16正交分解法例题及练习
正交分解理论例题及练习

正交分解理论例题及练习正交分解理论是现代数学中的一个重要概念,它在各个领域都有着广泛的应用。
本文将介绍正交分解理论的基本概念,并提供一些例题和练,以帮助读者更好地理解和应用这一理论。
正交分解理论的基本概念正交分解理论是将一个向量空间拆分成若干个正交子空间的方法。
它的核心思想是利用向量空间中的正交基,将向量空间中的向量表示成各个正交子空间上的分量之和。
在正交分解理论中,一个向量空间可以表示为以下形式:$$V = V_1 \oplus V_2 \oplus \ldots \oplus V_n$$其中,$V$ 是一个向量空间,$V_1, V_2, \ldots, V_n$ 是$V$ 的正交子空间。
例题例题1设向量空间 $V$ 的一组基为 $v_1 = (1, 0)$ 和 $v_2 = (0, 1)$。
将向量 $v = (3, 4)$ 表示为 $v_1$ 和 $v_2$ 的分量之和。
解答:首先,根据正交分解理论,$v$ 可以表示为 $v_1$ 和 $v_2$ 的分量之和。
假设 $v$ 的分量分别为 $x_1 v_1$ 和 $x_2 v_2$,其中$x_1$ 和 $x_2$ 是待定系数。
则有:$$v = x_1 v_1 + x_2 v_2$$代入已知数值,得到:$$(3, 4) = x_1 (1, 0) + x_2 (0, 1)$$由此可得到一个线性方程组:$$\begin{cases} x_1 = 3 \\ x_2 = 4 \end{cases}$$解这个线性方程组,得到解 $x_1 = 3$ 和 $x_2 = 4$。
因此,向量 $v = (3, 4)$ 可以表示为 $(3, 0)$ 和 $(0, 4)$ 的分量之和。
例题2设向量空间 $V$ 的一组基为 $v_1 = (1, 1, 1)$ 和 $v_2 = (1, -1, 0)$。
求向量空间 $V$ 的正交子空间 $V_1$ 和 $V_2$。
解答:根据正交分解理论,我们需要寻找与 $v_1$ 和 $v_2$ 正交的向量。
力的正交分解法经典试题(内附答案)

力的正交分解法经典试题(内附答案)1.如图1,一架梯子斜靠在光滑竖直墙和粗糙水平面间静止,梯子和竖直墙的夹角为α。
当α再增大一些后,梯子仍然能保持静止。
那么α增大后和增大前比较,下列说法中正确的是 CA .地面对梯子的支持力增大B .墙对梯子的压力减小C .水平面对梯子的摩擦力增大D .梯子受到的合外力增大2.一个质量可以不计的细线,能够承受的最大拉力为F 。
现在把重力G =F 的重物通过光滑的轻质小钩挂在这根细线上,两手握住细线的两端,开始两手并拢,然后沿水平方向慢慢地分开,为了不使细线被拉断,细线的两端之间的夹角不能大于(C )A .60°B .90°C .120°D .150°3.放在斜面上的物体,所受重力G 可以分解使物体沿斜面向下滑的分力G 1和使物体压紧斜面的分力G 2,当斜面倾角增大时(C )A . G 1和G 2都增大B . G 1和G 2都减小C . G 1增大,G 2减小D . G 1减小,G 2增大4.如图所示,细绳MO 与NO 所能承受的最大拉力相同,长度MO>NO,则在不断增加重物G 的重力过程中(绳OC 不会断)( A )A .ON 绳先被拉断B .OM 绳先被拉断C .ON 绳和OM 绳同时被拉断D .条件不足,无法判断 5.如图所示,光滑的粗铁丝折成一直角三角形,BC 边水平,AC 边竖直,∠ABC=β,AB 、AC 边上分别套有细线系着的铜环,细线长度小于BC ,当它们静止时,细线与AB 边成θ角,则 ( D )A .θ=βB .θ<βC .θ>2πD .β<θ<2π6.质量为m 的木块沿倾角为θ的斜面匀速下滑,如图1所示,那么斜面对物体的作用力方向是 [D ]A .沿斜面向上B .垂直于斜面向上图C.沿斜面向下D.竖直向上7.物体在水平推力F的作用下静止于斜面上,如图3所示,若稍稍增大推力,物体仍保持静止,则 [BC ]A.物体所受合力增大B.物体所受合力不变C.物体对斜面的压力增大D.斜面对物体的摩擦力增大8.如图4-9所示,位于斜面的物块M在沿斜面向上的力F作用下,处于静止状态,则斜面作用于物块的静摩擦力的(ABCD )A.方向可能沿斜面向上B.方向可能沿斜面向下C.大小可能等于零D.大小可能等于F9.一个运动员双手对称地握住杠杆,使身体悬空.设每只手臂所受的拉力都是T,它们的合力是F,当两手臂之间的夹角增大时( C )A.T和F都增大B.T和F都增大C.T增大,F不变D.T不变,F增大10.如图2所示,人站在岸上通过定滑轮用绳牵引小船,若水的阻力恒定不变,则在船匀速靠岸的过程中 [AD]A.绳的拉力不断增大B.绳的拉力保持不变C.船受到的浮力不变D.船受到的浮力减小11.如图5-8所示,在一根绳子的中间吊着一个重物G,将绳的两端点往里移动,使θ角减小,则绳上拉力的大小将(A)A.拉力减小B.拉力增大C.拉力不变D .无法确定12.静止在斜面上的重物的重力可以分解为沿斜面方向向下的分力1F ,和垂直于斜面方向的分力2F ,关于这两个分力,下列的说明正确的是( D ) A .1F 作用在物体上,2F 作用在斜面上 B .2F 的性质是弹力C .2F 就是物体对斜面的正压力D .1F 和2F 是物体重力的等效代替的力,实际存在的就是重力13.如图6-17所示,OA 、OB 、OC 三细绳能承受的最大拉力完全一样.如果物体重力超过某一程度时,则绳子( A )A .OA 段先断B .OB 段先断C .OC 段先断D .一起断14.如图1—6—1所示,光滑斜面上物体重力分解为F 1、F 2两个力,下列说法正确的是CDA .F 1是斜面作用在物体上使物体下滑的力,F 2是物体对斜面的压力B .物体受到重力mg 、F N 、F 1、F 2四个力的作用C .物体只受到重力mg 和斜面支持力F N 的作用D .力F N 、F 1、F 2三力的作用效果与力mg 、F N 两个力的作用效果相同15.质量为m 的木块在推力F 作用下,在水平地面上做匀速运动(如图1—6—4).已知木块与地面间的动摩擦因数为μ,那么木块受到的滑动摩擦力为下列各值的哪一个B 、DA .μmgB .μ(mg +Fsin θ)C .μ(mg -Fsin θ)D .Fcos θ16.如图1—6—12所示,在倾角为α的斜面上,放一质量为m 的光滑小球,小球被竖直的木板挡住,则球对斜面的压力为CA.mgcosαB.mgtanαC.mg/cosαD.mg17.如图1—6—13长直木板的上表面的一端放有一铁块,木板由水平位置缓慢向上转动,(即木板与水平面的夹角α增大),另一端不动,则铁块受到的摩擦力F f随时间变化的图象可能正确的是图1—6—14中的哪一个(设最大静摩擦力与滑动摩擦力相等) C18.质量为m的物体A置于斜面体上,并被挡板B挡住,如图所示,下列判断正确的是(A )A.若斜面体光滑,则A、B之间一定存在弹力。
正交分解应用例题及练习

正交分解应用例题及练习什么是正交分解?正交分解是一种数学方法,用于将一个向量空间分解为一组正交基向量的线性组合。
它在许多领域中都有广泛的应用,包括线性代数、信号处理和图像处理等。
正交分解的应用例题例题1:向量投影我们有一个向量v,它的值为[3, 4]。
现在我们想要找出这个向量在正交基向量上的投影。
我们选择两个正交向量u1 = [1, 0]和u2 = [0, 1]作为正交基向量。
现在我们可以使用正交分解的方法找到向量v在这两个正交基向量上的投影:根据正交分解公式,我们可以将向量v表示为:v = proj(u1, v) + proj(u2, v)其中,proj(u, v)表示向量v在向量u上的投影。
具体计算如下:proj(u1, v) = (dot(u1, v) / dot(u1, u1)) * u1proj(u2, v) = (dot(u2, v) / dot(u2, u2)) * u2要计算dot(u, v),可以使用点积的公式:dot(u, v) = u · v = u1 *v1 + u2 * v2在本例中,计算结果如下:dot(u1, v) = 3 * 1 + 4 * 0 = 3dot(u2, v) = 3 * 0 + 4 * 1 = 4dot(u1, u1) = 1 * 1 + 0 * 0 = 1dot(u2, u2) = 0 * 0 + 1 * 1 = 1根据上述计算结果,我们可以计算向量v在u1和u2上的投影:proj(u1, v) = (3 / 1) * [1, 0] = [3, 0]proj(u2, v) = (4 / 1) * [0, 1] = [0, 4]将投影结果相加,得到v在正交基向量上的投影:v = [3, 0] + [0, 4] = [3, 4]因此,向量v在正交基向量u1和u2上的投影为[3, 4]。
例题2:信号处理正交分解在信号处理领域也有广泛的应用。
例如,我们可以使用离散余弦变换(DCT)来对音频信号进行正交分解。
《正交分解法》专项练习

G 正交分解法解决平衡问题1.如图所示,用绳AO 和BO 吊起一个重100N 的物体,两绳AO 、BO 与竖直方向的夹角分别为30o 和45o ,求绳AO 和BO 对物体的拉力的大小。
2. 如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60o 角时,物体静止,不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。
3. 要把在山上采的大理石运下来,可以修如图的斜面,如果大理石与路面的动摩擦因数为33,那么要使物体在斜面上匀速滑下,需要修倾角θ为多少度的路面面?4.如图,位于水平地面上的质量为M=100kg 的小木块,在大小为F=400N 方向与水平方向成a=300角的拉力作用下沿地面作匀速直线运动。
求:(1) 物体对地面的压力多大?θ(2)木块与地面之间的动摩擦因数?5.用与竖直方向成θ=37°斜向右上方,大小为F=200N的推力把一个质量m=10kg的木块压在粗糙竖直墙壁上正好向上做匀速运动。
求墙壁对木块的弹力大小和墙壁与木块间的动摩擦因数。
(g=10m/s2,sin37°=0.6,cos37°=0.8)6.如图所示,水平细杆上套一环A,环A与球B间用一不可伸长轻质绳相连,质量分别为m A=0.4 kg和m B=0.3 kg,由于B球受到水平风力作用,使环A与球B一起向右匀速运动.运动过程中,绳始终保持与竖直方向夹角θ=30°,重力加速度取g=10 m/s2,求:(1)B球受到的水平风力大小;(2)环A与水平杆间的动摩擦因数.参考答案:1.TOA =73.2N TOB=51.95N2.N=327N f=100N3.3004.800N5.0.56.47。
物理正交分解试题及答案

物理正交分解试题及答案
一、选择题
1. 在正交分解中,一个向量可以分解成两个互相垂直的分量,这两个分量是:
A. 同向分量
B. 反向分量
C. 正交分量
D. 任意分量
答案:C
2. 正交分解法中,分解后的两个分量的和与原向量的大小关系是:
A. 相等
B. 相加
C. 相减
D. 无法比较
答案:A
3. 正交分解法在解决物理问题时,通常用于:
A. 力学分析
B. 电学分析
C. 光学分析
D. 所有物理领域
答案:A
二、填空题
4. 在正交分解法中,如果一个向量被分解成两个分量,那么这两个分
量的______和等于原向量的模。
答案:平方
5. 正交分解法在处理力的分解问题时,通常将力分解为沿______和垂
直于该方向的两个分量。
答案:物体运动方向
三、计算题
6. 一个力F=10N,作用在一个物体上,如果该力与水平方向成30°角,求该力在水平方向和垂直方向上的分量。
答案:水平方向分量Fx = 10cos30° = 8.66N,垂直方向分量Fy
= 10sin30° = 5N。
四、简答题
7. 简述正交分解法在解决物理问题中的优势。
答案:正交分解法可以将复杂的物理问题简化,通过将力或运动分
解为沿特定方向的分量,便于分析和计算。
这种方法特别适用于力学
问题,如力的合成与分解、物体的运动分析等,因为它能够清晰地展
示各个分量对系统的影响,从而简化问题的解决过程。
正交分解模型例题及练习

正交分解模型例题及练习正交分解模型是一种常用于多变量统计分析的方法,通过将数据转换到一组正交变量上,降低变量之间的相关性,以便更好地理解数据的结构和关系。
下面是一个例题和相应的练,帮助您理解正交分解模型的应用。
例题题目:某研究人员对一批学生进行了身体素质测试,测量了以下5个指标:身高(cm),体重(kg),肺活量(mL),腿长(cm),以及弹跳高度(cm)。
现在希望应用正交分解模型对这些指标进行分析。
数据:步骤:1. 将数据进行标准化处理,计算每个指标的均值和标准差。
2. 根据标准化后的数据,计算相关矩阵。
3. 对相关矩阵进行正交分解,得到特征值和特征向量。
4. 根据特征值和特征向量,计算主成分得分。
练题目:根据上述例题的数据,完成以下练:1. 计算每个指标的均值和标准差。
2. 计算相关矩阵。
3. 进行正交分解,得到特征值和特征向量。
4. 根据特征值和特征向量,计算每个学生的主成分得分。
提示:- 均值的计算公式为数据项之和除以数据个数。
- 标准差的计算公式为数据与均值的差的平方和的平均数的平方根。
- 相关矩阵的计算公式为协方差矩阵的标准化版本,可通过numpy库中的`numpy.corrcoef()`函数实现。
- 正交分解可使用numpy库中的`numpy.linalg.eig()`函数实现。
请在此处填写代码完成练import numpy as np步骤1:计算均值和标准差data = np.array([[170, 60, 3000, 80, 50],[165, 55, 2800, 75, 45],[175, 65, 3200, 85, 55],[180, 70, 3400, 90, 60],[160, 50, 2600, 70, 40]])mean = np.mean(data, axis=0)std = np.std(data, axis=0)步骤2:计算相关矩阵corr_matrix = np.corrcoef(data, rowvar=False)步骤3:进行正交分解eigenvalues, eigenvectors = np.linalg.eig(corr_matrix)步骤4:计算主成分得分principal_scores = np.dot(data - mean, eigenvectors)输出结果mean, std, corr_matrix, eigenvalues, eigenvectors, principal_scores注意:以上代码示例中使用了numpy库进行矩阵操作和数学计算。
力的正交分解法

课前预习
学习探究
典型例题
2.沿水平方向和竖直方向建立坐标系,分解不在轴上的力
y
Fy
Ff
FN
370
F
由几何关系可得:
Fx
x
Fy F sin 370
Fx F cos370
G
专题:力的正交分解法
课前预习
学习探究
典型例题
3.用分力等效代替合力,根据受力平衡列出关系式
y
Fy
Ff
由物体受力平衡可得:
FN
FBx
G
专题:力的正交分解法
课前预习
学习探究
典型例题
3.用分力等效代替合力,根据受力平衡列出关系式
y
A
FAy
450
O
FAx
由物体受力平衡可得:
B
FBx
水平方向: FB FA cos450
竖直方向: mg FA sin 45
0
解得:FA 30 2 N ,
G
FB 30N
专题:力的正交分解法
例题:长为20cm的轻绳BC两端固定在天花板上,在中点系上一重 60N的重物,如图所示: (1)当BC的距离为10cm时,AB段绳上的拉力为多少? (2)当BC的距离为16cm时.AB段绳上的拉力为多少?
B
C
F 20 3N
F ' 50 N
本节内容已经结束,谢谢聆听!
典型例题
F3
F3 y
y
F2 y
F2 F1
F4 x
300
600
F3 x
600F2 x
x
F4 y
F4
专题:力的正交分解法
课前预习
正交分解法例题及练习

正交分解法例题及练习正交分解法是一种常用的数学工具,在诸多领域中有着广泛的应用。
本文将介绍正交分解法的基本原理,并提供一些例题和练,以帮助读者更好地理解和应用该方法。
1. 正交分解法的基本原理正交分解法是一种将一个向量空间中的向量表示为一组正交基向量线性组合的方法。
具体来说,如果有一个向量空间V和它的一组正交基向量{v1, v2, ..., vn},则可以将任意一个向量v∈V表示为:v = c1 * v1 + c2 * v2 + ... + cn * vn其中,c1, c2, ..., cn是标量,也就是向量v在每个基向量上的投影。
2. 正交分解法的例题例题1考虑一个三维向量空间V,其中的一组正交基向量为{v1, v2, v3},它们分别为:v1 = [1, 0, 0]v2 = [0, 1, 0]v3 = [0, 0, 1]现在给定一个向量v = [2, 3, 4],要求将它表示为这组正交基向量的线性组合。
解答:根据正交分解法的原理,我们可以将向量v表示为:v = c1 * v1 + c2 * v2 + c3 * v3其中,c1, c2, c3为待求的标量。
由于v1, v2, v3是正交基向量,它们两两之间内积为0。
因此,我们可以根据内积的性质求解c1, c2, c3。
具体计算如下:v·v1 = (2 * 1) + (3 * 0) + (4 * 0) = 2v·v2 = (2 * 0) + (3 * 1) + (4 * 0) = 3v·v3 = (2 * 0) + (3 * 0) + (4 * 1) = 4由此可得:c1 = v·v1 / ||v1||^2 = 2 / 1 = 2c2 = v·v2 / ||v2||^2 = 3 / 1 = 3c3 = v·v3 / ||v3||^2 = 4 / 1 = 4因此,将向量v表示为这组正交基向量的线性组合的结果为:v = 2 * [1, 0, 0] + 3 * [0, 1, 0] + 4 * [0, 0, 1]例题2考虑一个二维向量空间V,其中的一组正交基向量为{v1, v2},它们分别为:v1 = [1, 1]v2 = [-1, 1]现在给定一个向量v = [2, 3],要求将它表示为这组正交基向量的线性组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3045
A B O G 正交分解法专题训练 1.如图所示,用绳AO 和BO 吊起一个重100N 的物体,两绳AO 、BO 与竖直方向的夹角分别为30o 和45o ,求绳AO 和BO 对物体的拉力的大小。
…
2.如图所示,轻绳AC 与天花板夹角α=300,轻绳BC 与天花板夹角β=600.设AC 、BC 绳能承受的最大拉力均不能超过100N ,CD 绳强度足够大,求CD 绳下端悬挂的物重G 不能超过多少
.
3.质量为m 的物体在恒力F 作用下,F 与水平方向之间的夹角为θ,沿天花板向右做匀速运动,物体与顶板间动摩擦因数为μ,则物体受摩擦力大小为多少
》
300 [
600
4.如图所示,物体的质量kg m 4.4=,用与竖直方向成︒=37θ的斜向右上方的推力F 把该物体压在竖直墙壁上,并使它沿墙壁在竖直方向上做匀速直线运动。
物体与墙壁间的动摩擦因数
5.0=μ,取重力加速度2
/10s m g =,求推力F 的大小。
(6.037sin =︒,8.037cos =︒)
;
.
5.如图,物体A 的质量为m ,斜面倾角α,A 与斜面间的动摩擦因数为μ,斜面固定,现有一个水平力F 作用在A 上,当F 多大时,物体A 恰能沿斜面匀速向上运动
:
6.质量为m 的物体,用水平细绳AB 拉住,静止在倾角为θ的光滑固定斜面上,求物体对斜面压力的大小,如图1(甲)。
>
θ
"
7.如图所示重20N的物体在斜面上匀速下滑,斜面的倾角为370,求:(sin370=, cos370= )
(1)物体与斜面间的动摩擦因数。
(2)要使物体沿斜面向上匀速运动,应沿斜面向上施加一个多大的推力
/
8.如图所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求
(1)物体A所受到的重力;
(2)物体B与地面间的摩擦力;
(3)细绳CO受到的拉力。
;
¥
9.跳伞运动员打开伞后经过一段时间,将在空中保持匀速降落。
已知运动员和他身上装备的总重量为G1,圆顶形降落伞的重量为G2,有8条相同的拉线一端与飞行员相连(拉线重量不计)。
另一端分布在伞面边缘上(图中没有把拉线都画出来),每根拉线和竖直方向都成300角,那么每根拉线上的张力大小为()。