:根据题意得a+3=11﹣3a,解得a=2.故答案为2.8.解:∵直线y=ax+b和直线y=kx交点P的坐标为(1,2),∴二元一次方程组的解为,∴x+y=1+2=3.故答案为3.9.解:根据题意售价应该定为=7.2(元/千克),故答案为7.2元.10.解:在Rt△ABC中,AC==10cm,∵点E、F分别是AO、AB的中点,∴EF是△AOB的中位线,EF=OB=BD=AC=cm,AE=AB=×6=3cm,AF=AO=AC=cm ,∴△AEF的周长=AE+AF+EF=8cm.故8.11.解:设AE=ED=x,CD=y,∴BD=2y,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,∴AB2=4x2+4y2,∴x2+y2=1,在Rt△CDE中,∴EC2=x2+y2=1∵EC>0∴EC=1.另解:依据AD⊥BC,BD=2CD,E是AD的中点,即可得判定△CDE∽△BDA,且相似比为1:2,∴=,即CE=1.故112.解:设甲的速度为akm/h,乙的速度为bkm/h,,解得,,设第二次甲追上乙的时间为m小时,100m﹣25(m﹣1)=600,解得,m=,∴当甲第二次与乙相遇时,乙离B地的距离为:25×()=千米,故.三.解答题(共5小题,满分30分,每小题6分)13.解:(1)===;(2)===.14.解:(1)大正方形的边长是==20(cm);故20cm;(2)设长方形纸片的长为4xcm,宽为3xcm,则4x•3x=360,解得:x=,4x=4=>20,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为360cm2.15.解:(1)根据题意得:,解得:m=﹣2;(2)函数y=﹣4x+12.当y=0,0=﹣4x+12.解得:x=3,∴与x轴交点A为(3,0),当x=0,y=12,∴与y轴交点B为(0,12),∴一次函数的图象与两坐标轴所围成的三角形面积为:S△AOB=|x||y|==18.16.解:在Rt△ABD和Rt△ACD中,根据勾股定理得:AB2=AD2+BD2,AC2=AD2+CD2,∴AB==20,AC==13,∴△ABC的周长=AB+AC+BC=AB+AC+BD+DC=20+13+16+5=54,即△ABC的周长是54.17.解:如图,四边形AEDF为所作.四.解答题(共3小题,满分24分,每小题8分)18.解:(1)∵PM∥DC,且PM=DC,∴四边形CDPM是平行四边形,∴PD=MC,∵AB∥DC,且AB=DC,PM∥DC,且PM=DC,∴AB∥PM,且AB=PM,∴四边形ABMP是平行四边形,∴AP=BM,∵四边形ABCD是平行四边形,∴AD=BC,∴△ADP≌△BCM(SSS);(2)由(1)可得S△ADP=S△BCM,∴S四边形BMCP=S△BCM+S△BCP=S△ADP+S△BCP=S平行四边形ABCD,又∵PA=PC,∴S△ABP=S△ABC=S平行四边形ABCD,∴的值为=.19.解:(1)由表格可得,a=3,由统计图可得,b=(3+4)÷2=3.5,c=×100%=40%,即a,b,c的值分别为3,3.5,40%;(2)由题意可得,七年级这20名学生的劳动次数的绝对差的总和是:|2﹣3.95|×3+|3﹣3.95|×8+|4﹣3.95|×2+|5﹣3.95|×3+|6﹣3.95|×2+|7﹣3.95|×2=26.9,八年级这20名学生的劳动次数的绝对差的总和是:|2﹣3.95|×4+|3﹣3.95|×6+|4﹣3.95|×2+|5﹣3.95|×4+|6﹣3.95|×3+|7﹣3.95|×1=27,∵26.9<27,∴七年级这20名学生的劳动次数的绝对差的总和<八年级这20名学生的劳动次数的绝对差的总和,故<;(3)600×+800×=30×17+40×16=510+640=1150(人),答:估计该校七年级和八年级一周劳动次数合格的学生总人数是1150人.20.(1)解:“直角三角形是勾股三角形”是假命题;理由如下:反例:30°,60°,90°的直角三角形中302+602≠902,它不是勾股三角形,故“直角三角形是勾股三角形”是假命题;(2)解:由题意可得:,解得:x+y=102;(3)证明:过B作BH⊥AC于H,如图所示:设AH=xRt△ABH中,BH=,Rt△CBH中,()2+(1+﹣x)2=4,解得:x=,∴AH=BH=,HC=1,∴∠A=∠ABH=45°,∴tan∠HBC===,∴∠HBC=30°,∴∠BCH=60°,∠B=75°,∴452+602=752∴△ABC是勾股三角形.五.解答题(共2小题,满分18分,每小题9分)21.解:(1)设每千克A级茶、B级茶的利润分别为a元、b元,,解得,,答:每千克A级茶、B级茶的利润分别为100元、150元;(2)①由题意可得,y=100x+150(200﹣x)=﹣50x+30000,即y与x的函数关系式为y=﹣50x+30000;②∵其中B级别茶叶的进货量不超过A级别茶叶的3倍,∴200﹣x≤3x,解得,x≥50,∵y=﹣50x+30000,∴当x=50时,y取得最大值,此时y=27500,200﹣x=150,即当进货方案是A级茶叶50千克,B级茶叶150千克时,使销售总利润最大,总利润的最大值是27500元.22.(1)证明:∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF(ASA),∴BE=CF.(2)解:AE=AF,BE=CF,CE=DF.由(1)知△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=∠ACD=60°,∵∠BAC=∠EAF=60°,∠ABE=∠ACF,∴∠BAE=∠CAF,∵AB=AC,∴△BAE≌△CAF(ASA),∴AE=AF,BE=CF,∴BE+BC=CF+CD,即CE=DF.六.解答题(共1小题,满分12分,每小题12分)23.解:(1)∵直线y=﹣x﹣4交x轴和y轴于点A和点C,∴点A(﹣4,0),点C(0,﹣4),设直线AB的解析式为y=kx+b,由题意可得:,解得:,∴直线AB的解析式为y=x+2,故y=x+2;(2)∵点A(﹣4,0),点C(0,﹣4),点B(0,2),∴OA=OC=4,OB=2,∴BC=6,设点P(m, m+2),当点P在线段AB上时,∵S△APC=S△AOC,∴S△ABC﹣S△PBC=×4×4,∴×6×4﹣×6×(﹣m)=8,∴m=﹣,∴点P(﹣,);当点P在BA的延长线上时,∵S△APC=S△AOC,∴S△PBC﹣S△ABC=×4×4,∴×6×(﹣m)﹣×6×4=8,∴m=﹣,∴点P(﹣,﹣),综上所述:点P坐标为(﹣,)或(﹣,﹣);(3)如图,当点P在线段AB上时,设CP与AO交于点H,在△AOB和△COH中,,∴△AOB≌△COH(ASA),∴OH=OB=2,∴点H坐标为(﹣2,0),设直线PC解析式y=ax+c,由题意可得,解得:,∴直线PC解析式为y=﹣2x﹣4,联立方程组得:,解得:,∴点P(﹣,),∴CP==,当点P'在AB延长线上时,设CP'与x轴交于点H',同理可求直线P'C解析式为y=2x﹣4,联立方程组,∴点P(4,4),∴CP==4,综上所述:CP的解析式为:y=﹣2x﹣4或y=2x﹣4;CP的长为或4.。

【冲刺卷】八年级数学下期末模拟试卷(带答案)

【冲刺卷】八年级数学下期末模拟试卷(带答案)

【冲刺卷】八年级数学下期末模拟试卷(带答案)一、选择题1.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥2.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个. A .4B .3C .2D .13.三角形的三边长为22()2a b c ab +=+,则这个三角形是( ) A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形4.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表: 每天锻炼时间(分钟) 20 40 60 90 学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60 B .平均数是21C .抽查了10个同学D .中位数是505.4133的结果为( ). A .32 B .23C 2D .26.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b .若8ab =,大正方形的面积为25,则小正方形的边长为( )A.9B.6C.4D.37.计算12(75+313﹣48)的结果是()A.6B.43C.23+6D.128.若正比例函数的图象经过点(,2),则这个图象必经过点().A.(1,2)B.(,)C.(2,)D.(1,)9.二次根式()23-的值是()A.﹣3B.3或﹣3C.9D.310.某商场对上周某品牌运动服的销售情况进行了统计,如下表所示:颜色黄色绿色白色紫色红色数量(件)12015023075430经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识的()A.平均数B.中位数C.众数D.平均数与众数11.如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上的点F处.若AFDV的周长为18,ECFV的周长为6,四边形纸片ABCD的周长为()A.20B.24C.32D.4812.如图,已知△ABC中,AB=10 ,AC=8 ,BC = 6 ,DE是AC的垂直平分线,DE交AB于点D ,交AC于点E ,连接CD ,则CD的长度为()A.3B.4C.4.8D.5二、填空题13.如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF ⊥AE ,垂足为F ,若AD =AE =1,∠DAE =30°,则EF =_____.14.如图,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1_____S 2;(填“>”或“<”或“=”)15.函数y =21xx -中,自变量x 的取值范围是_____. 16.一次函数的图象过点()1,3且与直线21y x =-+平行,那么该函数解析式为__________.17.如图,在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为____________.18.若一个多边形的内角和是900º,则这个多边形是 边形.19.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.20.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≦x ≦5)的函数关系式为___三、解答题21.如图,在平行四边形ABCD 中,点E 为AD 的中点,延长CE 交BA 的延长线于点F .(1)求证:AB =AF ;(2)若BC =2AB ,∠BCD =100°,求∠ABE 的度数.22.如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN 交∠BCA的平分线于E,交∠BCA的外角平分线于F.(1)请猜测OE与OF的大小关系,并说明你的理由;(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;(3)点O运动到何处且△ABC满足什么条件时,四边形AECF是正方形?(写出结论即可)23.有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出块这样的木条.24.为了从甲、乙两名选手中选拔出一个人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表.甲、乙射击成绩统计表平均数(环)中位数(环)方差命中10环的次数甲70乙1甲、乙射击成绩折线统计图(1)请补全上述图表(请直接在表中填空和补全折线图); (2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?25.如图,在菱形ABCD 中,AB=2,∠DAB=60°,点E 是AD 边的中点,点M 是AB 边上的一个动点(不与点A 重合),延长ME 交CD 的延长线于点N ,连接MD ,AN .(1)求证:四边形AMDN 是平行四边形.(2)当AM 的值为何值时,四边形AMDN 是矩形,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集. 【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤. 故选:A . 【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键. 2.C解析:C 【解析】【分析】 【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误; ∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C .考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.3.C解析:C 【解析】 【分析】利用完全平方公式把等式变形为a 2+b 2=c 2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案. 【详解】∵22()2a b c ab +=+, ∴a 2+2ab+b 2=c 2+2ab , ∴a 2+b 2=c 2,∴这个三角形是直角三角形, 故选:C . 【点睛】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.4.B解析:B 【解析】 【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可. 【详解】解:A 、60出现了4次,出现的次数最多,则众数是60,故A 选项说法正确; B 、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B 选项说法错误; C 、调查的户数是2+3+4+1=10,故C 选项说法正确;D 、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D 选项说法正确; 故选:B . 【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.5.D解析:D 【解析】 【分析】根据二次根式的除法法则进行计算即可. 【详解】原式2===. 故选:D. 【点睛】本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.6.D解析:D 【解析】 【分析】由题意可知:中间小正方形的边长为:-a b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长. 【详解】解:由题意可知:中间小正方形的边长为:-a bQ 每一个直角三角形的面积为:118422ab =⨯= 214()252ab a b ∴⨯+-=2()25169a b ∴-=-=3a b ∴-= 故选:D 【点睛】本题考查勾股定理的运用,稍有难度;利用大正方形与小正方形、直角三角形面积之间的等量关系是解答本题的关键.7.D解析:D 【解析】 【分析】 【详解】12===.故选:D.8.D解析:D【解析】设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(-1,2),所以2=-k,解得:k=-2,所以y=-2x,把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,所以这个图象必经过点(1,-2).故选D.9.D解析:D【解析】【分析】本题考查二次根式的化简,(0)(0)a aa a⎧=⎨-<⎩….【详解】|3|3=-=.故选D.【点睛】本题考查了根据二次根式的意义化简.a≥0a;当a≤0a.10.C解析:C【解析】试题解析:由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色运动装的主要根据众数.故选C.考点:统计量的选择.11.B解析:B【解析】【分析】根据折叠的性质易知矩形ABCD的周长等于△AFD和△CFE的周长的和.【详解】由折叠的性质知,AF=AB,EF=BE.所以矩形的周长等于△AFD和△CFE的周长的和为18+6=24cm.故矩形ABCD的周长为24cm.故答案为:B.【点睛】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.12.D解析:D【解析】【分析】【详解】已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC为直角三角形,又因DE为AC边的中垂线,可得DE⊥AC,AE=CE=4,所以DE为三角形ABC 的中位线,即可得DE=12BC=3,再根据勾股定理求出CD=5,故答案选D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.二、填空题13.﹣1【解析】【分析】首先证明△ADE≌△GCE推出EG=AE=AD=CG=1再求出F G即可解决问题【详解】∵四边形ABCD是平行四边形∴AD∥BGAD=BC∴∠DAE=∠G=30°∵DE=EC∠AE1【解析】【分析】首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.【详解】∵四边形ABCD是平行四边形,∴AD∥BG,AD=BC,∴∠DAE=∠G=30°,∵DE=EC,∠AED=∠GEC,∴△ADE≌△GCE,∴AE=EG=AD=CG=1,在Rt△BFG中,∵∴,-1.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.14.=【解析】【分析】利用矩形的性质可得△ABD 的面积=△CDB 的面积△MBK 的面积=△QKB 的面积△PKD 的面积=△NDK 的面积进而求出答案【详解】解:∵四边形ABCD 是矩形四边形MBQK 是矩形四边形解析:= 【解析】 【分析】利用矩形的性质可得△ABD 的面积=△CDB 的面积,△MBK 的面积=△QKB 的面积,△PKD 的面积=△NDK 的面积,进而求出答案. 【详解】解:∵四边形ABCD 是矩形,四边形MBQK 是矩形,四边形PKND 是矩形, ∴△ABD 的面积=△CDB 的面积,△MBK 的面积=△QKB 的面积,△PKD 的面积=△NDK 的面积,∴△ABD 的面积﹣△MBK 的面积﹣△PKD 的面积=△CDB 的面积﹣△QKB 的面积=△NDK 的面积, ∴S 1=S 2. 故答案为:=. 【点睛】本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.15.x≠1【解析】【分析】根据分式有意义的条件即可解答【详解】函数y =中自变量x 的取值范围是x ﹣1≠0即x≠1故答案为:x≠1【点睛】本题考查了函数自变量的取值范围当函数表达式是分式时要注意考虑分式的分解析:x ≠1 【解析】 【分析】根据分式有意义的条件即可解答. 【详解】 函数y =21xx -中,自变量x 的取值范围是x ﹣1≠0,即x ≠1, 故答案为:x ≠1. 【点睛】本题考查了函数自变量的取值范围,当函数表达式是分式时,要注意考虑分式的分母不能为0.16.【解析】【分析】根据两直线平行可设把点代入即可求出解析式【详解】解:∵一次函数图像与直线平行∴设一次函数为把点代入方程得:∴∴一次函数的解析式为:;故答案为:【点睛】本题考查了一次函数的图像和性质解 解析:25y x =-+【解析】根据两直线平行,可设2y x b =-+,把点()1,3代入,即可求出解析式.【详解】解:∵一次函数图像与直线21y x =-+平行,∴设一次函数为2y x b =-+,把点()1,3代入方程,得:213b -⨯+=,∴5b =,∴一次函数的解析式为:25y x =-+;故答案为:25y x =-+.【点睛】本题考查了一次函数的图像和性质,解题的关键是掌握两条直线平行,则斜率相等. 17.2【解析】【分析】根据平行四边形的性质可得出AD ∥BC 则∠AEB =∠CBE 再由∠ABE =∠CBE 则∠AEB =∠ABE 则AE =AB 从而求出DE 【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠A解析:2【解析】【分析】根据平行四边形的性质,可得出AD ∥BC ,则∠AEB =∠CBE ,再由∠ABE =∠CBE ,则∠AEB =∠ABE ,则AE =AB ,从而求出DE .【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEB =∠CBE ,∵∠B 的平分线BE 交AD 于点E ,∴∠ABE =∠CBE ,∴∠AEB =∠ABE ,∴AE =AB ,∵AB =3,BC =5,∴DE =AD -AE =BC -AB =5-3=2.故答案为2.【点睛】本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.18.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键【解析】【分析】n-⋅︒,列式求解即可.根据多边形的内角和公式()2180【详解】设这个多边形是n边形,根据题意得,()2180900n-⋅︒=︒,n=.解得7故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.19.2+2【解析】【分析】地毯的竖直的线段加起来等于BC水平的线段相加正好等于AC即地毯的总长度至少为(AC+BC)【详解】在Rt△ABC中∠A=30°BC=2m ∠C=90°∴AB=2BC=4m∴AC=解析:2+23【解析】【分析】地毯的竖直的线段加起来等于BC,水平的线段相加正好等于AC,即地毯的总长度至少为(AC+BC).【详解】在Rt△ABC中,∠A=30°,BC=2m,∠C=90°,∴AB=2BC=4m,∴2223-=m,AB BC∴3(m).故答案为:3【点睛】本题主要考查勾股定理的应用,解此题的关键在于准确理解题中地毯的长度为水平与竖直的线段的和.20.y=6+03x【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间即y=6+03x考点:一次函数的应用解析:y=6+0.3x【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间,即y=6+0.3x.考点:一次函数的应用.三、解答题21.(1)证明见解析;(2)∠ABE =40°.【解析】【分析】(1)由四边形ABCD 是平行四边形,点E 为AD 的中点,易证得△DEC ≌△AEF (AAS ),继而可证得DC =AF ,又由DC =AB ,证得结论;(2)由(1)可知BF =2AB ,EF =EC ,然后由∠BCD =100°求得BE 平分∠CBF ,继而求得答案.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB ,∴∠DCE =∠F ,∠FBC+∠BCD =180°,∵E 为AD 的中点,∴DE =AE .在△DEC 和△AEF 中,DCE F DEC AEF DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEC ≌△AEF (AAS ).∴DC =AF .∴AB =AF ;(2)由(1)可知BF =2AB ,EF =EC ,∵∠BCD =100°,∴∠FBC =180°﹣100°=80°,∵BC =2AB ,∴BF =BC ,∴BE 平分∠CBF ,∴∠ABE =12∠FBC =12×80°=40° 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC ≌△AEF 和△BCF 是等腰三角形是关键.22.(1)猜想:OE=OF ,理由见解析;(2)见解析;(3)见解析.【解析】【分析】(1)猜想:OE=OF,由已知MN∥BC,CE、CF分别平分∠BCO和∠GCO,可推出∠OEC=∠OCE,∠OFC=∠OCF,所以得EO=CO=FO.(2)由(1)得出的EO=CO=FO,点O运动到AC的中点时,则由EO=CO=FO=AO,所以这时四边形AECF是矩形.(3)由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,所以四边形AECF是正方形.【详解】(1)猜想:OE=OF,理由如下:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又∵CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF=∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.(2)当点O运动到AC的中点时,四边形AECF是矩形.∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,已知MN∥BC,当∠ACB=90°,则∠AOF=∠CO E=∠COF=∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形.【点睛】此题考查的知识点是正方形和矩形的判定及角平分线的定义,解题的关键是由已知得出EO=FO,然后根据(1)的结论确定(2)(3)的条件.23.(1)剩余木料的面积为6dm2;(2)2.【解析】【分析】(1)先确定两个正方形的边长,然后结合图形解答即可;(2)估算322的大小,结合题意解答即可.【详解】解:(1)∵两个正方形的面积分别为18dm2和32dm2,∴这两个正方形的边长分别为2dm和2dm,∴剩余木料的面积为(2﹣2)×2=6(dm2);(2)4<2<4.5,12<2,∴从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出2块这样的木条,故答案为:2.【点睛】本题考查的是二次根式的应用,掌握无理数的估算方法是解答本题的关键.24.(1)补图见解析;(2)甲胜出,理由见解析;(3)见解析.【解析】【分析】(1)根据折线统计图列举出乙的成绩,计算出甲的中位数,方差,以及乙平均数,中位数及方差,补全即可;(2)计算出甲乙两人的方差,比较大小即可做出判断;(3)希望乙胜出,修改规则,使乙获胜的概率大于甲即可.【详解】(1)根据折线统计图得乙的射击成绩为2,4,6,8,7,7,8,9,9,10, 则平均数为1(24687789910)710⨯+++++++++=(环),中位数为7.5环, 方差为22222221(27)(47)(67)(87)(77)(77)(87)10⎡-+-+-+-+-+-+-⎣222(97)(97)(107) 5.4⎤+-+-+-=⎦.由图和表可得甲的射击成绩为9,6,7,6,2,7,7,8,9,平均数为7环.则甲第8次成绩为710(967627789)9⨯-++++++++=(环).所以甲的10次成绩为2,6,6,7,7,7,8,9,9,9,中位数为7环,方差为22222221(97)(67)(77)(67)(27)(77)(77)10⎡-+-+-+-+-+-+-⎣222(97)(87)(97)4⎤+-+-+-=⎦.补全表格如下:甲、乙射击成绩统计表平均数(环)中位数(环) 方差 命中10环的次数 甲7 4 0 乙 7 5.4 1(2)甲应胜出因为甲的方差小于乙的方差,甲的成绩比较稳定,故甲胜出.(3)制定的规则不唯一,如:如果希望乙胜出,应该制定的评判规则为平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出.因为甲、乙的平均成绩相同,乙只有第5次射击比第4次射击少命中1环,且命中1次10环,而甲第2次比第1次第4次比第3次、第5次比第4次、第9次比第8次命中环数都低,且命中10环的次数为0,即随着比赛的进行,乙的射击成绩越来越好,故乙胜出.【点睛】本题考查折线统计图,中位数,方差,平均数,以及统计表,读懂统计图,熟练掌握中位数,方差,平均数的计算是解本题的关键.25.(1)证明见解析;(2)AM=1.理由见解析.【解析】【分析】【详解】解:(1)∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,∵点E是AD中点,∴DE=AE,在△NDE和△MAE中,NDE MAEDNE AME DE AE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△NDE≌△MAE(AAS),∴ND=MA,∴四边形AMDN是平行四边形;(2)解:当AM=1时,四边形AMDN是矩形.理由如下:∵四边形ABCD是菱形,∴AD=AB=2,∵平行四边形AMDN是矩形,∴DM⊥AB,即∠DMA=90°,∵∠DAB=60°,∴∠ADM=30°,∴AM=12AD=1.【点睛】本题考查矩形的判定;平行四边形的判定;菱形的性质.。

2023-2024学年北师大版数学八年级下册 期末复习冲刺卷(含解析)

2023-2024学年北师大版数学八年级下册 期末复习冲刺卷(含解析)

2023-2024学年北师大版数学八年级下册 期末复习冲刺卷一、单选题1.一个正多边形的每个外角都等于60°,那么它的边数是( )A .6B .8C .10D .122.下列条件中不能判定四边形是平行四边形的是( )A .,B .,C .,D .,3.如图所示,平面直角坐标系中,x 轴负半轴上有一点A (-1,0),点A 第1次向上平移1个单位至点A 1(-1,1),接着又向右平移1个单位至点A 2(0,1),然后再向上平移1个单位至点A 3(0,2),向右平移1个单位至点A 4(1,2),…,照此规律平移下去,点A 平移至点A 2023时,点A 2023的坐标是( )A .(1009,1011)B .(1009,1010)C .(1010,1012)D .(1010,1011)4.点P 在的角平分线上,点P 到边的距离为10,点Q 是边上任意一点,则的最小值为( )A .6B .8C .10D .125.不等式组的解集在数轴上表示为( )A .B .C .D .6. 四边形的边长如图所示,对角线的长度随四边形形状的改变而变化.当为等腰三角形时,对角线的长为( )ABCD AB CD AD BCAD BC =AB CD A C ∠=∠B D ∠=∠AB CD =AD BC=AOB ∠OA OB PQ 123(5)9x x +≥⎧⎨-<-⎩ABCD AC ABC ACA .2B .3C .4D .57.已知直线l :y=2x+4,把直线l 向右平移6个单位得到直线l 1,则直线l 1的表达式为( )A .B .C .D .8.若数a 使关于x的分式方程的解为正数,且使关于y 的不等式组{y +23−y2>12(y−a )≤0的解集为,则符合条件的所有整数的和为( )A .10B .15C .18D .239.如图所示,在中,,AD 平分,于点E ,则下列结论:① DA 平分;②∠=∠;③DE 平分∠;④.其中正确的有A .①②B .①④C .③④D .①②④10.如图,AD 为等边△ABC 的高,E 、F 分别为线段AD 、AC 上的动点,且AE =CF ,当BF +CE 取得最小值时,∠AFB =A .112.5°B .105°C .90°D .82.5°二、填空题11.在实数范围内因式分解:= .24y x =-+26y x =-28y x =-24y x =--3411a x x+=--2y <-a ABC ∆90C ∠= BAC ∠DE AB ⊥CDE ∠BAC BDE ADB BE AC AB +=22x -12.下列条件:①∠C =∠A -∠B ;②∠A :∠B :∠C =5∶2∶3;③a=c ,b =c ;④a ∶b ∶c =1∶2,则能确定△ABC 是直角三角形的条件有 个.13.一个多边形的内角和是1260°,这个多边形的边数是  .14.在等边△ABC 所在平面内有点P ,且使得△ABP ,△ACP ,△BCP 均为等腰三角形,则符合条件的点P 共有 个.15.如图,△ABC 是边长为1的等边三角形,过点C 的直线m 平行AB ,D 、E 分别是线段AB 、直线m 上的点,先按如图方式进行折叠,点A 、C 分别落在A′、C′处,且A′C′经过点B ,DE 为折痕,当C′E ⊥m 时, 的值为 .三、计算题16.先化简,再求值:,其中.四、解答题17.解不等式,并把它的解集在数轴上表示出来.18.去年冬天某市遭遇持续暴雪天气,该市启用了清雪机,已知一台清雪机的工作效率相当于一名环卫工人工作效率的200倍,若用这台清雪机清理6000立方米的雪,要比120名环卫工人清理这些雪少用 小时,试求一台清雪机每小时清雪多少立方米. 19.先化简 ÷ ,然后从0,1,2中选一个合适的数作为a 的值代入求值. 20.已知:如图, , 是平行四边形 的对角线 所在直线上的两点,且.求证:四边形 是平行四边形.3545BA BC ''253222m m m m m -⎛⎫+-÷ ⎪--⎝⎭5m =2151132x x -+-≥832222121a a a a ⎛⎫-- ⎪-+⎝⎭221a a a +-A C DEBF EF AE CF =ABCD21.已知:如图,在中,,以为边向形外作等边三角形,把绕着点D 按顺时针方向旋转后得到,且A 、C 、E 三点共线,若,,求的度数与的长.22.如图,平行四边形的对角线、交于点O ,点E 、F 在上,且求证:.23.阅读、填空并将说理过程补充完整:如图,已知点D 、E 分别在△ABC 的边AB 、AC 上,且∠AED =∠B ,延长DE 与BC 的延长线交于点F ,∠BAC 和∠BFD 的角平分线交于点G .那么AG 与FG 的位置关系如何?为什么?解:AG ⊥FG .将AG 、DF 的交点记为点P ,延长AG 交BC 于点Q .因为AG 、FG 分别平分∠BAC 和∠BFD (已知)所以∠BAG =▲ , ▲ (角平分线定义)又因为∠FPQ = ▲ +∠AED ,▲ = ▲ +∠B (三角形的一个外角等于与它不相邻的两个内角的和)∠AED =∠B (已知)所以∠FPQ = ▲ (等式性质)(请完成以下说理过程)ABC 120BAC ∠=︒BC BCD ABD 60︒ECD 3AB =2AC =BAD ∠AD ABCD AC BD AC .OE OF =BE DF =答案解析部分1.A【解答】解:由题意可得:正多边形的边数为:360°÷60°=6.故答案为:A.【分析】多边形的外角和等于360°,利用360°除以外角的度数即得正多边形的边数.2.B【解答】解:A 、∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形,A 不符合题意;B 、∵AD =BC ,AB ∥CD ,可能得出四边形ABCD 是等腰梯形,B 符合题意;C 、∵∠A =∠C ,∠B =∠D ,∴四边形ABCD 是平行四边形,C 不符合题意;D 、∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形,D 不符合题意;故答案为:B.【分析】根据平行四边形的判定逐一进行判断即可.3.C【解答】解:∵ A 1(-1,1), A 2(0,1), A 3(0,2) , A 4(1,2) ,∴A 5(1,3),A 7(2,4)…A 2n-1(-2+n ,n ),∴2n-1=2023,解之:n=1012,∴-2+1012=1000,∴点A 2023(1000,1012).故答案为:C【分析】利用点A 1,A 3,A 5,A 7的横纵坐标的规律可知A 2n-1(-2+n ,n ),要求点A 2023的坐标,可得到关于n 的方程,解方程求出n 的值,再将n 的值,代入可得到点点A 2023的坐标.4.C【解答】解:∵P 在的角平分线上,点P 到边的距离为10,∴点P 到边的距离为10,∴的最小值为10.故答案为:C .【分析】根据角平分线的性质和垂线段最短的性质可得的最小值为10。

【冲刺卷】初二数学下期末试卷附答案

【冲刺卷】初二数学下期末试卷附答案

【冲刺卷】初二数学下期末试卷附答案一、选择题1.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数B .中位数C .众数D .方差2.直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( )A .ab=h 2B .a 2+b 2=2h 2C .111a b h+= D .222111a b h+= 3.顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( ) A .矩形 B .菱形 C .正方形 D .平行四边形4.要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( ) A .m ≠2,n ≠2B .m =2,n =2C .m ≠2,n =2D .m =2,n =05.三角形的三边长为22()2a b c ab +=+,则这个三角形是( ) A .等边三角形 B .钝角三角形 C .直角三角形 D .锐角三角形 6.已知y =(k -3)x |k |-2+2是一次函数,那么k 的值为( )A .3±B .3C .3-D .无法确定 7.若函数y=(m-1)x ∣m ∣-5是一次函数,则m 的值为( )A .±1 B .-1C .1D .28.如图,以 Rt △ABC 的斜边 BC 为一边在△ABC 的同侧作正方形 BCEF,设正方形的中心为 O ,连接 AO ,如果 AB =4,AO =62,那么 AC 的长等于( )A .12B .16C .3D .29.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.310.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m211.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.10B.89C.8D.4112.如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )A.23B.1C.32D.2二、填空题13.如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF⊥AE,垂足为F,若AD=AE=1,∠DAE=30°,则EF=_____.14.如图,一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3),则关于x的方程kx=b的解是_____.15.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、E的面积分别为2,5,1,10.则正方形D的面积是______.16.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.17.已知函数y=2x+m-1是正比例函数,则m=___________.18.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.19.一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.20.如图:长方形ABCD中,AD=10,AB=4,点Q是BC的中点,点P在AD边上运动,当△BPQ是等腰三角形时,AP的长为___.三、解答题21.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.22.已知正方形ABCD 的对角线AC,BD 相交于点O.(1)如图 1,E,G 分别是OB,OC 上的点,CE 与DG 的延长线相交于点F.若DF⊥CE,求证:OE=OG;(2)如图 2,H 是BC 上的点,过点H 作EH⊥BC,交线段OB 于点E,连结DH 交CE 于点F,交OC 于点G.若OE=OG,①求证:∠ODG=∠OCE;②当AB=1 时,求HC 的长.23.如图为六个大小完全相同的矩形方块组合而成的图形,请仅用无刻度的直尺分别在下列方框内完成作图:(1)在图(1)中,作与MN平行的直线AB;(2)在图(2)中,作与MN垂直的直线CD.24.如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点.(1)求梯子底端B外移距离BD的长度;(2)猜想CE与BE的大小关系,并证明你的结论.25.如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2.D解析:D【解析】【分析】【详解】解:根据直角三角形的面积可以导出:斜边c=abh.再结合勾股定理:a2+b2=c2.进行等量代换,得a 2+b 2=222a b h,两边同除以a 2b 2, 得222111a b h +=. 故选D .3.C解析:C 【解析】 【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形. 【详解】 解:、、、分别是、、、的中点,,,EH =FG =BD ,EF =HG =AC ,四边形是平行四边形,,, ,, 四边形是正方形,故选:C . 【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.4.C解析:C 【解析】 【分析】根据y=kx+b (k 、b 是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案. 【详解】解:∵y=(m ﹣2)x n ﹣1+n 是一次函数, ∴m ﹣2≠0,n ﹣1=1, ∴m≠2,n=2,【点睛】本题考查了一次函数,y=kx+b ,k 、b 是常数,k≠0,x 的次数等于1是解题关键.5.C解析:C 【解析】 【分析】利用完全平方公式把等式变形为a 2+b 2=c 2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案. 【详解】∵22()2a b c ab +=+, ∴a 2+2ab+b 2=c 2+2ab , ∴a 2+b 2=c 2,∴这个三角形是直角三角形, 故选:C . 【点睛】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.6.C解析:C 【解析】 【分析】根据一次函数的定义可得k-3≠0,|k|-2=1,解答即可. 【详解】一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1. 所以|k|-2=1, 解得:k=±3, 因为k-3≠0,所以k≠3, 即k=-3. 故选:C . 【点睛】本题主要考查一次函数的定义,一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1.7.B解析:B 【解析】根据一次函数的概念,形如y=kx+b (k≠0,k 、b 为常数)的函数为一次函数,故可知m-1≠0,|m|=1,解得m≠1,m=±1,故m=-1.点睛:此题主要考查了一次函数的概念,利用一次函数的一般式y=kx+b (k≠0,k 、b 为常数),可得相应的关系式,然后求解即可,这是一个中考常考题题,比较简单.8.B解析:B 【解析】 【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:62OA OG ==,AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度. 【详解】 解:如下图所示,在AC 上截取4CG AB ==,连接OG , ∵四边形BCEF 是正方形,90BAC ∠=︒, ∴OB OC =,90BAC BOC ∠=∠=︒, ∴点B 、A 、O 、C 四点共圆, ∴ABO ACO ∠=∠, 在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=, ∴△ABO ≌△GCO ,∴62OA OG ==,AOB COG ∠=∠, ∵90BOC COG BOG ∠=∠+∠=︒, ∴90AOG AOB BOG ∠=∠+∠=︒, ∴△AOG 是等腰直角三角形, ∴()()22626212AG =+=,∴12416AC =+=. 故选:B .【点睛】本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.9.D解析:D 【解析】 【分析】已知ab =8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长. 【详解】a b -由题意可知:中间小正方形的边长为:,11ab 8422=⨯=Q 每一个直角三角形的面积为:,214ab a b 252(),∴⨯+-= 2a b 25169∴-=-=(),a b 3∴-=,故选D. 【点睛】本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.10.B解析:B 【解析】 【分析】 【详解】 解:如图,设直线AB 的解析式为y=kx+b ,则4+=1200{5k+b=1650k b ,解得450{600k b ==- 故直线AB 的解析式为y=450x ﹣600, 当x=2时,y=450×2﹣600=300, 300÷2=150(m 2) 故选B .【点睛】本题考查一次函数的应用.11.B解析:B【解析】【分析】当t=5时,点P到达A处,根据图象可知AB=5;当s=40时,点P到达点D处,根据三角形BCD的面积可求出BC的长,再利用勾股定理即可求解.【详解】解:当t=5时,点P到达A处,根据图象可知AB=5,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=12 CD,当s=40时,点P到达点D处,则S=12CD•BC=12(2AB)•BC=5×BC=40,∴BC=8,∴AD=AC22225889AB BC++=故选B.【点睛】本题以动态的形式考查了函数、等腰三角形的性质、勾股定理等知识.准确分析图象,并结合三角形的面积求出BC的长是解题的关键.12.B解析:B【解析】【分析】根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF ,根据全等三角形的性质得到FH=AE ,GF=AG ,得到AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x ,根据勾股定理即可得到结论.【详解】∵将△CBE 沿CE 翻折至△CFE ,∴∠F=∠B=∠A=90°,BE=EF ,在△AGE 与△FGH 中,A F AGE FGH EG GH ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AGE ≌△FGH (AAS ),∴FH=AE ,GF=AG ,∴AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x∴DH=x+2,CH=6-x ,∵CD 2+DH 2=CH 2,∴42+(2+x )2=(6-x )2,∴x=1,∴AE=1,故选B .【点睛】考查了翻折变换,矩形的性质,全等三角形的判定和性质,熟练掌握折叠的性质是解题的关键.二、填空题13.﹣1【解析】【分析】首先证明△ADE≌△GCE 推出EG=AE=AD=CG=1再求出FG 即可解决问题【详解】∵四边形ABCD 是平行四边形∴AD∥BGAD=BC∴∠DAE=∠G=30°∵DE=EC∠AE1【解析】【分析】首先证明△ADE ≌△GCE ,推出EG=AE=AD=CG=1,再求出FG 即可解决问题.【详解】∵四边形ABCD 是平行四边形,∴AD ∥BG ,AD=BC ,∴∠DAE=∠G=30°,∵DE=EC ,∠AED=∠GEC ,∴△ADE ≌△GCE ,∴AE=EG=AD=CG=1,在Rt△BFG中,∵∴,-1.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.14.x=2【解析】【分析】依据待定系数法即可得到k和b的值进而得出关于x 的方程kx=b的解【详解】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣20)与y轴相交于点(03)∴解得∴关于x的方程kx=解析:x=2【解析】【分析】依据待定系数法即可得到k和b的值,进而得出关于x的方程kx=b的解.【详解】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3),∴0=-2k+b3=b⎧⎨⎩,解得323kb⎧=⎪⎨⎪=⎩,∴关于x的方程kx=b即为:32x=3,解得x=2,故答案为:x=2.【点睛】本题主要考查了待定系数法的应用,任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.15.2【解析】【分析】设中间两个正方形和正方形D的面积分别为xyz然后有勾股定理解答即可【详解】解:设中间两个正方形和正方形D的面积分别为xyz则由勾股定理得:x=2+5=7;y=1+z;7+y=7+1解析:2【解析】【分析】设中间两个正方形和正方形D的面积分别为x,y,z,然后有勾股定理解答即可.【详解】解:设中间两个正方形和正方形D的面积分别为x,y,z,则由勾股定理得:x=2+5=7;y=1+z;7+y=7+1+z=10;即正方形D的面积为:z=2.故答案为:2.【点睛】本题考查了勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.16.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ 再在直角三角形AQC中求出CQ得出BC=40+解析:40403+【解析】【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+403=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=12AB=40,BQ3AQ=3在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+33x,解得:x =403+./时;【点睛】 本题考查的是解直角三角形,熟练掌握方向角是解题的关键.17.1【解析】分析:依据正比例函数的定义可得m-1=0求解即可详解:∵y =2x +m -1是正比例函数∴m-1=0解得:m=1故答案为:1点睛:本题考查了正比例函数的定义解题的关键是掌握正比例函数的定义解析:1【解析】分析:依据正比例函数的定义可得m-1=0,求解即可,详解:∵y =2x +m -1是正比例函数,∴m-1=0.解得:m=1.故答案为:1.点睛:本题考查了正比例函数的定义,解题的关键是掌握正比例函数的定义.18.【解析】试题解析:根据题意将周长为8的△ABC 沿边BC 向右平移1个单位得到△DEF 则AD=1BF=BC+CF=BC+1DF=AC 又∵AB+BC+AC=10∴四边形ABFD 的周长=AD+AB+BF+D解析:【解析】试题解析:根据题意,将周长为8的△ABC 沿边BC 向右平移1个单位得到△DEF , 则AD=1,BF=BC+CF=BC+1,DF=AC ,又∵AB+BC+AC=10,∴四边形ABFD 的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.考点:平移的性质.19.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3, 3,32. 【解析】【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】 此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键. 20.2或25或3或8【解析】【分析】【详解】解:∵AD=10点Q 是BC 的中点∴BQ =BC=×10=5如图1PQ=BQ=5时过点P 作PE ⊥BC 于E 根据勾股定理QE=∴BE=BQ ﹣QE=5﹣3=2∴AP=B解析:2或2.5或3或8.【解析】【分析】【详解】解:∵AD=10,点Q 是BC 的中点,∴BQ=12BC=12×10=5, 如图1,PQ=BQ=5时,过点P 作PE ⊥BC 于E ,根据勾股定理,QE=2222543PQ PE -=-=,∴BE=BQ ﹣QE=5﹣3=2,∴AP=BE=2;②如图2,BP=BQ=5时,过点P 作PE ⊥BC 于E ,根据勾股定理,2222543PB PE -=-=,∴AP=BE=3;③如图3,PQ=BQ=5且△PBQ 为钝角三角形时,BE=QE+BQ=3+5=8,AP=BE=8,④若BP=PQ,如图4,过P作PE⊥BQ于E,则BE=QE=2.5,∴AP=BE=2.5.综上所述,AP的长为2或3或8或2.5.故答案为2或3或8或2.5.【点睛】本题考查等腰三角形的判定;勾股定理;矩形的性质;注意分类讨论是本题的解题关键.三、解答题21.见解析;【解析】试题分析:(1)直接利用三角形中位线定理得出DE BC,进而得出DE=FC;(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长试题解析:(1)证明:∵D、E分别为AB、AC的中点,∴DE BC,∵延长BC至点F,使CF=BC,∴DE FC,即DE=CF;(2)解:∵DE FC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.考点:三角形中位线定理;等边三角形的性质;平行四边形的判定与性质22.(1)证明见解析;(2)①证明见解析;②5-1.【解析】【分析】(1)欲证明OE=OG,只要证明△DOG≌△COE(ASA)即可;(2)①欲证明∠ODG=∠OCE,只要证明△ODG≌△OCE即可;②设CH=x,由△CHE∽△DCH,可得EH HCHC CD=,即HC2=EH•CD,由此构建方程即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD是正方形,∴AC⊥BD,OD=OC,∴∠DOG=∠COE=90°,∴∠OEC+∠OCE=90°,∵DF⊥CE,∴∠OEC+∠ODG=90°,∴∠ODG=∠OCE,∴△DOG≌△COE(ASA),∴OE=OG.(2)①证明:如图2中,∵OG=OE,∠DOG=∠COE=90°OD=OC,∴△ODG≌△OCE,∴∠ODG=∠OCE.②解:设CH=x,∵四边形ABCD是正方形,AB=1,∴BH=1﹣x,∠DBC=∠BDC=∠ACB=45°,∵EH⊥BC,∴∠BEH=∠EBH=45°,∴EH=BH=1﹣x,∵∠ODG=∠OCE,∴∠BDC﹣∠ODG=∠ACB﹣∠OCE,∴∠HDC=∠ECH,∵EH⊥BC,∴∠EHC=∠HCD=90°,∴△CHE∽△DCH,∴EH HCHC CD=,∴HC2=EH•CD,∴x2=(1﹣x)•1,解得x=512-或512--(舍弃),∴HC=51 -.23.(1)见解析;(2)见解析【解析】试题分析:画图即可.试题解析:如图:24.(1)BD=1m ;(2)CE 与BE 的大小关系是CE=BE ,证明见解析.【解析】【分析】(1)利用勾股定理求出OB ,求出OC ,再根据勾股定理求出OD ,即可求出答案;(2)求出△AOB 和△DOC 全等,根据全等三角形的性质得出OC=OB ,∠ABO=∠DCO ,求出∠OCB=∠OBC ,求出∠EBC=∠ECB ,根据等腰三角形的判定得出即可.【详解】(1)∵AO ⊥OD ,AO=4m ,AB=5m ,∴22AB AO -,∵梯子的顶端A 沿墙下滑1m 至C 点,∴OC=AO ﹣AC=3m ,∵CD=AB=5m ,∴由勾股定理得:OD=4m ,∴BD=OD ﹣OB=4m ﹣3m=1m ;(2)CE 与BE 的大小关系是CE=BE ,证明如下:连接CB ,由(1)知:AO=DO=4m ,AB=CD=5m ,∵∠AOB=∠DOC=90°,在Rt △AOB 和Rt △DOC 中AB DC AO DO =⎧⎨=⎩, ∴Rt △AOB ≌Rt △DOC (HL ),∴∠ABO=∠DCO ,OC=OB ,∴∠OCB=∠OBC ,∴∠ABO ﹣∠OBC=∠DCO ﹣∠OCB ,∴∠EBC=∠ECB ,∴CE=BE .【点睛】本题考查了勾股定理,等腰三角形的性质和判定,全等三角形的判定与性质等,能灵活运用勾股定理进行计算是解(1)的关键,能求出∠DCO=∠ABO和OC=OB是解(2)的关键.25.需要爬行的最短距离是152cm.【解析】【分析】先将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB;或将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,然后分别在Rt△ABD与Rt△ABH,利用勾股定理求得AB的长,比较大小即可求得需要爬行的最短路程.【详解】解:将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB,如图1,由题意可得:BD=BC+CD=5+10=15cm,AD=CH=15cm,在Rt△ABD中,根据勾股定理得:22+2cm;BD AD将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,如图2,由题意得:BH=BC+CH=5+15=20cm,AH=10cm,在Rt△ABH中,根据勾股定理得:22+5,BH AH则需要爬行的最短距离是cm.连接AB,如图3,由题意可得:BB′=B′E+BE=15+10=25cm,AB′=BC=5cm,在Rt△AB′B中,根据勾股定理得:,∵<∴则需要爬行的最短距离是cm.考点:平面展开-最短路径问题.。

人教版数学八年级第二学期 期末考试冲刺卷(解析版)

人教版数学八年级第二学期 期末考试冲刺卷(解析版)

八年级第二学期 期末考试冲刺卷一、单选题1.若代数式√x+1(x−3)有意义,则实数x 的取值范围是( )A .x≥-1B .x≥-1且x≠3C .x>-1D .x>-1且x≠3 【答案】B【解析】要使函数代数式有意义,则{x +1≥0x −3≠0 ,即{x ≥−1x ≠3,即x≥-1且x≠3, 故选B.2.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,D 、E 分别是AC 、BC 的中点,则DE 的长是( )A .2B .52C .125 D .0.5【答案】B【解析】∠C=90°,AC=3,BC=4, ∴AB=√AC 2+BC 2=5,∵D 、E 分别是AC 、BC 的中点,∴DE=12AB= 52, 故选:B .3.下列化简结果错误的是( )A.√35=√3×55×5=15√15B.√23=√69=13√6C.√1x =√xx2=x√xD.√27x =√14x49x2=√14x7x【答案】C 【解析】A. √35=√3×55×5=15√15,正确;B. √23=√69=13√6,正确;C. √1x =√xx2=√xx,故错误;D. √27x =√14x49x2=√14x7x,正确;故选C.4.已知一次函数y=(m+1)x+m2-1 (m为常数),若图象过原点,则m()A.m=-1 B.m=±1 C.m=0 D.m=1【答案】D【解析】∵一次函数y=(m+1)x+m2-1(m为常数)的图象过原点,∴m2-1=0,解得m=±1.∵此函数是一次函数,∴m+1≠0,解得m≠-1,∴m=1.故选D.5.在四边形ABCD中,对角线AC、BD相交于点O,下列条件中不一定能判定这个四边形是平行四边形的是().A.AB∥DC,AD=BC B.∠BAD=∠BCD,∠ABC=∠ADCC.OA=OC,OB=OD D.AB=DC,AD=BC【答案】A【解析】A. AB∥DC,AD=BC,一组对边平行,另一组对边相等,不能判断平行四边形;B. ∠BAD=∠BCD,∠ABC=∠ADC,两组对角分别相等的四边形是平行四边形,正确;C. OA=OC,OB=OD,对角线互相平分的四边形是平行四边形,正确;D. AB=DC,AD=BC,两组对边分别相等的四边形是平行四边形,正确,故选A.6.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S 随着时间t变化的函数图象大致是()A.B.C.D.【答案】B【解析】当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;故选B.7.如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.若AB=14,AC=20,则MN的长为()A.2 B.2.5 C.3 D.3.5【答案】C【解析】如图,延长BN交AC于点D,因为AN平分∠BAC,BN⊥AN,所以BN=ND,AD=AB=14,又因为M是BC的中点,所以CD=2MN,因为CD=AC-AD=20-14=6,所以MN=3,故选C.8.某学习小组9名学生参加“数学竞赛”,他们的得分情况如下表:那么这9名学生所得分数的众数和中位数分别是()A.90,90B.90,85C.90,87.5D.85,85【答案】A【解析】在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数是90,那么由中位数的定义可知,这组数据的中位数是90;故选:A.9.如图,正方形AOCD、正方形A1CC1D1、正方形A2C1C2D2的顶点A、A1、A2和O、C、C1、C2分别在一次函数y=x+1的图象和x轴上,若正比例函数y=kx则过点D5,则系数k的值是()A.6332B.3263C.3116D.1631【答案】B【解析】∵点A是直线y=x+1与y轴的交点,∴A(0,1),∵四边形AOCD是正方形,∴D(1,1),∵点A1在直线y=x+1上,∴A1(1,2),同理可得D1(3,2),A2(3,4),D2(7,4),A3(7,8),D3(15,8),……∴D1(3,2),D2(7,4),D3(15,8),……∴Dn的坐标是(2n+1-1,2n).∴D5(63,32),.把D5(63,32)代入y=kx得:k=3263故选:B.点睛:本题考查的是一次函数综合题,涉及到正方形的性质、一次函数的性质等相关知识,分别找出点D1,D2,D3的坐标,找出规律表示出点D n的坐标是解决此题的关键.10.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3B.﹣5C.7D.﹣3或﹣5【答案】A【解析】对于函数y=|x﹣a|,最小值为a+5.情形1:a+5=0,a=﹣5,∴y=|x+5|,此时x=﹣5时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+5,得到a=﹣3.∴y=|x+3|,符合题意.情形3:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+5,方程无解,此种情形不存在,综上所述,a=﹣3.故选:A.二、填空题11.计算:(1)(﹣a2b )2=_____;(2)√-83=_____;(3)√(−5)2=_____.【答案】a24b, -2, 5【解析】(1)原式=a24b2;(2)原式=−2;(3)原式=|−5|=5.故答案为:(1) a24b2;(2)−2;(3)5.12.小明有五位好友,他们的年龄(单位:岁)分别是15,15,16,17,17,其方差是0.8,则三年后这五位好友年龄的方差是________.【答案】0.8【解析】三年后这五名队员的年龄分别为20,18,19,18,20,平均年龄为(20+18+19+18+20) ÷5=19,方差为:(20−19)2×2+(18−19)2×2+(19−19)25=0.8,∴三年后这五名队员年龄的方差为0.8.13.如果一个平行四边形的一个内角的平分线分它的一边为1:2两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”,当协调边为6时,它的周长为______【解析】如图所示:①当AE=2,DE=4时,∵四边形ABCD是平行四边形,∴BC=AD=6,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=2,∴平行四边形ABCD的周长=2(AB+AD)=16;②当AE=4,DE=2时,同理得:AB=AE=4,∴平行四边形ABCD的周长=2(AB+AD)=20,故答案为:16或20.14.如图,点M的坐标为(3,2),点P从原点O出发,以每秒1个单位的速度沿y轴向上移动,同时过点P的直线l也随之上下平移,且直线l与直线y=−x平行,如果点M关于直线l的对称点落在坐标轴上,如果点P的移动时间为t秒,那么t的值可以是__.【解析】设直线l :y=-x+b .如图,过点M 作MF ⊥直线l ,交y 轴于点F ,交x 轴于点E ,则点E 、F 为点M 在坐标轴上的对称点. 过点M 作MD ⊥x 轴于点D ,则OD=3,MD=2. 由直线l :y=-x+b 可知∠PDO=∠OPD=45°,∴∠MED=∠OEF=45°,则△MDE 与△OEF 均为等腰直角三角形, ∴DE=MD=2,OE=OF=1, ∴E (1,0),F (0,-1). ∵M (3,2),F (0,-1), ∴线段MF 中点坐标为(32,12). 直线y=-x+b 过点(32,12) 则12= -32+b ,解得:b=2, ∴t=2.∵M (3,2),E (1,0), ∴线段ME 中点坐标为(2,1).直线y=-x+b 过点(2,1),则1=-2+b ,解得:b=3, ∴t=3.故点M 关于l 的对称点,当t=2时,落在y 轴上,当t=3时,落在x 轴上. 故答案为:2或3.15.如图,在矩形ABCD 中,AB =4,BC =6,过矩形ABCD 的对角线交点O 作直线分别交AD 、BC 于点E 、 F ,连接AF ,若△AEF 是等腰三角形,则AE =____.【答案】4或133【解析】连接AC,如图1所示:∵四边形ABCD是矩形,∴∠B=90°,AD=BC=6,OA=OC,AD∥BC,∴∠OAE=∠OCF,在△AOE和△COF中,{∠OAE=∠OCFOA=OC∠AOE=∠COF,∴△AOE≌△COF(ASA),∴AE=CF,若△AEF是等腰三角形,分三种情讨论:①当AE=AF时,如图1所示:设AE=AF=CF=x,则BF=6-x,在Rt△ABF中,由勾股定理得:42+(6-x)2=x2,解得:x=133,即AE=13;3②当AF=EF时,作FG⊥AE于G,如图2所示:AE=BF,则AG=12x,设AE=CF=x,则BF=6-x,AG=12x=6-x,所以12解得:x=4;③当AE=FE时,作EH⊥BC于H,如图3所示:设AE=FE=CF=x,则BF=6-x,CH=DE=6-x,∴FH=CF-CH=x-(6-x)=2x-6,在Rt△EFH中,由勾股定理得:42+(2x-6)2=x2,整理得:3x2-24x+52=0,∵△=(-24)2-4×3×52<0,∴此方程无解;或4;综上所述:△AEF是等腰三角形,则AE为133或4.故答案为:13316.自行车远动员甲准备参加一项国际自行车赛事,为此特地骑自行车从A地出发,匀速前往168千米外的B地进行拉练.出发2小时后,乙发现他忘了带某训练用品,于是马上骑摩托车从A地出发匀速去追甲送该用品.已知乙骑摩托车的速度比甲骑自行车的速度每小时多30千米,但摩托车行驶一小时后突遇故障,修理15分钟后,又上路追甲,但速度减小了1,乙追上甲交接了训练用品(交接时间忽略不计),随后立即3以修理后的速度原路返回,甲继续以原来的速度骑行直至B地.如图表示甲、乙两人之间的距离S(千米)与甲骑行的时间t(小时)之间的部分图象,则当甲达到B地时,乙距离A地_____千米.【答案】63【解析】设甲的速度为a千米/分,则乙的速度为(a+30)千米/小时.a=24由题意,乙车修复故障时两人相距为:2a+a﹣(a+30)+14(24+30)=36千米/小时∴a=24,乙修复车辆后速度为23∵乙修复摩托车时两人相距24千米(24+30)=2小时∴乙追上甲用时为23+2)×24=42千米甲距离B为168﹣(3+14甲到B 时乙距离A 为:126−4224×36=63千米 故答案为:63 三、解答题 17.计算下列各题: (1)√8−√273+√2(2)3×√13−(√27−√15)÷√3+|√5−√3|【答案】(1)5√22﹣3;(2)﹣3+2√5. 【解析】(1)√8−√273+√2=2√2 ﹣3+√22=5√22﹣3; (2)3×√13−(√27−√15)÷√3+|√5−√3|=√3 ﹣(3√3﹣√15)÷√3+√5﹣√3 =√3﹣3+√5+√5﹣√3 =﹣3+2√5. 故答案为:(1)5√22﹣3;(2)﹣3+2√5. 18.如图,点D 、E 、F 分别是△ABC 各边中点. (1)求证:四边形ADEF 是平行四边形; (2)若AB =AC =10,求四边形ADEF 的周长.【答案】(1)证明见解析;(2)20.【解析】(1)证明:∵D 、E 分别为AB 、BC 的中点,∴DE ∥AC , ∵E 、F 分别为BC 、AC 中点,∴EF ∥AB , ∴四边形ADEF 是平行四边形。

【冲刺卷】八年级数学下期末试卷(含答案)

【冲刺卷】八年级数学下期末试卷(含答案)

【冲刺卷】八年级数学下期末试卷(含答案)一、选择题1.若2(5)x -=x ﹣5,则x 的取值范围是( )A .x <5B .x ≤5C .x ≥5D .x >52.如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB 生长在它的正中央,高出水面部分BC 的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B′,则这根芦苇AB 的长是( )A .15尺B .16尺C .17尺D .18尺3.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m ,先到终点的人原地休息.已知甲先出发2s .在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是( )A .①②③B .仅有①②C .仅有①③D .仅有②③4.要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( )A .m ≠2,n ≠2B .m =2,n =2C .m ≠2,n =2D .m =2,n =05.如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==o ,则AB的长为( )A .3B .4C .43D .56.若代数式11x x +-有意义,则x 的取值范围是( ) A .x >﹣1且x≠1 B .x≥﹣1C .x≠1D .x≥﹣1且x≠1 7.若点P 在一次函数的图像上,则点P 一定不在( ) A .第一象限B .第二象限C .第三象限D .第四象限 8.将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒9.计算12(75+313﹣48)的结果是( ) A .6 B .43C .23+6D .12 10.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s (千米)与所用时间t (分)之间的关系( )A .B .C .D .11.若函数()0y kx k =≠的值随自变量的增大而增大,则函敷2y x k =+的图象大致是( )A .B .C .D .12.某商场对上周某品牌运动服的销售情况进行了统计,如下表所示: 颜色黄色 绿色 白色 紫色 红色 数量(件)120 150 230 75 430经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识的( ) A .平均数 B .中位数 C .众数 D .平均数与众数二、填空题13.如图,在▱ABCD 中,E 为CD 的中点,连接AE 并延长,交BC 的延长线于点G ,BF ⊥AE ,垂足为F ,若AD =AE =1,∠DAE =30°,则EF =_____.14.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB=_________°.15.4x -x 的取值范围是__________.16.若ab <02a b _____.17.函数1y x =-的自变量x 的取值范围是 . 18.如果一组数据1,3,5,a ,8的方差是0.7,则另一组数据11,13,15,10a +,18的方差是________.19.如图,如果正方形ABCD 的面积为5,正方形BEFG 的面积为7,则ACE △的面积_________.20.若一个多边形的内角和是900º,则这个多边形是 边形.三、解答题21.计算:0221218(2020)()(21)2π-+---+-.22.一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示.(1)求y 关于x 的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?23.如图,▱ABCD 的对角线AC ,BD 相交于点O .E ,F 是AC 上的两点,并且AE=CF ,连接DE ,BF .(1)求证:△DOE ≌△BOF ;(2)若BD=EF ,连接DE ,BF .判断四边形EBFD 的形状,并说明理由.24.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折. ()1求每套队服和每个足球的价格是多少?()2若城区四校联合购买100套队服和a(a 10)>个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花的费用;()3在()2的条件下,若a 60=,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?25.如图,在ABC ∆中,13,23AB AC ==,点D 在AC 上,若10BD CD ==,AE 平分BAC ∠.(1)求AE 的长;(2)若F 是BC 中点,求线段EF 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】 2a (a≤0),由此性质求得答案即可.【详解】 ()25x -,∴5-x≤0∴x≥5.故选C . 【点睛】2a (a≥02a (a≤0).2.C解析:C【解析】【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x 尺,表示出水深AC ,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.【详解】解:依题意画出图形,设芦苇长AB=AB′=x尺,则水深AC=(x-2)尺,因为B'E=16尺,所以B'C=8尺在Rt△AB'C中,82+(x-2)2=x2,解之得:x=17,即芦苇长17尺.故选C.【点睛】本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.3.A解析:A【解析】【分析】【详解】解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=123 s.因此③正确.终上所述,①②③结论皆正确.故选A.4.C解析:C【解析】【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.解析:B【解析】【分析】由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.【详解】∵在矩形ABCD中,BD=8,∴AO=12AC, BO=12BD=4,AC=BD,∴AO=BO,又∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4,故选B.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.6.D解析:D【解析】【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【详解】依题意,得x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.C解析:C【解析】根据一次函数的性质进行判定即可.【详解】一次函数y=-x+4中k=-1<0,b>0,所以一次函数y=-x+4的图象经过二、一、四象限,又点P 在一次函数y=-x+4的图象上,所以点P 一定不在第三象限,故选C.【点睛】本题考查了一次函数的图象和性质,熟练掌握是解题的关键.y=kx+b :当 k>0,b>0时,函数的图象经过一,二,三象限;当 k>0,b<0时,函数的图象经过一,三,四象限;当 k<0,b>0时,函数的图象经过一,二,四象限;当 k<0,b<0时,函数的图象经过二,三,四象限.8.C解析:C【解析】【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义)∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90°即CBD ∠=90°故选:C .【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.9.D解析:D【解析】【详解】12===. 故选:D. 10.D解析:D【解析】【分析】根据描述,图像应分为三段,学校离家最远,故初始时刻s 最大,到家,s 为0,据此可判断.【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF 符合要求.故选D .【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.11.C解析:C【解析】【分析】根据正比例函数和一次函数的图像与性质逐项判断即可求解.【详解】∵函数()0y kx k =≠的值随自变量的增大而增大,∴k >0,∵一次函数2y x k =+,∴1k =1>0,b=2k >0,∴此函数的图像经过一、二、四象限;故答案为C.【点睛】本题考查了正比例函数和一次函数的图像与性质,熟练掌握正比例函数和一次函数的图像特点是解题的关键.12.C解析:C【解析】试题解析:由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色运动装的主要根据众数.故选C .考点:统计量的选择.二、填空题13.﹣1【解析】【分析】首先证明△ADE ≌△GCE 推出EG=AE=AD=CG=1再求出FG 即可解决问题【详解】∵四边形ABCD 是平行四边形∴AD ∥BGAD=BC ∴∠DAE=∠G=30°∵DE=EC ∠AE1【解析】【分析】首先证明△ADE ≌△GCE ,推出EG=AE=AD=CG=1,再求出FG 即可解决问题.【详解】∵四边形ABCD 是平行四边形,∴AD ∥BG ,AD=BC ,∴∠DAE=∠G=30°,∵DE=EC ,∠AED=∠GEC ,∴△ADE ≌△GCE ,∴AE=EG=AD=CG=1,在Rt △BFG 中,∵∴,-1.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.14.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为 解析:15°【解析】【分析】【详解】解:由题意可知:90,60.BAD DAE ∠=∠=o o.AB AD AE ==150.BAE o ∴∠= ABE △是等腰三角形15.AEB ∴∠=o 故答案为15.o15.x≥4【解析】分析:根据二次根式有意义的条件列出不等式解不等式即可详解:由题意得x −4⩾0解得x ⩾4故答案为x ⩾4点睛:此题考查二次根式有意义的条件二次根式有意义的条件是被开方部分大于或等于零二次根解析:x≥4【解析】分析:根据二次根式有意义的条件列出不等式,解不等式即可.详解:由题意得,x−4⩾0,解得,x ⩾4,故答案为x ⩾4.点睛:此题考查二次根式有意义的条件,二次根式有意义的条件是被开方部分大于或等于零,二次根式无意义的条件是被开方部分小于0.16.【解析】【分析】二次根式有意义就隐含条件b>0由ab <0先判断出ab 的符号再进行化简即可【详解】若ab <0且代数式有意义;故有b >0a <0;则代数式=|a|=-a 故答案为:-a 【点睛】本题主要考查二解析:-【解析】【分析】二次根式有意义,就隐含条件b>0,由ab <0,先判断出a 、b 的符号,再进行化简即可.【详解】若ab <0故有b >0,a <0;.故答案为:.【点睛】本题主要考查二次根式的化简方法与运用:当a >0;当a <0;当a=0.17.x >1【解析】【分析】【详解】解:依题意可得解得所以函数的自变量的取值范围是解析:x >1【解析】【分析】【详解】解:依题意可得10x ->,解得1x >,所以函数的自变量x 的取值范围是1x >18.7【解析】【分析】根据题目中的数据和方差的定义可以求得所求数据的方差【详解】设一组数据135a8的平均数是另一组数据111315+1018的平均数是+10∵=07∴==07故答案为07【点睛】本题考解析:7【解析】【分析】根据题目中的数据和方差的定义,可以求得所求数据的方差.【详解】设一组数据1,3,5,a ,8的平均数是x ,另一组数据11,13,15,x +10,18的平均数是x +10, ∵22222(1)(3)(5)()(8)5x x x a x x -+-+-+-+-=0.7, ∴222(1110)(1310)(1810)5x x x --+--+⋯-- =22222(1)(3)(5)()(8)5x x x a x x -+-+-+-+- =0.7,故答案为0.7.【点睛】本题考查方差,解答本题的关键是明确题意,利用方差的知识解答.19.【解析】【分析】根据正方形的面积分别求出BCBE 的长继而可得CE 的长再利用三角形面积公式进行求解即可【详解】∵正方形的面积为正方形的面积为∴BC=AB=BE=∴CE=BE -BC=-∴S△ACE==故解析:52 【解析】【分析】根据正方形的面积分别求出BC 、BE 的长,继而可得CE 的长,再利用三角形面积公式进行求解即可.【详解】∵正方形ABCD 的面积为5,正方形BEFG 的面积为7,∴,∴∴S △ACE =1122CE AB =⨯g ,故答案为:52. 【点睛】本题考查了算术平方根的应用,三角形面积,二次根式的混合运算等,熟练掌握并灵活运用相关知识是解题的关键.20.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键解析:七【解析】【分析】n-⋅︒,列式求解即可.根据多边形的内角和公式()2180【详解】设这个多边形是n边形,根据题意得,()2180900n-⋅︒=︒,n=.解得7故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.三、解答题21.72﹣4.【解析】【分析】利用负指数幂的性质、零指数幂的性质、二次根式的性质进行化简再解答即可.【详解】解:原式=2×32+1﹣4+2﹣1=62+1﹣4+2﹣1=72﹣4.【点睛】本题考查了负指数幂的性质、零指数幂的性质、二次根式的性质,掌握各类代数式的性质是解答本题的关键.22.(1)该一次函数解析式为y=﹣x+60.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【解析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,得,解得:,∴该一次函数解析式为y=﹣x+60;(2)当y=﹣x+60=8时, 解得x=520, 即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.23.(2)证明见解析;(2)四边形EBFD 是矩形.理由见解析.【解析】分析:(1)根据SAS 即可证明;(2)首先证明四边形EBFD 是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵AE=CF ,∴OE=OF ,在△DEO 和△BOF 中,OD OB DOE BOF OE OF ⎧⎪∠∠⎨⎪⎩===,∴△DOE ≌△BOF .(2)结论:四边形EBFD 是矩形.理由:∵OD=OB ,OE=OF ,∴四边形EBFD 是平行四边形,∵BD=EF ,∴四边形EBFD 是矩形.点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1) 每套队服150元,每个足球100元;(2) 购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算.【解析】试题分析:(1)设每个足球的定价是x 元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.解:(1)设每个足球的定价是x 元,则每套队服是(x+50)元,根据题意得2(x+50)=3x ,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a ﹣)=100a+14000(元), 到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)当在两家商场购买一样合算时,100a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算考点:一元一次方程的应用.25.(1)12;(2)5【解析】【分析】(1)先证明△ABD 是等腰三角形,再根据三线合一得到AE BD ⊥,利用勾股定理求得AE 的长;(2)利用三角线的中位线定理可得:12EF CD =,再进行求解. 【详解】解:(1)13AD AC CD =-=∴AB AD =∵AE 平分BAC ∠,∴5,EB ED AE BD ==⊥ 根据勾股定理,得2212AE AD DE =-= (2)由(1),知EB ED =,又∵FB FC =, ∴152EF CD ==. 【点睛】 考查了三角形中位线定理,解题关键是利用三线合一和三角形的中位线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【冲刺卷】初二数学下期末试卷(含答案)一、选择题1.若63n 是整数,则正整数n 的最小值是( )A .4B .5C .6D .72.顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( ) A .矩形B .菱形C .正方形D .平行四边形3.已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形4.如图,矩形OABC 的顶点O 与平面直角坐标系的原点重合,点A ,C 分别在x 轴,y 轴上,点B 的坐标为(-5,4),点D 为边BC 上一点,连接OD ,若线段OD 绕点D 顺时针旋转90°后,点O 恰好落在AB 边上的点E 处,则点E 的坐标为( )A .(-5,3)B .(-5,4)C .(-5,52) D .(-5,2)5.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是( ) A .b 2﹣c 2=a 2B .a :b :c =3:4:5C .∠A :∠B :∠C =9:12:15D .∠C =∠A ﹣∠B6.要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( ) A .m ≠2,n ≠2B .m =2,n =2C .m ≠2,n =2D .m =2,n =07.如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==o,则AB 的长为( )A .3B .4C .43D .5 8.若函数y=(m-1)x ∣m ∣-5是一次函数,则m 的值为( )A .±1 B .-1C .1D .29.如图,以 Rt △ABC 的斜边 BC 为一边在△ABC 的同侧作正方形 BCEF,设正方形的中心为 O ,连接 AO ,如果 AB =4,AO =62,那么 AC 的长等于( )A .12B .16C .43D .8210.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数B .平均数C .中位数D .方差11.已知,,a b c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( ) A .直角三角形 B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形12.如图,将四边形纸片ABCD 沿AE 向上折叠,使点B 落在DC 边上的点F 处.若AFD V 的周长为18,ECF V 的周长为6,四边形纸片ABCD 的周长为( )A .20B .24C .32D .48二、填空题13.在函数41x y x -=+中,自变量x 的取值范围是______. 14.24的结果是__________.1545与最简二次根式21a -是同类二次根式,则a =_____. 16.3a ,小数部分是b 3a b -=______. 17.已知13y x =-+,234y x =-,当x 时,12y y <.18.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路s 关于行走的时间t 和函数图象,则两图象交点P 的坐标是_____.19.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,EF 交AD 于点H ,那么DH 的长是______.20.已知,x y 为实数,且22994y x x =---+,则x y -=______.三、解答题21.如图,ABCD Y 中,延长AD 到点F ,延长CB 到点E ,使DF BE =,连接AE 、CF .求证:四边形AECF 是平行四边形.22.如图,一架2.5米长的梯子AB 斜靠在竖直的墙AC 上,这时B 到墙底端C 的距离为0.7米.如果梯子的顶端沿墙面下滑0.4米,那么点B 将向左滑动多少米?23.某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y (件)与销售价x (元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?24.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF求证:四边形BECF是平行四边形.25.观察下列一组等式,然后解答后面的问题21)(21)1=,=,(32)(32)1=,(43)(43)1=⋯⋯(54)(54)1(1)观察以上规律,请写出第n个等式:(n为正整数).(2++++21324310099(318171918【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】63n63n2⨯7n7n是完全平方数,满足条件的最小73n正整数n为7.∵63n =273n ⨯=37n ,且7n 是整数; ∴37n 是整数,即7n 是完全平方数; ∴n 的最小正整数值为7. 故选:D . 【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则a b ab ⋅=,除法法则b ba a=.解题关键是分解成一个完全平方数和一个代数式的积的形式.2.C解析:C 【解析】 【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形. 【详解】 解:、、、分别是、、、的中点,,,EH =FG =BD ,EF =HG =AC ,四边形是平行四边形,,, ,, 四边形是正方形,故选:C . 【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.3.B解析:B 【解析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【详解】如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选B.【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.A解析:A【解析】【分析】先判定△DBE≌△OCD,可得BD=OC=4,设AE=x,则BE=4﹣x=CD,依据BD+CD=5,可得4+4﹣x=5,进而得到AE=3,据此可得E(﹣5,3).【详解】由题可得:AO=BC=5,AB=CO=4,由旋转可得:DE=OD,∠EDO=90°.又∵∠B=∠OCD=90°,∴∠EDB+∠CDO=90°=∠COD+∠CDO,∴∠EDB=∠DOC,∴△DBE≌△OCD,∴BD=OC=4,设AE=x,则BE=4﹣x=CD.∵BD+CD=5,∴4+4﹣x=5,解得:x=3,∴AE=3,∴E(﹣5,3).故选A.【点睛】本题考查了全等三角形的判定与性质,矩形的性质以及旋转的性质的运用,解题时注意:全等三角形的对应边相等.5.C解析:C【解析】【分析】根据勾股定理逆定理可判断出A、B是否是直角三角形;根据三角形内角和定理可得C、D 是否是直角三角形.【详解】A、∵b2-c2=a2,∴b2=c2+a2,故△ABC为直角三角形;B、∵32+42=52,∴△ABC为直角三角形;C、∵∠A:∠B:∠C=9:12:15,151807591215C︒︒∠=⨯=++,故不能判定△ABC是直角三角形;D、∵∠C=∠A-∠B,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC为直角三角形;故选C.【点睛】考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.6.C解析:C【解析】【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.7.B解析:B【解析】【分析】由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.【详解】∵在矩形ABCD 中,BD=8,∴AO=12AC , BO=12BD=4,AC=BD , ∴AO=BO ,又∵∠AOB=60°,∴△AOB 是等边三角形, ∴AB=OB=4, 故选B. 【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.8.B解析:B 【解析】根据一次函数的概念,形如y=kx+b (k≠0,k 、b 为常数)的函数为一次函数,故可知m-1≠0,|m|=1,解得m≠1,m=±1,故m=-1. 故选B点睛:此题主要考查了一次函数的概念,利用一次函数的一般式y=kx+b (k≠0,k 、b 为常数),可得相应的关系式,然后求解即可,这是一个中考常考题题,比较简单.9.B解析:B 【解析】 【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:OA OG ==AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度. 【详解】 解:如下图所示,在AC 上截取4CG AB ==,连接OG , ∵四边形BCEF 是正方形,90BAC ∠=︒, ∴OB OC =,90BAC BOC ∠=∠=︒, ∴点B 、A 、O 、C 四点共圆, ∴ABO ACO ∠=∠, 在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=, ∴△ABO ≌△GCO ,∴62OA OG ==,AOB COG ∠=∠, ∵90BOC COG BOG ∠=∠+∠=︒, ∴90AOG AOB BOG ∠=∠+∠=︒, ∴△AOG 是等腰直角三角形, ∴()()22626212AG =+=,∴12416AC =+=. 故选:B .【点睛】本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.10.D解析:D 【解析】 【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

相关文档
最新文档