初二下学期数学期末试卷

合集下载

初二下册数学试卷库期末

初二下册数学试卷库期末

一、选择题(每题5分,共25分)1. 下列各数中,是质数的是()A. 29B. 28C. 27D. 302. 下列各数中,是偶数的是()A. 15B. 22C. 19D. 243. 下列各数中,是分数的是()A. 3/2B. 4/5C. 6/7D. 8/94. 下列各数中,是正数的是()A. -3B. 0C. 2D. -55. 下列各数中,是负数的是()A. 5B. -3C. 0D. 2二、填空题(每题5分,共25分)1. 0的相反数是__________。

2. 2的倒数是__________。

3. 下列各数中,最大的数是__________。

A. 2/3B. 3/4C. 4/5D. 5/64. 下列各数中,最小的数是__________。

A. -2B. -3C. -1D. 05. 下列各数中,有理数是__________。

A. √4B. √9C. √16D. √25三、解答题(每题10分,共40分)1. (10分)已知a、b是实数,且a + b = 5,ab = 6,求a² + b²的值。

2. (10分)已知m、n是实数,且m² - 2m + 1 = 0,n² - 2n + 1 = 0,求m + n的值。

3. (10分)已知a、b是实数,且a² + b² = 25,ab = -12,求a - b的值。

4. (10分)已知x、y是实数,且x² + y² = 36,xy = 6,求x + y的值。

四、应用题(每题15分,共30分)1. (15分)某工厂生产一批产品,已知每天生产60件,用了5天生产了300件,求这批产品共有多少件?2. (15分)某市去年的财政收入为100亿元,今年的财政收入比去年增加了20%,求今年的财政收入是多少亿元?五、附加题(10分)1. (10分)已知a、b是实数,且a² + b² = 1,求a + b的最大值。

2024北京延庆区初二(下)期末数学及答案

2024北京延庆区初二(下)期末数学及答案

2024北京延庆初二(下)期末数 学2024.07考生须知 1.本试卷共8页,共三道大题,28道小题,满分100分,考试时间120分钟. 2.在试卷和答题卡上认真填写学校名称、姓名和考号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、画图题用2B 铅笔作答,其他试题用黑色签字笔作答. 一、 选择题(共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的.1.窗花是中国传统民间艺术之一,下列四个窗花作品既是轴对称图形又是中心对称 图形的是(A ) (B ) (C ) (D ) 2.函数2xy x =-的自变量x 的取值范围是 (A )0x =(B )0x ≠ (C )2x =(D )2x ≠3.如图,在菱形ABCD 中,E ,F 分别是AB ,AC 的中点,若EF =2,则菱形ABCD 的周长为(A )4 (B )8(C )16 (D )204.关于x 的一元二次方程220x x a -+-=的一个根是0,则实数a 的值为 (A )2(B )2- (C )3 (D )3-5.用配方法解方程241x x +=时,原方程应变形为(A )1)2(2=-x(B )5)2(2=+x (C )5)2(2=-x(D )1)2(2=+x6.下图是一个木花窗挂件,它的外周边缘为正八边形,则这个正八边形的每个内角为F E DCBA(A )45° (B )100° (C )120° (D )135°7.如图,在□ABCD 中,点E 在BA 的延长线上,CE ⊥BE ,如果∠EAD =50°,那么∠BCE 的度数为(A )50° (B )45° (C )40° (D )35°8.学习了正方形之后,老师提出问题:要判断一个四边形是正方形,有哪些思路? 甲同学说:先判定四边形是菱形,再确定这个菱形有一个角是直角; 乙同学说:先判定四边形是矩形,再确定这个矩形有一组邻边相等; 丙同学说:先判定四边形的对角线相等,再确定对角线互相垂直;丁同学说:先判定四边形是平行四边形,再确定这个平行四边形有一个角是直角并且 有一组邻边相等.上述四名同学的说法中,正确的是(A )甲、乙 (B )甲、丙 (C )乙、丙、丁 (D )甲、乙、丁 二、填空题 (共16分,每小题2分) 9.方程24x =的解为____________.10.如图,矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ADB =30°, 那么∠AOB 的度数为____________.11.一组数据3,2,4,7的方差为2s ,则2s =___________.12.若A 12y (,),B 23y (,)是一次函数31y x =-+的图象上的两个点,则1y 与2y 的大小关系是1y ___________2y (填“>”“=”或“<”).13.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:E DCBA DC BAO甲 乙 丙 丁 平均数(分) 92 95 95 92 方差3.63.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择____________.14.随着生活水平的提高,人们越来越关注健康的生活环境,家庭及办公场所对空气净化器的需求量逐月增多.经调查,某品牌的空气净化器今年三月份的销售量为8万台,五月份的销售量为9.68万台,若销售量的月平均增长率相同,均为x ,则可列方程为________________________. 15.在平面直角坐标系xOy 中,点A (0,2),B (-1,0),C (2,0)为□ABCD 的顶点,则 顶点D 的坐标为_____________.16.如图,已知正比例函数1y ax =与一次函数212y x b =-+的图象交于点P .下面有四个结论: ① 0>a ; ② 0<b ;③ 当0<x 时,21<y y ; ④21b a -=.其中正确的是____________(只填写序号).三、解答题(共68分,第17题10分,第18-21题,每小题5分,第22题4分,第23-26题,每小题5分,第27-28题,每小题7分)17.解方程:(1) x 2 - 2x - 3 = 0 ; (2) 2x 2 + 3x -1 = 0 .18.如图,在四边形ABCD 中,∠DCB =90°,AD ∥BC , 过点A 作AE ⊥BC 于点E ,连 接AC ,DE . 求证:AC =DE .x xy O 2212y b=-+1y ax=P19.在平面直角坐标系xOy 中,函数2y kx =+(0k ≠)与函数4y x =-+的图象交点为 P (3,m ),与 y 轴交于点A . (1)求k 的值; (2)求△PAO 的面积.20.如图,在△ACB 中,∠ACB =90°,点E 是边AB 的中点,过点A ,点C 分别作CE 和AB 的平行线,交于点D . (1)求证:四边形ADCE 是菱形; (2)若CE=6,∠DAE =60°,求AC 的长.21.已知关于x 的一元二次方程2210x x m ++-=有两个不相等的实数根. (1)求实数m 的取值范围;(2)若m 为满足条件的最大整数,求此时方程的根.22.在数学课上,老师布置以下思考题:EDCB ADECBA已知:△ABC ,点D 为AB 的中点. 求作:线段DE ,使DE ∥BC . 小智结合所学知识思考后,作法如下:(1)请你利用直尺和圆规,依据小智的作法补全图形(保留作图痕迹); (2)请回答,小智尺规作图得到DE ∥BC 的依据是________________________. 23.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当月用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照“提高电价”收费.设家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题:(1)“基础电价”是____________元度; (2)当x >240 时,求y 与x 的函数表达式;(3)若小刚家3月份用电量是80度,则应缴纳电费____________元;(4)若小华家六月份缴纳电费132元,则小华家六月份用电量为____________度.24.某公园在绿化时,工作人员想利用如图所示的直角墙角(两边足够长)和长为 40米的篱笆围成一个矩形场地,其中边 AB ,AD 为篱笆.如果矩形场地的面积是300平方米,求矩形场地的长AB 和宽AD 各是多少米?y (DC25.长城是中华民族的精神象征.某校为让更多的师生了解长城、保护长城,举办了以“讲好长城故事,传承长城文化,弘扬长城精神”为主题的演讲比赛,共有200名学生参加.为了更好地了解本次比赛成绩的分布情况,随机抽取了部分学生的成绩作为样本,绘制的频数分布表与频数分布直方图的一部分如下(每组分数段中的分数包括最低分,不包括最高分):请根据所给信息,解答下列问题:(1)a =________,b =________, c =________; (2)补全频数分布直方图;(3)若成绩在80分及以上为优秀,请你根据抽取的样本数据,估计参加这次比赛的200名学生中成绩优秀的约有多少名?26.在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数12y x =的图象平移得到,且经过点(0,1).(1)求该一次函数的表达式;(2)当2x >时,对于x 的每一个值,函数y x n =+的值大于一次函数(0)y kx b k =+≠的值,直接写出n 的取值范围.分组/分 频数 频率 50~60 2 a60~70 4 0.10 70~80 80.20 80~90 b0.35 90~100 12c合计d 1.00样本成绩频数分布表样本成绩频数分布直方图27.如图,点E 是正方形ABCD 内部一点,BE =BA ,连接AE ,CE ,过点C 作CF ⊥AE 交AE 的延长线于点F . (1)依题意补全图形,求∠CEF 的度数;(2)连接DF ,用等式表示线段AF ,DF ,CF 之间的数量关系,并证明.28.在平面直角坐标系xOy 中,对于点P 与图形W 给出如下定义:N 为图形W 上任意一点,P ,N 两点间距离的最小值称为点P 与图形W 的“近点距离”.特别的,当点P 在图形W 上时,点P 与图形W 的“近点距离”为零.如图1,点A (3,1),B (3,5).(1)点C (4,1)与线段AB 的“近点距离”是 ;点D (1,0)与线段AB 的“近点距离”是 ;(2)点P 在直线2y x =+上,如果点P 与线段AB 的“近点距离”为2,那么点P 的坐标是 ;(3)如图2,将线段AB 向右平移3个单位,得到线段EF ,连接AE ,BF ,若直线y x b =+上存在点G ,使得点G 与四边形ABFE 的“近点距离”小于或,直接写出b 的取值范围.EDCBA图1 图2参考答案一、选择题:(共8个小题,每小题2分,共16分)DDCA BDCD二、填空题:(共8个小题,每小题2分,共16分)9.1222,x x ==- 10.60° 11.3.5 12.> 13.乙 14.28(1)9.68x += 15.(3,2) 16.①④ 三、解答题17.(1)2230x x --=.解:223x x -=.22131++x x -=.2(1)4x -=.12x -=±.∴原方程的解为13x =,21x =-.(2) 2x 2 + 3x -1 = 0 .解:2a =,3b =,1c =-.224342(1)17b ac -=-⨯⨯-=.∴x ===.∴原方程的解为1x =,2x =. 18.证明:∵∥AD BC ,∴ADC DCB ∠=∠=90°. ∵AE ⊥BC ,∴∠AEC =90°.∴∠ADC DCE AEC ∠=∠==90°. ∴四边形AECD 是矩形. ∴AC =DE .19.(1)∵P (3,m )在4y x =-+上,∴341m =-+=.∵2y kx =+过点P (3,1), ∴321k +=. ∴ 13k =-.EDCBA…………………………1分…………………………2分…………………………1分…………………………2分…………………………3分…………………………5分…………………………4分…………………………2分…………………………1分…………………………5分…………………………4分…………………………3分…………………………4分…………………………5分…………………………2分…………………………3分…………………………1分(2)∵直线2y kx =+(0k ≠)与y 轴交于点A , ∴A (0,2). ∴12332△==PAO S ⨯⨯.20.证明:(1)∵A D ∥EC ,CD ∥AE ,∴ 四边形ADCE 为平行四边形.∵ ∠ACB =90°,点E 是边AB 的中点, ∴CE =AE=EB . ∴□ADCE 是菱形.(2) ∵□ADCE 为菱形,CE=6, ∴AE =EC =6.∵点E 是边AB 的中点,∴AB=12. ∵∠DAE =60°, ∴∠CAB =30°.∵∠ACB =90°,∠CAB =30°, ∴BC =6.在R t △ABC 中,∠ACB =90°, ∴AC=∴AC的长为 21.(1)解:依题意,得441(1)m ∆=-⨯⨯-84m =-.∵方程有两个不相等的实数根, ∴840m ->. ∴2m <.(2)解:∵m 为满足条件的最大整数,∴1m =.∴220x x +=. ∴ 1202,x x ==-.22.(1)DECBA…………………………2分…………………………1分…………………………3分…………………………4分………………………5分…………………………3分…………………………3分…………………………4分…………………………5分…………………………2分…………………………1分…………………………4分…………………………5分(2)三角形的中位线平行于第三边.23.(1)0.5;(2)0.624y x =-(x >240); (3)40; (4)260.24.解:设矩形场地的长AB 为x 米,则宽AD 为(40-x)米,由题意得(40)300x x -=. 解方程得123010x x ==,. 当AB =30时,AD =10;当AB =10时,AD =30(不合题意,舍去);∴AB =30,AD =10.答:矩形场地的长为30米,则宽为10米.25.(1)a =0.05; b =14;c =0.30; (2)略; (3)2620013040⨯=(名). 答:成绩优秀的约有130名.26.解:(1)∵一次函数(0)y kx b k =+≠的图象由函数12y x =的图象平移得到,∴12k =. ∵一次函数(0)y kx b k =+≠过点(0,1) ∴1b =∴该一次函数的表达式为112y x =+.(2)0n ≥.27.(1)如图…………………………1分…………………………1分…………………………2分…………………………5分………………………………1分…………………………1分…………………………3分…………………………4分…………………………5分…………………1分…………………………2分…………………………5分…………………………3分…………………………4分…………………………4分…………………………3分…………………………5分…………………………3分解:∵正方形ABCD ,∴AB =BC ,∠ABC =90°. ∵BE =BA , ∴AB =BE =BC .∴设∠BAE =∠BEA =x ,∠BEC =∠BCE =y . ∵四边形ABCE 的内角和为360°,∴2290360x y ++=°. ∴135x y +=°. ∴∠AEC =135°.∴∠CEF =45°.(2)数量关系是AF CF +.如图,作DH ⊥DF ,交AF 于点H . ∴∠ADH =∠CDF =90°-∠HDC .∵∠EFC =90°, 又∵∠CEF =45°,∴△EFC 是等腰直角三角形. ∴EF =FC .∵∠DAB =90°,∠BAE =x , ∴∠DAH=90°-x , ∵∠DCE =90°-y ,∴∠FCD =45°-(90°-y )=y -45°. 又∵135x y +=°, ∴y =135°-x .∴∠FCD=90°-x . ∴∠DAH =∠DCF .∵正方形ABCD , ∴AD=DC .在△DAH 和△DCF 中,∠∠∠∠DAH DCF AD DCADH FDC =⎧⎪=⎨⎪=⎩∴△DAH ≌△DCF (AAS ). ∴AH = CF , DH =DF . ∴△DHF 是等腰直角三角形.∴HF =.………………………………4分………………………………5分………………………………6分FEDCB A HFEDCB A………………………………2分………………………………3分∵AF HF AH=+,∴AF CF+. 28.(1)1(2)(1,3)或(3;(3)52b-≤.………………………………7分…………………………2分…………………………4分…………………………7分。

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。

12B。

8C。

$\frac{2}{3}$D。

$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。

5,12,13B。

1,2,5C。

1,3,2D。

4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。

$(x+2)^2=3$B。

$(x+2)^2=5$C。

$(x-2)^2=3$D。

$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。

矩形B。

菱形C。

正方形D。

无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。

$y=-x$B。

$y=x+1$C。

$y=-2x+1$D。

$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。

|。

8分。

|。

9分。

|。

10分。

|甲(频数)|。

4.|。

2.|。

3.|乙(频数)|。

3.|。

2.|。

5.|A。

$s_1^2>s_2^2$B。

$s_1^2=s_2^2$C。

$s_1^2<s_2^2$D。

无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。

1,0B。

-1,1C。

1,-1D。

无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。

2023北京西城区初二(下)期末数学试题及答案

2023北京西城区初二(下)期末数学试题及答案

2023北京西城初二(下)期末数 学2023.7注意事项:1.本试卷共8页,共两部分,四道大題,26道小题.其中第一大题至第三大题为必做题,第四大道为选做道,计入总分,考试时间100分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和学号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,请将考试材料一并交回.第一部分 选择题一、选择题(第1-8题均有四个选项,符合题意的选项只有一个)1. 下列各式中,是最简二次根式的是( )2. 以下列各组数为边长,能构成直角三角形的是( )A. 2,3,3B. 2,3,4C. 2,3,5D. 233. 下列计算,正确的是( )3=-=23=⨯2÷=4. 下列命题正确的是( )A. 对角线相等的四边形是平行四边形B. 对角线相等且互相平分的四边形是菱形C. 对角线垂直且互相平分的四边形是矩形D. 对角线垂直、相等且互相平分的四边形是正方形5. 在Rt ABC △中,90ACB ∠=︒,D 为斜边AB 的中点.若8AC =,6BC =,则CD 的长为( )A. 10B. 6C. 5D. 46. 小雨在参观故宫博物馆时,被太和殿窗棂的三交六椀菱花图案所吸引,他从中提取出一个含60︒角的菱形ABCD (如图1所示).若AB 的长度为a ,则菱形ABCD 的面积为( )C. 2a 27. 台风影响着人们的生产和生活.人们为研究台风,将研究条件进行一定的合理简化,把近地面风速画在一个以台风中心为原点,以台风半径为横轴,风速为纵轴的坐标系中,并在图中标注了该台风的12级、10级和7级风圈半径,如12级风圈半径是指近地面风速衰减至32.7m /s 时,离台风中心的距离约为150km .那么以下关于这场台风的说法中,正确的是( )A. 越靠近台风中心位置,风速越大B. 距台风中心150km 处,风速达到最大值C. 10级风圈半径约为280kmD. 在某个台风半径达到最大风速之后,随台风半径的增大,风速又逐渐衰减8. 在平面直角坐标系xOy 中,矩形OABC ,()0,3A ,()2,3B ,()2,0C ,点M 在边OA 上,1OM =.点P 在边AB 上运动,连接PM ,点A 关于直线PM 的对称点为A '.若PA x =,MA A B y +'=',下列图像能大致反映y 与x 的函数关系的是( ).A. B.C. D.第二部分 非选择题二、填空题9. 在实数范围内有意义,则实数x 的取值范围是______.10. 0=,则=a ______,b =______.11. 若ABC 的周长为6,则以ABC 三边的中点为顶点的三角形的周长等于______.12. 某商场招聘员工,现有甲、乙两人参加竞聘,通过计算机、语言和商品知识三项测试,他们各自成绩(百分制)和各项占比如下表所示,那么从甲、乙两人各自的平均成绩看,应该录取:______测试项目计算机语言商品知识在平均成绩中的占比50%30%20%甲的成绩708090乙的成绩90807013. 如图,直线y mx n =+与直线y kx b =+的交点为A ,则关于x ,y 的方程组,y mx n y kx b =+⎧⎨=+⎩的解是______.14. 小杰利用教材中的剪纸活动设计了一个魔术.他将一个长方形纸片对折两次,剪下一个45︒角(图1),展平后得到一个带正方形孔洞的魔术道具(图2),这个正方形孔洞ABCD 的边长为2cm (图4).他试图将一个直径为3cm 的圆形铁环(铁环厚度忽略不计)穿过这个孔洞,没有成功,于是他对这个道具进行折叠、旋转(图5、图6),并调整纸片产生一个新的“孔洞”(图3).请你计算调整前后的孔洞最“宽”处的“宽度”来说明魔术的效果.图4中的“宽度”BD =______cm ;图6中的“宽度”BD ''=______cm .15. 如图,在ABCD Y 中,BE 平分ABC ∠交AD 于点E ,CF 平分BCD ∠交AD 于点F ,BE 与CF 的交点在ABCD Y 内.若5BC =,3AB =,则EF =______.16. 在ABC 中,3BC =,BD 平分ABC ∠交AC 于点D ,DE BC ∥交AB 于点E ,EF AC ∥交BC 于点F .有以下结论:①四边形EFCD 一定是平行四边形;②连接DF 所得四边形EBFD 一定是平行四边形;③保持ABC ∠的大小不变,改变BA 的长度可使BF FC =成立;④保持BA 的长度不变,改变ABC ∠的大小可使BF FC =成立.共中所有的正确结论是:______.(填序号即可)三、解答题17. 计算:(1(2)+--.18. 在平面直角坐标系xOy 中,直线:26m y x =+与x 轴的交点为A ,与y 轴的交点为B ,将直线m 向右平移3个单位长度得到直线l .(1)求点A ,点B 的坐标,画出直线m 及直线l ;(2)求直线l 的解析式;(3)直线l 还可以看作由直线m 经过其他方式的平移得到的,请写出一种平移方式.19. 尺规作图:过直线外一点作这条直线的平行线.已知:如图,直线l 及直线l 外一点P .求作:直线m ,使得m l ∥,且直线m 经过点P .;作法:①在直线l 上取一点A ,连接AP ,以点A 为圆心,AP 的长为半径画弧,交直线l 于点B ;②分别以点P ,点B 为圆心,AP 的长为半径画弧,两弧交于点C (不与点A 重合);③经过P ,C 两点作直线m .直线m 就是所求作的直线.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接BC .∵AP = = = ,∴四边形PABC 是(填“矩形”“菱形”或“正方形”)( )(填推理的依据).∴m l ∥( )(填推理的依据).20. 如图,在ABCD Y 中,AE BC ⊥于点E ,CF AD ⊥于点F .(1)求证:四边形AECF 是矩形;(2)连接BD ,若30CBD ∠=︒,5BC =,BD =DF 的长.21. 已知甲、乙两地相距60km ,小徐和小马两人沿同一条公路从甲地到乙地,小徐骑自行车3h 到达.小马骑摩托车比小徐晩1h 出发,骑行30km 时追上小徐,停留h n 后继续以原速骑行.在整个行程中,两人与甲地的距离y 与小徐骑行时间x 的对应关系分别如图中线段OA 和折线段BCDE 所示,DE 与OA 的交点为F .(1)线段OA 所对应的函数表达式为 ,相应自变量x 的取值范围是 ,线段BC 所对应的函数表达式为 ,相应自变量x 的取值范围是 ;(2)小马在BC 段的速度为 km/h ,n = ;(3)求小马第二次追上小徐时与乙地的距离.22. 某校为了解课外阅读情况,在初二年级的两个班中,各随机抽取部分学生调查了他们一周的课外阅读时长(单位:小时),并对数据进行了整理、描述和分析.下面给出了部分信息.a .甲班学生课外阅读时长(单位:小时):7,7,8,9,9,11,12b .乙班学生课外阅读时长的折线图:c .甲、乙两班学生阅读时长的平均数、众数、中位数:平均数中位数众数甲班m9t乙班9n9根据以上信息,回答下列问题:(1)写出表中m ,t ,n 的值;(2)设甲、乙两班数据的方差分别为21s ,22s ,则21s 22s (填“>”“=”或“<”).23. 在平面直角坐标系xOy 中,对于非零的实数a ,将点(),P x y 变换为,y P ax a ⎛⎫⎪⎝⎭'称为一次“a -变换”.例如,对点()2,3P 作一次“3-变换”,得到点()6,1P '.已知直线24y x =-+与x 轴交于点A ,与y 轴交于点B .若对直线l 上的各点分别作同样的“a -变换”,点A ,B 变换后的对应点分别为A ',B '.(1)当2a =-时,点A '的坐标为 ;(2)若点B '的坐标为()0,6,则a 的值为 ;(3)以下三个结论:①线段AB 与线段A B ''始终相等;②BAO ∠与B A O ∠''始终相等;③AOB 与A OB ''△的面积始终相等.其中正确的是 (填写序号即可),并对正确的结论加以证明.24. 在菱形ABCD 中,60ABC ∠=︒,M ,N 两点分别在AB ,BC 边上,BM BN =.连接DM ,取DM 的中点K ,连接AK ,NK .(1)依题意补全图1,并写出AKN ∠的度数;(2)用等式表示线段NK 与AK 的数量关系,并证明;(3)若6AB =,AC ,BD 的交点为O ,连接OM ,OK ,四边形AMOK 能否成为平行四边形?若能,求出此时AM 的长;若不能,请说明理由.四、选做题25. 在单位长度为1的正方形网格中,如果一个凸四边形的顶点都是网格线交点,我们称其为格点凸四边形.如图,在平面直角坐标系xOy 中,矩形ORST 的四个顶点分别为()0,0O ,()0,5R,()8,0T ,()8,5S .已知点()2,4E ,()0,3F ,()4,2G .若点P 在矩形ORST 的内部,以P ,E ,F ,G 四点为顶点的格点凸四边形的面积为6,所有符合题意的点P 的坐标为 .26. 在平面直角坐标系xOy 中,对于正方形ABCD 和它的边上的动点P ,作等边OPP '△,且O ,P ,P '三点按顺时针方向排列,称点P '是点P 关于正方形ABCD 的“友好点”.已知(),A a a -,(),B a a ,(),C a a -,(),D a a --(其中0a >).(1)如图1,若3a =,AB 的中点为M ,当点P 在正方形的边AB 上运动时,①若点P 和点P 关于正方形ABCD 的“友好点”点P '佮好都在正方形的边AB 上,则点P '的坐标为 ;点M 关于正方形ABCD 的“友好点”点M '的坐标为 ;②若记点P 关于正方形ABCD 的“友好点”为(),P m n ',直接写出n 与m 的关系式(不要求写m 的取值范围);(2)如图2,()1,1E --,()2,2F .当点P 在正方形ABCD 的四条边上运动时,若线段EF 上有且只有一个点P 关于正方形ABCD 的“友好点”,求a 的取值范围;(3)当24a ≤≤时,直接写出所有正方形ABCD 的所有“友好点”组成图形的面积.参考答案第一部分 选择题一、选择题(第1-8题均有四个选项,符合题意的选项只有一个)题号12345678答案BDCDCBDA第二部分 非选择题二、填空题9. 2x ≥.10. 1,5-.11. 3.12.乙.13. 13x y =⎧⎨=⎩14. 4.15. 1.16.①③.三、解答题17. (1)2=+=+=.(2)+--225=--1=-.18. (1)解:对于直线:26m y x =+,当0x =时,6y =当0y =时,260x +=,解得3x =-,∴()30A -,,()06B ,,经过()30A -,,()06B ,两点的直线即为直线m ,然后将直线m 向右平移3个单位长度得到直线l ,所以m l ∥,且直线l 经过()00O ,;作出直线m 及直线l 的图象如图所示:(2)解:因为直线:26m y x =+向右平移3个单位长度得到直线l ,所以直线():236l y x =-+,即直线l 的解析式为2y x =;(3)解:∵直线:26m y x =+,直线:2l y x =,∴直线m 向下平移6个单位长度得到直线l (答案不唯一).19. (1)如图,直线m 即为所求作;(2)证明:连接BC ,∵AP AB PC BC ===,∴四边形PABC 是菱形.(四条边相等的四边形是菱形).∴m l ∥(菱形的对边平行).故答案为:AB ;PC ;BC ;菱形;四条边相等的四边形是菱形;菱形的对边平行.20. (1)证明:如图3.∵四边形ABCD 是平行四边形,∴AD BC ∥.∴180AEC EAF ∠+∠=︒,∵AE BC ⊥于点E ,CF AD ⊥于点F ,∴90AEC ∠=︒,90AFC ∠=︒.∴18090EAF AEC ∠=︒-∠=︒.∴90AEC EAF AFC ∠=∠=∠=︒.∴四边形AECF 是矩形.(2)如图4,作DG BC ⊥,交BC 的延长线于点G .∵在Rt DBG △中,90DGB ∠=︒,30DBG ∠=︒,BD =,∴2BDDG ==6BG ==.∵5BC =,∴1CG BG BC =-=.同理可得四边形FCGD 是矩形.∴1DF CG ==.21. (1)解:由题意得,线段OA 是小徐的函数图象,折线段BCDE 是小马的函数图象,∴小徐的骑行速度为60320km /h ÷=,∴线段OA 所对应的函数表达式为20y x =,其中相应自变量x 的取值范围是03x ≤≤;在20y x =中,当2030y x ==, 1.5x =,∴在小徐出发1.5h 时,小马追上小徐,∴小马的骑行速度为3060km/h 1.51=-,∴线段BC 所对应的函数表达式为()6016060y x x =-=-,其中相应自变量x 的取值范围是1 1.5x ≤≤;故答案为:20y x =,03x ≤≤,6060y x =-,1 1.5x ≤≤;(2)解:由(1)得小马在BC 段的速度为60km/h ,2 1.50.5n =-=,故答案为:60,0.5;(3)解:设小马在小徐出发t 小时后第二次追上小徐,由题意得,()2030602t t =+-,解得 2.25t =,∴小马在小徐出发2.25小时后第二次追上小徐,∴小马第二次追上小徐时与乙地的距离为60 2.252015km -⨯=.22. (1)平均数1(778991112)97=++++++=,故9m =,出现次数最多的有7和9,故7,9t =;由图知,乙班中位数为9,故9n =.(2)222222221122(79)(79)(89)(99)(99)(119)(129)77s ⎡⎤=-+-+-+-+-+-+-=⎣⎦222222222146(59)(79)(99)(99)(99)(109)(149)77s ⎡⎤=-+-+-+-+-+-+-=⎣⎦∴2212S S <.23. (1)直线24y x =-+与x 轴交于点A ,令0y =,即240x -+=,解得2x =,(2,0)A ∴,当2a =-时,点A '的坐标为0(22,)2-⨯-,即(4,0)-;故答案为(4,0)-(2)直线24y x =-+与y 轴交于点B ,令0x =时,4y =,(0,4)B ∴,若点B '的坐标为()0,6,即4(0,)a a ⨯,46a ∴=,解得23a =,经检验23a =是分式方程的解,则a 的值为23;故答案为23(3)③正确,理由如下:证明:∵直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,∴()2,0A ,()0,4B .∵点A ,B 变抰后的对应点分别为A ',B ',∴()2,0A a ',40,B a ⎛⎫⎪⎝⎭'.∵12442AOB S =⨯⨯=△,14242A OB S a a ''=⨯⨯=△,∴A OB AOB S S ''= ,即③正确.故答案为③24. (1)解:补全图形如图所示:.延长AK 与CD 交于点E ,连接NM ,NA ,NE .∵在菱形ABCD 中,60ABC ∠=︒,∴AB BC CD AD ===,AB DC ,120BCD ∠=︒.∴MAK DEK ∠=∠.K 为DM 的中点,∴MK DK =.∵AKM EKD ∠=∠,∴AMK EDK ≅△△.∴AK EK =,AM ED =.∴AB AM DC ED -=-,即BM CE =.∵BM BN =,60ABC ∠=︒,∴BMN 为等边三角形.∴MN BM BN ==,60BMN ∠=︒.∴MN CE =,AM NC =,180120AMN BMN ∠=︒-∠=︒.∴AMN NCE ∠=∠.∴AMN NCE ≅△△.∴AN NE =,∵AK EK =,∴NK AE ⊥,即90AKN ∠=︒.(2)解:NK ,证明如下:延长AK 与CD 交于点E ,连接NM ,NA ,NE .∵在菱形ABCD 中,60ABC ∠=︒,∴AB BC CD AD ===,AB DC ,120BCD ∠=︒.∴MAK DEK ∠=∠.∵K 为DM 的中点,∴MK DK =.∵AKM EKD ∠=∠,∴AMK EDK ≅△△.∴AK EK =,AM ED =.∴AB AM DC ED -=-,即BM CE =.∵BM BN =,60ABC ∠=︒,∴BMN 为等边三角形.∴MN BM BN ==,60BMN ∠=︒.∴MN CE =,AM NC =,180120AMN BMN ∠=︒-∠=︒.∴AMN NCE ∠=∠.∴AMN NCE ≅△△.∴AN NE =,MAN CNE ∠=∠.∵ANC ABC BAN ∠=∠+∠,ANC ANE CNE ∠=∠+∠,∴60ANE ABC ︒∠=∠=∴ANE 为等边三角形,60NAK ∠=︒,在Rt ANK △中,90AKN ∠=︒,60NAK ∠=︒,可得30ANK ∠=︒,∴2AN AK=∴NK ==.(3)解:如图:四边形AMOK 能成为平行四边形,理由如下:∵菱形ABCD 的对角线AC ,BD 的交点为O ,∴BO OD =.∵DM 的中点为K ,∴OK 为DMB 的中位线.∴2BM OK =.∵四边形AMOK 为平行四边形,∴AM OK =.∴23AB AM BM AM OK AM =+=+=.∵6AB =,∴123AM AB ==.四、选做题25. 解:如图,111421214223222EFG S =⨯-⨯⨯-⨯⨯-⨯⨯=V ,113232P EG S =⨯⨯= ,∴11336EFG P EG P EFG S S S =+=+=四边形 ,此时,格点1P 的坐标为()5,4,过格点1P 作EG 的平行线,过格点23,P P ,则有:2313P EG P EG P EG S S S === ,∴26P EFG S =四边形,36P EFG S =四边形,∴()26,3,P ()37,2,P 又()411112422213,222P FG S =⨯+⨯-⨯⨯-⨯⨯= ∴41336EFG P FG P EFG S S S =+=+=四边形 ∴()42,1,P 所以,以P ,E ,F ,G 四点为顶点的格点凸四边形的面积为6的点P 有四处,坐标为()()()()6,3,5,4,7,2,2,1,故答案为:()()()()6,3,5,4,7,2,2,1.26. (1)①);32⎫⎪⎪⎭;如图,OP OP PP ''==∴PM P M '=,3OM =,30MOP MOP ¢Ð=Ð=°∴2OP MP ¢¢=∴Rt OMP ¢ 中,222OM MP OP ¢¢+=,2223(2)MP MP ¢¢+=,解得MP '=∴P ;如图,过点M '作M F x '⊥轴,垂足为F ,则90OFM ¢Ð=°,3OM ¢=,∴9030M OF MOM ¢¢Ð=°-Ð=°∴1322M F OM ¢¢==∴OF ===∴32M ⎫'⎪⎪⎭②6n +.如图,直线P M ''交x 轴于点G ,∵60POP MOM ¢¢Ð=Ð=°∴POP MOP MOM MOP ¢¢¢¢Ð-Ð=Ð-Ð即POM P OM ¢¢Ð= 又,OP OP OM OM ¢¢==∴POM P OM ¢¢@ ∴90OM P OMP ¢¢Ð=Ð=°∵906030M OG ¢Ð=°-°=°,∴90903060OGM M OG ¢¢Ð=°-Ð=°-°=°,点(,)P m n '在直线M G '上,设直线解析式为(0)y kx b k =+≠,则332b b +=+=解得6k b ⎧=⎪⎨=⎪⎩∴6n +;(2)如上图,由(1)知若 (),A a a -,则OM OM a ¢==,Rt OM G ¢ 中,12M G OG ¢=,2221()2a OG OG +=,解得OG =,即点,0)G ,由(1)知点P 在线段AB 上时,直线P M ''与x 轴相交锐角为60︒,可设直线M G '为y q =-+,代入,0)G a ,解得2q a =,故点P '在直线2y a =-+上,即A B ''解析式为2y a =-+;如下图所示,同理可得,直线C D ''解析式为2y a =-,经过()1,1E --,则1(1)2a -=--,解得a =;如下图所示时,直线A B ''的解析式为2y a =+,经过()2,2F,则222a =+解得1a =+.1a <+.(3)如图,当2a =时,点P '轨迹所在四边形A B C D ''''的面积为2(22)16´=,当4a =时,点P '轨迹所在四边形的面积为2(24)64´=,故24a ≤≤时,正方形ABCD 的所有“友好点”组成图形的面积为641648-=.。

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(a, b)关于原点对称的点是()A. P(a, b)B. P(a, b)C. P(a, b)D. P(b, a)2. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = 3x3. 在平行四边形ABCD中,若AB = 6cm,BC = 8cm,则对角线AC 的取值范围是()A. 2cm < AC < 14cmB. 4cm < AC < 14cmC. 6cm < AC < 14cmD. 2cm < AC < 6cm4. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √15. 下列命题中,正确的是()A. 两条平行线上的任意两点到第三条直线的距离相等B. 两条平行线上的任意两点到第三条直线的距离不相等C. 两条平行线上的任意一点到第三条直线的距离相等D. 两条平行线上的任意一点到第三条直线的距离不相等二、判断题(每题1分,共5分)1. 互为相反数的两个数的和为0。

()2. 任何两个无理数相加都是无理数。

()3. 两条平行线的斜率相等。

()4. 一次函数的图像是一条直线。

()5. 任意两个等腰三角形的面积相等。

()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a b = _______。

2. 在直角三角形中,若一个锐角为30°,则另一个锐角为_______°。

3. 若x^2 5x + 6 = 0,则x的值为_______或_______。

4. 一次函数y = 2x + 1的图像与y轴的交点坐标为_______。

5. 平行四边形的对边_______且_______。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 什么是正比例函数?请举例说明。

八年级数学下学期期末测试卷(含答案)

八年级数学下学期期末测试卷(含答案)

八年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 木工师傅想利用木条制作一个直角三角形,那么下列各组数据不符合直角三角形的三边长的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,15,172. 要使二次根式√ 2x−4在实数范围内有意义,则x的取值范围是( )A. x>2B. x≥2C. x<2D. x=23. 下列各式计算正确的是( )A. √ 2+√ 3=√ 5B. 2+√ 2=2√ 2C. 3√ 2−√ 2=2√ 2D. √ 12−√ 10=√ 6−√ 524. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A. x=20B. x=5C. x=25D. x=155. 甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S2甲=8.6,S2乙=2.6,S2丙=5.0,S2丁=7.2,则这四位同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. 下列不能确定四边形ABCD为平行四边形的是( )A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90∘C. ∠A+∠B=180∘,∠B+∠C=180∘D. ∠A+∠B=180∘,∠C+∠D=180∘7. 棱形ABCD中,对角线AC=5,BD=12,则棱形的高等于()A. 1513B. 3013C. 6013D. 308. 如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若∠ACB=30°,AB=8,则MN的长为()A. 2B. 4C. 8D. 169. 如图,在矩形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M 运动,则△AMP的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A. B.C. D.10. 如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE 折叠到AF,延长EF交DC于G,连接CF,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=14其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 在数轴上表示实数a的点如图所示,化简√ (a−5)2+|a−2|的结果为.12. 计算:(√ 3+√ 2)2−√ 24=______.13. 如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=________.14. 将直线y=2x+1的图象向下平移3个单位长度后所得直线的解析式是.15. 观察下列等式:①3−2√ 2=(√ 2−1)2,②5−2√ 6=(√ 3−√ 2)2,③7−2√ 12=(√ 4−√ 3)2,…请你根据以上规律,写出第6个等式______.16. 春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是______ 天.三、解答题(本大题共8小题,共52.0分。

2023北京海淀初二(下)期末数学(含答案)

2023北京海淀初二(下)期末数学(含答案)

2023北京海淀初二(下)期末数 学考生须知:1.本试卷共8页,共3道大题,26道小题.满分100分.考试时间90分钟. 2.在试卷上准确填写学校名称、班级名称、姓名.3.答案一律填涂或书写在试卷上,用黑色字迹签字笔作答. 4考试结束,请将本试卷交回.一、选择题(本大题共24分,每小题3分)在下列各题的四个备选答案中,符合题意的选项只有一个.1. x 的取值范围是( ) A. 0x >B. 0x <C. 0x ≥D. 0x ≤2. 用长度相等的火柴棒首尾相连拼接直角三角形,若其中两条直角边分别用6根和8根火柴棒,则斜边需用火柴棒的根数为( ) A. 12B. 10C. 8D. 63. 下列化简正确的是( )3=B.133= C. 3= =4. 在平面直角坐标系xOy 中,点()12,A y ,()23,B y 在函数3y x =−的图像上,则( ) A. 12y y >B. 12y y =C. 12y y <D. 以上都有可能5. 如图,A ,B 两点被池塘隔开,小林在池塘外选定一点C ,然后测量出CA ,CB 的中点D ,E 的距离,若5m DE =,则A ,B 两点间的距离为( )A. 5mB. 7.5mC. 10mD. 15m6. 一次函数y ax b =+的自变量和函数值的部分对应值如下表所示:ax b x +>的解集是( )A. 5x <B. 5x >C. 0x <D. 0x >7. 如图,12AB =,45A ∠=︒,点D 是射线AF 上的一个动点,DC AB ⊥,垂足为点C ,点E 为DB的中点,则线段CE 的长的最小值为( )A. 6B.D. 8. 某校足球队队员年龄分布如图所示,下面关于该队年龄统计数据的法正确的是( )A. 平均数比16大B. 中位数比众数小C. 若今年和去年的球队成员完全一样,则今年方差比去年大D. 若年龄最大的选手离队,则方差将变小二、填空题(本大题共18分,每小题3分)9. 在ABCD 中,若140A C ∠+∠=︒,则B ∠=__________︒.10. 如图,数轴上点A ,B ,C ,D 所对应的数分别是1−,1,2,3,若点E 对应的数是E 落在__________之间.(填序号)①A 和B ②B 和C ③C 和D11. 如图,大正方形是由四个全等的直角三角形和面积分别为1S ,2S 的两个正方形所拼成的.若直角三角形的斜边长为2,则12S S +的值为__________.12. 在一次演讲比赛中,甲的演讲内容、演讲能力、演讲效果成绩如下表所示:,演讲效果占10%,计算选手的综合成绩,则该选手的综合成绩为__________.13. 在矩形ABCD 中,BAD ∠的角平分线交BC 于点E ,连接ED ,若5ED =,3CE =,则线段AE 的长为__________.14. 已知直线:(0)l y kx b k =+≠,将直线l 向上平移5个单位后经过点(3,7),将直线l 向下平移5个单位后经过点(7,7),那么直线l 向__________(填“左”或“右”)平移__________个单位后过点(1,7).三、解答题(本大题共58分,第15题6分,16~21题,每题4分,22题~24题,每题5分,25题6分,26题7分)15. 计算:(1);(2. 16. 如图,将平行四边形ABCD 的对角线BD 向两个方向延长,分别至点E 和点F ,且使BE DF =.求证:四边形AECF 是平行四边形.17. 已知一次函数21y x =−+.(1)在下图所示的平面直角坐标系中,画出该一次函数的图象;(2)该一次函数图象与x 轴交点坐标为__________.当0y <时,自变量x 的取值范围是__________. 18. 如图,小明在方格纸中选择格点作为顶点画ABCD 和BCE .(1)请你在方格纸中找到点D ,补全ABCD ;(2)若每个正方形小格的边长为1,请计算线段CE 的长度并判断AD 与CE 的位置关系,并说明理由. 19. 快递公司为顾客交寄的快递提供纸箱包装服务.现有三款包装纸箱,底面规格如下表:已知甲、乙两件礼品底面都是正方形,底面积分别为280cm ,2180cm ,若要将它们合在一个包装箱中寄出,底面摆放方式如左上图,从节约枌料的角度考虑,应选择哪种底面型号的纸箱?请说明理由. 20. 已知一次函数的图像经过点4)A ,(1,1)B −.(1)求这个一次函数的解析式;(2)若正比例函数(0)y mx m =≠的图像与线段AB 有公共点,直接写出m 的取值范围. 21. 如图,在ABC 中,AB AC =,点D ,E ,F 分别为BC ,AB ,AC 的中点.(1)求证:四边形AEDF 是菱形;(2)若6AB =,10BC =,求四边形AEDF 的面积. 22.的矩形叫做“黄金矩形”.黄金矩形给我们以协调、匀称的美感.若要将一张边长为2的正方形纸片ABCD 剪出一个以AB 为边的黄金矩形ABMN ,小松同学的作法如下:①作AB 的垂直平分线分别交AB ,CD 于点E ,F ; ②连接AF ,作BAF ∠的角平分线,交BC 于点M ;③过点M 作MN AD ⊥于点N ; 矩形ABMN 即为所求.(1)根据上述作图过程,补全图形;(2)小松证明四边形ABMN 是黄金矩形的思路如下: 作MP AF ⊥于点P ,连接MF ,设BM x =, 根据角平分线的性质,可知MP BM x ==. 根据条件,可求得AF 的长度为__________,AP 的长度为__________.在Rt MPF △和Rt CMF △中,由勾股定理可得22222MP PF MF MC CF +==+. 由此可列关于x 的方程为. 解得BM x ==__________.所以12BM AB =,矩形ABMN 为黄金矩形. 23. 甲、乙两名选手参加25米手枪速射资格赛.资格赛规则为每名选手完成60发射击,得分按整数计.例如:9.7环计9分,每发最高得10分,满分600分.甲、乙各射击60发的成绩如下表所示:9分段的详细数据如下: 甲的9分段频数分布表根据以上信息,整理分析两名选手得分数据如下:(1)补全上述表格中的信息;(2)进入决赛后,资格赛成绩不带入决赛,每名选手最多完成40发,每发按照“击中”或“脱靶”统计,9.6环及以上计为击中,9.6环以下计为脱靶、只有击中才累计环数,按照总环数高低进行排名.若甲、乙两名选手均进入决赛,请你推断哪位选手更可能获胜,并说明理由.24. 实数a 与b 满足b =.(1)写出a 与b 的取值范围;(2是有理数. ①当a 是正整数时,求b 的值;②当a 是整数时,将符合条件的a 的值从大到小排列,请直接写出排在第3个位置和第11个位置的数. 25. 在正方形ABCD 中,点E 在射线BD 上,点M 在BC 的延长线上,CN 为DCM ∠的角平分线,点F 为射线CN 上一点,且CE FE =.(1)如图,当点E 在线段BD 上时,补全图形,求证:2180BEC CEF ∠+∠=︒; (2)在(1)的条件下,用等式表示线段CF ,DE ,BE 之间的数量关系,并证明; (3)若4AB =,3BE DE =,直接写出线段CF 的长.26. 在平面直角坐标系xOy 中,对于点00(,)P x y ,给出如下定义:若存在实数1x ,2x ,1y ,2y 使得0112x x x x −=−且0112y y y y −=−,则称点P 为以点11(,)x y 和22(,)x y 为端点的线段的等差点.(1)若线段m 的两个端点坐标分别为(1,2)和(3,2)−,则下列点是线段m 等差点的有__________;(填写序号即可)①1(16)P −,;②2(20)P ,;③3(4,4)P −;④4(5,6)P −. (2)点A ,B 都在直线yx =−上,已知点A 的横坐标为2−,(0)M t ,,(11)N t +,.①如图1,当1t =−时,线段AB 的等差点在线段MN 上,求满足条件的点B 的坐标;②如图2,点B 横坐标为2,以AB 为对角线构造正方形ACBD ,在正方形ACBD 的边上(包括顶点)任取两点连接的线段中,若线段MN 上存在其中某条线段的等差点,直接写出t 的取值范围__________.参考答案一、选择题(本大题共24分,每小题3分)在下列各题的四个备选答案中,符合题意的选项只有一个.9. 110︒10.③.11. 4.12. 8613. .14.左,4.三、解答题(本大题共58分,第15题6分,16~21题,每题4分,22题~24题,每题5分,25题6分,26题7分)15.(1)解:==(2==−42=216.证明:如图,连接AC,设AC与BD交于点O.四边形ABCD是平行四边形,=,…………………1分OA OC∴=,OB OD=,又BE DF∴=.…………………3分OE OF∴四边形AECF是平行四边形.…………………4分17. (1)解:当0x =时,2011y =−⨯+=, 当0y =时,021=−+x , ∴12x =. 如图,…………………2分(2)∵0y =时,12x =, ∴一次函数图象与x 轴交点坐标为1,02⎛⎫⎪⎝⎭.…………………3分 由图象可知,当0y <时,自变量x 的取值范围是12x >. 故答案为:1,02⎛⎫ ⎪⎝⎭,12x >.…………………4分18. (1)解:如图所示,即为所求;(2)解:如图所示,过点C 作CH AB ⊥于H ,记AD 与CE 相交于点F 理由如下:∵ ∴CE BC ====∵10BE =, ∴222CE BC BE +=∴90BCE ∠=︒,…………………3分 ∵四边形ABCD 是平行四边形, ∴AD BC ∥, ∴90AFE ∠=︒∴AD CE ⊥.…………………4分19. (1=…………………1分=,…………………2分∴甲、乙两件礼品的边长之和为=,∵2025=<<<,61820<=<…………………3分∴应选择中号的纸箱.…………………4分20. (1)解:设一次函数解析式为(0)y kx b k =+≠ ∵一次函数的图像经过点(2,4)A ,(1,1)B −,, ∴241k b k b +=⎧⎨−+=⎩,…………………1分解得,12k b =⎧⎨=⎩,…………………2分∴一次函数解析式为2y x =+. (2)12m m ≤−≥或21.(1)∵AB AC =,点D 为BC 的中点 ∴AD BC ⊥∴90ADB ADC ∠=∠=…………………1分 ∵点E ,F 分别为AB ,AC 的中点, ∴DE 是ABC 的中位线,12AF AC =, ∴12DE AC AF ==, 同理可得12DF AB AE ==, ∴DE AF AE DF ===,∴四边形AEDF 是菱形;(2)解:设AD EF 、交于O ,同理可证EF 是ABC 的中位线, ∴152EF BC ==, ∵6AB =,∴3AE =,∵四边形AEDF 是菱形, ∴1 2.52AD EF OE EF ==⊥,,2AD OA =,在Rt AEO △中,由勾股定理得2OA ==,∴AD =,∴122AEDF S AD EF =⋅=菱形.22.(1)解:如图所示,即为所求;(2)证明:作MP AF ⊥于点P ,连接MF ,设BM x =,则2CM x =−,根据角平分线的性质,可知MP BM x ==,∵EF 是AB 的垂直平分线, ∴112DF CF AD ===,∴AF ==,∵AM AM BM PM ==,,∴()Rt Rt HL ABM APM △≌△,∴2AP AB ==,∴2PF AF AP =−=−,在Rt MPF △和Rt CMF △中,由勾股定理可得22222MP PF MF MC CF +==+.∴)()2222212x x +=+− .解得1BM x ==−.所以12BM AB =, ∴矩形ABMN 为黄金矩形.23. (1)解:∵每名选手完成60发射击,∴甲得分为8的频数为:6033212112−−−−=,乙得分为9的频数为:6033122715−−−−=,∴甲乙射击的图如下所示,(2)解:乙更可能获胜,理由如下:①从“击中”个数来看,甲在资格赛中射出9.6环以上共35次,乙在资格赛中射出9.6环及以上共38次,乙比甲多;②从累计环数来看,若将甲9.69.8x ≤<分段的按9.8分计,9.810x ≤<分段的按10分计,甲的最高累计环数为9.851091021349,⨯+⨯+⨯=而将乙9.69.8x ≤<分段的按9.6分计,9.810x ≤<分段的按9.8分计,乙的最低累计环数为9.639.881027377.2⨯+⨯+⨯=,乙的最低累计环数比甲的最高累计环数还高…………………5分24. (1)解:由题可知:400a b −≥⎧⎨≥⎩解得:40a b ≤≥,;…………………2分(2)①∵a 是正整数时,∴a 可以取1234,,,,这时b 0,,是有理数,∴b =0b =;…………………4分是有理数,∴b当a 是正整数时,则41a a ==,,由①可知第3个数b =11个数b =即4124300a a −=−=,,解得:8296a a =−=−,.…………………5分25. (1)解:如图所示,即为所求;…………………1分∵四边形ABCD 是正方形,∴4590DBC BCD DCM =︒==︒∠,∠∠,∵CN 为DCM ∠的角平分线, ∴1452FCM DCM ==︒∠∠,∴FCM DBC =∠∠,∴BD CF ,∴BEC ECF ∠=∠,∵CE FE =,∴ECF EFC ∠=∠,∵180ECF EFC CEF ∠+∠+∠=︒,∴2180ECF CEF ∠+∠=︒,∴2180BEC CEF ∠+∠=︒;(2)解:BE CF DE =+,证明如下:如图所示,在BD 上截取BH CF =,连接CH DF 、,∵CN 为DCM ∠的角平分线, ∴1452DCF DCM ==︒∠∠,∵四边形ABCD 是正方形,∴45DBC BC CD ∠=︒=,,∴CBH DCF =∠∠,∴()SAS CBH DCF △≌△,∴CH DF =,CHB DFC =∠∠,∵CF BD ∥,∴180BDF DFC ∠+∠=︒,∵180DHC BHC +=︒∠∠,∴EHC EDF =∠∠,∵2180BEC CEF ∠+∠=︒,180BEC CEF DEF ∠+∠+=︒∠,∴CEH FED =∠∠,∴()AAS CEH FED △≌△,∴HE DE =,∵BE BH HE =+,∴BE CF DE =+;(3)解:如图3-1所示,当点E 在BD 上时,∵在正方形ABCD 中,4AB =,∴490BC CD BCD ===︒,∠,∴BD ==∵3BE DE =,∴3144BE BD DE BD ==== 由(2)的结论可知BE CF DE =+,∴CF BE DE =−=;如图3-2所示,当点E 在BD 延长线上时,在射线BE 上截取BH CF =,连接CH DF 、,同理可证明CBH DCF △≌△,∴CH DF =,CHB DFC =∠∠,∵CF BD ∥,∴FDE CFD =∠∠,DEC ECF HEF EFC ==∠∠,∠∠∴FDE CHE =∠∠;∵EC EF =,∴ECF EFC ∠=∠,∴DEC HEF =∠∠,∴DEF HEC =∠∠∴()AAS DEF HEC △≌△,∴HE DE =,∵BH BE EH =+,∴CF BE DE =+,∵3BE DE BD ==,,∴BE DE ==∴CF =;综上所述,CF =CF =.26. (1)解:m 的两个端点坐标分别为(1,2)和(3,2)−①1(16)P −,:∵1113,622(2) ∴1(16)P −,是等差点; ②2(20)P ,:∵2113,且2331∴2(20)P ,不是等差点;③3(4,4)P −:∵4113,且4331 ∴3(4,4)P −不是等差点;④4(5,6)P −:∵5331且6(2)(2)2∴4(5,6)P −是等差点.故答案为①④.(2)解:①∵点A 直线yx =−上,横坐标为2−,∴(2,2)A −当1t =−时,(1,0)M −,(0,1)N设直线MN 解析式为(0)y kx b k =+≠,则 01x b b −+=⎧⎨=⎩,解得11k b =⎧⎨=⎩, ∴直线MN 解析式为1y x =+,联立y x =−,得1y x y x =+⎧⎨=−⎩,解得0.50.5x y =−⎧⎨=⎩∴交点即等差点坐标为(0.5,0.5)−;设点(,)B a a −,则0.5(2),a a 或0.5(2)(2)a ,解得 1.25a =−或 1.75a∴( 1.25,1.25)B 或( 3.5,3.5);②如图,点B 横坐标为2,以AB 为对角线构造正方形ACBD ,可知(2,2)A −,(2,2),(2,2),(2,2)B C D ,(0)M t ,,(11)N t +,,分别在x 轴、直线1y =上,如图,根据等差点定义知,正方形上两点()()2,2,2,1.5−的一个等差点为(6,1)−,点(11)N t +,位于1(6,1)N 时,t 取最小值,16t +=−,7t =−;如图,正方形上两点(2,2),(2,1)的一个等差点为(6,0),点(0)M t ,位于4(6,0)M 时,t 取最大值,6t =;正方形ACBD 的边上(包括顶点)任取两点连接的线段的等差点不可能出现在正方形内部,故2t ≤−,或12t +≥,即1t ≥,综上,72t −≤≤−或16t ≤≤.。

2024北京海淀区初二(下)期末数学及答案

2024北京海淀区初二(下)期末数学及答案

2024北京海淀初二(下)期末数学2024.07学校_____________ 班级______________ 姓名______________一、选择题(本题共24分,每小题3分)第1-8题均有四个选项,符合题意的选项只有一个.1.下列二次根式中,最简二次根式是()2.以下列长度的三条线段为边,能组成直角三角形的是()A.1,2,3B.3,3,4C.3,4,5D. 4,4,43.下列各式中,计算正确的是()=4=+==4.如图,□ABCD的对角线AC,BD相交于点O,点E是AD的中点,连接OE,若OE=3,则CD的长为()A.8 B.6C.4 D.35.在平面直角坐标系xOy中,正比例函数y=kx的图象经过点P1(-1,y1),P2(2,y2),且y1> y2,则k的值可能为()A.2B.1C.0D.-16.如图,矩形ABCD的对角线AC,BD相交于点O,∠AOD=120°,AB=2,则AC长为()EBDA. B .4 C.D .87.如图,数轴上点O ,A ,B ,C ,D 所对应的数分别是0,1,2,3,4. 若点P,则点P 落在( )A .点O 和点A 之间B .点A 和点B 之间C .点B 和点C 之间D .点C 和点D 之间8.下表是魔方比赛中甲、乙、丙、丁四位选手的复原时间统计表,同一行表示同一位选手四次复原的时间(单位:秒),则下列说法正确的是( )A. 乙选手的最短复原时间小于甲选手的最短复原时间B. 丙选手复原时间的平均数大于丁选手复原时间的平均数C. 甲选手复原时间的中位数小于丁选手复原时间的中位数D. 乙选手复原时间的方差大于丁选手复原时间的方差 二、填空题(本题共16分,每小题2分)9. 有意义,则实数x 的取值范围是____________. 10.直线y =2x 向上平移2个单位后得到的直线解析式为____________.11.如图,在ABC △中,AB AC =,AD 平分BAC ∠,点E 是AB 的中点,40BAC ∠=︒,则ADE ∠=____________°.12.一家鞋店在一段时间内销售了某款女鞋30双,各种尺码鞋的销售数量如下表所示.在由鞋的尺码组成ABB的数据中,这组数据的众数是____________.13.用一根长y cm, 则y 关于x 的函数解析式为____________(不写自变量的取值范围).14.如图,在矩形ABCD 中,BE 平分∠ABC 交AD 于点E,∠BED 的平分线刚好经过点C ,则∠BCE =____________°.15.如图,在△ABC 中,∠ACB =90°,分别以边ACBCAB ,,为直径画半圆. 记两个月牙形图案ADCE 和CGBF 面积之和(图中阴影部分)为S 1,△ABC 的面积为S 2,则S 1________S 2(填“>”,“=”或“<”).16.磁力棋的棋盘为9×9的正方形网格,每个小正方形网格的边长为1. 磁力珠(近似看成点)可放在网格交点处,摆放时要求任意两颗磁力珠不吸到一起.若两颗磁力珠不吸到一起,则它们之间的距离应不小. 根据以上规则,回答下列问题:(1)如图,小颖在棋盘A ,B ,C 三处放置了互不相吸的三颗磁力珠. 若她想从12P P ,中选择一个位置再放一颗磁力珠,与其他磁力珠互不相吸,则她选择的位置是____________; (2)棋盘最多可摆放____________颗互不相吸的磁力珠.x BB三、解答题(本题共60分,第17题6分,第18-24题每题5分,第25题6分,第26题7分,第27题6分)17.计算:(1; (2)(33+−.18.如图,在□ABCD 中,点E ,F 为对角线AC 上的两个点,且DE ∥BF ,求证:DE =BF .19.团扇是中国传统工艺品,代表着团圆友善、吉祥如意. 某社团组织学生制作团扇,扇面有圆形和正方形两种,每种扇面面积均为300平方厘米. 为了提升团扇的耐用性和美观度,需对扇面边缘用缎带进行包 边处理,如图所示.(1)圆形团扇的半径为_____________厘米,正方形团扇的边长为__________厘米; (2)请你通过计算说明哪种形状的扇面所用的包边长度更短.20.已知:如图1,△ABC.求作:□ABCD .作法:① 作∠ABC 的平分线BM ;② 以点A 为圆心,AB 长为半径画弧,交射线BM 于点N ,作射线AN ; ③ 以点A 为圆心,BC 长为半径画弧,交射线AN 于点D ,连接CD ; ∴ 四边形ABCD 为所求.A图1 图2(1)使用直尺和圆规,依作法在图2中补全图形(保留作图痕迹); (2)完成下面证明.∵ AB = AN , ∴ ∠ABN = ________. ∵ BN 是∠ABC 的平分线, ∴ ∠ABN = ∠CBN . ∴ ∠CBN = ________. ∴ ADBC .∵ AD = BC ,∴ 四边形ABCD 为平行四边形( )(填推理的依据).21.在平面直角坐标系xOy 中,一次函数2y kx =−的图象与正比例函数12y x =的图象交于点A (m ,2). (1)求k ,m 的值;(2)当x >1−时,对于x 的每一个值,函数y =ax (a ≠0)的值大于一次函数2y kx =−的值,则a 的取值范围是 .22.一个有进水管和排水管的水池,每小时进水量和排水量分别为恒定的数值. 从某时刻开始3小时内仅进行进水操作而不排水. 在随后的2小时内,水池同时进行进水和排水操作. 在最后1小时内,水池仅排水而不再进水. 该水池内的水量y (单位:吨)与时间x (单位:小时)之间的函数关系如图所示. 根据图象,回答下列问题.(1)该水池进水管每小时进水_______吨,排水管每小时排水________吨; (2)当x =4时,求水池内的水量; (3)这6个小时,排水管共排水______吨.23.如图,在△ABC 中,∠CAB =90°,点D ,E 分别是BC ,AC 的中点. 连接DE 并延长至点F ,使得EF =DE .连接AF ,CF ,AD .(1)求证:四边形ADCF 是菱形;(2)连接BF . 若∠ACB =60°,AF =2,求BF 的长.24.咖啡是世界三大饮品之一,在我国广受欢迎.云南新培育的咖啡豆经五位专家多角度评测,数据已整理,以下是部分信息:a . 咖啡豆评测统计表:b . 咖啡豆评测的平均分统计图:根据以上信息,回答下列问题:(1)咖啡豆评测统计表中m =__________,n = ; (2)补全条形统计图;(3)在这6个评测角度中,五位评委测评打分差异最大的是__________.25.如图1,正方形ABCD 的边长为AC ,BD 交于点O ,点P 从点A 出发,沿线段AO →OBB运动,点P 到达点B 时停止运动. 若点P 运动的路程为x ,△DPC 的面积为y ,探究y 与x 的函数关系. (1)x 与y 的两组对应值如下表,则m =______________;(2)当点P 在线段AO 上运动时,y 关于x 的函数解析式为y =-x +4(0≤x ≤2). 当点P 在线段OB 上运动时,y 关于x 的函数解析式为______________,此时,自变量的取值范围是_______________;(3)① 在图2中画出函数图象;② 若直线12y x b =+与此函数图象只有一个公共点,则b 的取值范围是_________________.图1 图226.如图1,AC 和BD 是▱ABCD 的对角线,AB =BD . 点E 为射线BD 上的一点,连接AE .(1)当点E在线段BD 的延长线上,且DE =BD 时,①依题意补全图1; ②求证:AE =AC ;(2)如图2,当点E 在线段BD 上,且∠AEB =2∠ACD 时,用等式表示线段AE ,BE 和AB 的数量关系,并证明.图1 图227.甲、乙、丙三人相约到某游乐园游玩. 该园区在地图上的形状可近似看成等腰直角三角形,共有三个入口A ,B ,C .图1 图2(1)园区附近有四个公交车站点,即1号、2号、3号和4号车站. 甲和乙想到园区附近汇合后一起入园,乙在其中一个站点下车后,两人通过手机共享位置得知甲的位置如图1所示. 两人约定如下:I. 确定距离自己最近的入口;II. 如果两人确定的入口相同,则到此入口处汇合并入园;III.如果两人确定的入口不同,则到这两个入口的中点处汇合后,再沿逆时针...方向绕园区外围至最近的入口入园.①若乙在4号车站下车,则甲、乙入园的入口应为;②若甲、乙最终在B入口处入园,则乙下车的站点可以为;(2)丙从C入口先行入园,此时甲、乙还未入园. 丙在地图上建立平面直角坐标系xOy,如图2所示,其中入口A,B,C的坐标分别为(0,4),(-4,0),(4,0). 园区内有行驶路线为CG的摆渡车(乘客可以在路线上任意一点上下车).点G坐标为(-3,1). 丙想乘坐摆渡车和甲、乙汇合,其下车点记为M,M到三个入口A,B,C的最大距离记为a,到M的距离最近的入口记为“理想入口”.①如果丙希望在a最小处下车,则点M的坐标为_______________;②若对于摆渡车行驶路线上任意一段长度为m的路段,都同时存在“理想入口”分别为A,B,C的下车点,则m的最小值为_______________.参考答案一、 选择题(本题共24分,每小题3分)二、填空题(本题共16分,每小题2分)9. 5x ≥; 10. 22y x =+; 11. 20; 12. 23.5; 13. 10y x =−+; 14. 67.5; 15. =; 16. 2P ,20.三、解答题(本题共60分,第17题6分,第18-24题每题5分,第25题6分,第26题7分,第27题6分)17. (1)解:原式−分=. ---------------------- 3分(2)解:原式=223− ---------------------- 2分=7. ---------------------- 3分 18. 证明:∵ 四边形ABCD 是平行四边形,∴ AB=DC ,AB ∥DC . ---------------------- 1分 ∴ ∠DCE =∠BAF . ∵ DE ∥BF ,∴ ∠DEC =∠BF A . 在△CDE 与△ABF 中,DCE BAF DEC BFA DC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴ △CDE ≌△ABF (AAS). ---------------------- 4分 ∴ DE=BF . ---------------------- 5分 19. 解:(1; ---------------------- 2分 (2)∵厘米, ∴圆形团扇的周长为厘米. ---------- 3分 ∵=,3π4<<,∴< ----------------------4分∴ 圆形团扇所用的包边长度更短. ----------------------5分 20. 解:(1)--------------------- 2分(2) ∠ANB ;--------------------- 3分 ∠ANB ;--------------------- 4分一组对边平行且相等的四边形是平行四边形. --------------------- 5分21. 解:(1)由题意,点A (m ,2)在函数12y x =的图象上, ∴221=m . ∴ 4=m . ---------------------- 1分将A (4,2)代入2y kx =−,得224=−k ,∴ 1=k . ---------------------- 3分 (2)13a ≤≤. ---------------------- 5分 22. 解:(1)3,5; ---------------------- 2分(2)设当35x ≤≤时,函数解析式为)0(≠+=k b kx y .∵ b kx y +=的图象经过点(3,9),(5,5),∴ 395 5.k b k b +=⎧⎨+=⎩,解得 215.k b =−⎧⎨=⎩,---------------------- 3分∴152+−=x y .当4=x 时,7158=+−=y ,∴ 当4=x 时,水池内的水量为7吨. ---------------------- 4分(3)15. ---------------------- 5分23. (1)证明:∵ 点E 是AC 的中点,∴ AE =EC . ∵ EF =DE ,∴ 四边形ADCF 是平行四边形. ---------------------- 1分∵在△ABC中,∠CAB=90°,点D是BC的中点,∴AD=BD=DC.∴四边形ADCF是菱形. ---------------------- 2分(2)解:过点F作FG⊥BC交BC的延长线于点G.∴∠BGF=90°.∵四边形ADCF是菱形,∠ACB=60°,AF=2,∴CF=DC=AF =2,∠ACF=∠ACD=60°.∴∠FCG=180°-∠ACF-∠ACD =60°.∴∠GFC=90°-∠FCG=30°.在△CFG中,∠CGF=90°,∠GFC=30°,∴CG=12CF=1.∴FG==4分∵BD=CD=2.∴BG=BD+CD +CG =5.在△BFG中,∠BGF=90°,∴BF=5分24. 解:(1)9,8;---------------------- 2分(2)如图.---------------------- 4分(3)平衡性. ---------------------- 5分25. 解:(1)4; ---------------------- 1分(2)y = x,2≤x≤4; ---------------------- 3分(3)①如图.---------------------- 4分② 1b =或24b <≤. ---------------------- 6分26. 解:(1)① 依题意补全图形.---------------------- 1分②证明:∵ AB=BD ,∴ ∠BAD =∠BDA .∵ 四边形ABCD 是平行四边形,∴ AB ∥DC ,AB =DC .∴ ∠BAD +∠ADC =180°.∵ ∠BDA +∠ADE =180°,∴ ∠ADE =∠ADC .∵ DE =BD ,∴ DE =DC .在△ADE 和△ADC 中,DE DC ADE ADC AD AD =⎧⎪∠=∠⎨⎪=⎩,,, ∴ △ADE ≌△ADC (SAS ).∴ AE =AC . ---------------------- 4分(2)线段AE ,BE 和AB 的数量关系为AE +BE =2AB . ---------------------- 5分证明:延长BD 至点F ,使得DF =BD ,连接AF .由(1)②可得△ADF≌△ADC.∴∠F=∠ACD.∵∠AEB=2∠ACD,∴∠AEB=2∠F.∵∠AEB=∠EAF+∠F,∴∠EAF =∠F.∴EF=AE.∴AE+BE=EF+BE=BF=2BD=2AB. ----------------------7分27. 解:(1)① B; ---------------------- 2分② 3号车站,4号车站; ----------------------4分(2)①(0,47); ---------------------- 5分②分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二下学期数学期末试

TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】
八年级数学期末试题
一、选择题(本大题共有8小题,每小题3分,共24分)
1.计算23的结果是
()
A.3 B.3- C.3± D. 9
2.若分式
1
2
x
x
+
-
的值为0,则x的值为
()
A.0 B.1 C.1
- D.2
3.若
3
5
a
b
=,则
a b
b
+
的值是
( )
A.3
5 B.8
5
C.3
2
D.5
8
4.在△ABC中,D、E分别是边AB、AC的中点,若BC=5,则DE的长是
()
A.B.5 C.10 D.15
5.反比例函数
6
y
x
=-的图象位于
()
A.第一、二象限 B.第三、四象限 C.第一、三象限 D.第二、四象限
6.下列语句属于命题的是
()
A.两点之间,线段最短吗?B.连接P、Q两点.
C.花儿会不会在冬天开放 D.在同一平面内,不相交的两条直线叫做平行线.
7.如图,将三角形纸片ABC 沿DE 折叠,使点A 落在BC 边上的点F 处,且DE ∥
BC ,下列结论中不正确是
( )
A.BDF ∆是等腰三角形
B. 2BDF FEC A ∠+∠=∠
C.四边形ADFE 是菱形
D. BC DE 2
1
=
8.如图,
A 、
B 分别是反比例
函数106
,y y x x
=
=图象上的过A 、B 作x 轴的垂
点,线,
垂足
分别为C 、D ,连接OB 、OA ,OA 交BD 于E 点,△BOE 的面积为1S ,四边形ACDE 的面积为
2S ,则
21S S -= . ( )
.6 C 二、填空题(本大题共有10小题,每小题3分,共30分) 9.使二次根式1x -有意义的x 的取值范围是 . 10.分式方程
1
12
x =-的解是 . 11.在比例尺为1︰2000的地图上测得AB 两地间的图上距离为5cm ,则两地间的实际距离为 m .
12.写出命题“两直线平行,内错角相等”的逆命题: .
13.已知一组数据2, 1,-1,0, 3,则这组数据的极差是 . 14.△ABC 与△DEF 的相似比为3:4,则△ABC 与△DEF 的周长比为 .
A
B
C M
N 第17题
15.如图,BD 是△ABC 的角平分线,∠ABD =36°,∠C =72°,则图中的等腰三角形有
个. 如图,菱形ABCD ,要使菱形
ABCD 为正16.方形,则应添加的条件是
(添加一

条件即可).
17.如图,9AB =,6AC =,点M 在AB 上,且AM =3,点N 在AC 上运动,连接
MN ,若△AMN 与△ABC 相似,则AN = . 18.观察下列各式:311+
=231,412+=341,513+=45
1,……,请你将猜到的规律用含自然数n(n ≥1)的代数式表示出来是 .
三、解答题(本大题共有9题,共66分. 解答时应写出文字说明、证明过程或演算步
骤)
19.(本题满分10分)
(1)先化简,再求值:x x x x x x
11132-⋅⎪⎭
⎫ ⎝⎛+--,其中2=x ; (2)计算:2418)25()3
1
(01-+---(计算结果保留根号).
20.(本题满分5分)如图,已知O 是坐标原点,B 、C 两点的坐标分别为(3,-1)、(2,1).
(1)以0点为位似中心在y 轴的左侧将△OBC 放大到两倍(即新图与原图的相似比为2),画出图形;
第16题
展览馆展厅
入口A
入口B
南出口西出口 北出口
(2)分别写出B 、C 两点的对应点B ′、C ′的坐标:B ′( )、C ′( );
(3)如果△OBC 内部一点M 的坐标为(x ,y),写出M 的对应点M ′的坐标. 21.(本题满分5分)2010年上海世博会某展览馆展览厅东面有两个入口A 、B ,南
面、西面、北面各有一个出口,示意图如图所示.小华任选一个入口进入展览大厅,参观结束后任选一个出口离开.
(1)她从进入到离开共有多少种可能的结果(要求画出树状图) (2)她从入口A 进入展厅并从北出口或西出口离开的概率是多少?
22.(本题满分6分)作为一项惠农强农应对当前国际金融危机、拉动国内消费需求的重要措施,“家电下乡”工作已经国务院批准从2008年12月1日起在我市实
施.我市某家电公司营销点自去年12月份至今年5月份销售两种不同品牌冰箱的数量如下图: (1)完成下表:
(2)请你依据折线图的变化趋势,对营销点今后的进货情况提出建议. 23.(本题满分5分)一方有难,八方支援.2010年4月14日青海玉树发生级强烈地
震,给玉树人民造成了巨大的损失.灾难发生后,我校举行了爱心捐款活动,全校同学纷纷拿出自己的零花钱, 踊跃捐款支援灾区人民.已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少人均捐款多少元
C
B
A D
24.(本题满分5分)如图,在等腰梯形ABCD
中,AD ∠CD BD ⊥∠本题满分10分)如图,花丛中有一路灯杆AB.在灯光下,小明在D 点处的影长
DE=3米,沿
BD 方向行走到达G 点,DG=5米,这时小明的影长GH =5米.如果小明的身高为
1.7米,求路灯杆AB 的高度(精确到0.1米).
27.(本题满分12分)如图,一条直线与反比例函数k
y x
=
的图象交于A (1,4),B (4,n )两点,与x 轴交于D 点,AC ⊥x 轴,垂足为C . (1)如图甲,①求反比例函数的关系式;
②求n 的值及D 点坐标;
(2)如图乙,若点E 在线段AD 上运动,连接CE ,作∠CEF=45°,EF 交AC 于F 点.
①试说明△CDE ∽△EAF ;
②当△ECF 为等腰三角形时,求F 点坐标.
附加题(励志班同学必做,其他班同学选做,每题10分,共20分)
28.(本题满分10分)如图,已知△ABC ∽△111C B A ,相似比为)1(>k k ,且△ABC 的三边长分别为a 、b 、c )(c b a >>,△111C B A 的三边长分别为1a 、1b 、1c .
⑴若1a c =,求证: kc a =;
⑵若1a c =,试给出符合条件的一对△ABC 和△111C B A ,使得a 、b 、c 和1a 、1b 、1c 都是正整数,并加以说明;
⑶若1a b =,1b c =,是否存在△ABC 和△111C B A 使得2=k 请说明理由.
29.(本题满分10分)如图,已知△ABC 中,AB=AC=10厘米,BC=8厘米,点D 为AB 的中点.
A D
B E F O
C
M
A O x y
B
C
D 图甲 A
O x
y
B
C D E
F 图
(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点
Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点p的运动速度相等,经过1秒后,△BPD与△
CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多
少时,能够使△BPD与△CQP全等?
⑵若点Q以②中运动速度从点C出发,点P以原来的运动速度从点B同时
出发,都逆
时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇。

相关文档
最新文档