自动控制理论系统框图
自动控制原理方框图

[注意]:
相临的信号相加点位置可以互换;见下例
X1(s)
X2(s)
X3(s)
Y (s)
X1(s)
X3(s)
X 2 (s)
Y (s)
同一信号的分支点位置可以互换:见下例
X1(s)
X (s) G(s) Y (s)
X 2 (s)
X (s) G(s) Y (s)
X 2 (s)
X1(s)
相加点和分支点在一般情况下,不能互换。
§2-3 控制系统的结构图与信号流图
一、结构图的组成和绘制
1、结构图的组成 由四种基本图形符号组成
(1)函数方块
R(s) r(t) G(s)
C(s) c(t)
(2)信号线
R(s) r(t)
(3)分支点(引出点)
R(s) r(t)
R(s) r(t) R(s) r(t)
(4)综合点(比较点或相加点)
R(s)
R
R1Cs
2I
2
(s)
UI (cs)(s)
R2
R1
Uc (s)
U c (s)
I1 (s)
Uc (s)
几点说明:
(1)在结构图中,每一个方框中的传递函数都应是考虑了负 载效应后的传递函数。
(2)描述一个系统的结构图不是唯一的,选择不同的中间变 量得到不同的结构图;
(3)结构图中的方框与实际系统的元部件并非一定是一一对 应的;
X1(s) G(s) X2(s) N(s)
Y (s)
N(s) ? Y (s) [X1(s) X 2 (s)]G(s), 又 : Y (s) X (s)1G(s) X 2 (s)N(s), N(s) G(s)
把相加点从环节的输出端移到输入端:
自动控制原理方框图

自动控制原理方框图自动控制原理方框图是指在自动控制原理的基础上,通过方框图的形式来描述和分析控制系统的结构和动态特性。
方框图是一种直观、简洁的表示方法,能够清晰地展现控制系统的各个组成部分之间的关系,有利于工程师们对控制系统进行分析、设计和调试。
在自动控制系统中,方框图是一种非常重要的工具,它能够帮助工程师们更好地理解系统的结构和工作原理,从而更好地进行系统的设计和优化。
方框图可以将控制系统的各个组成部分以及它们之间的相互作用清晰地表示出来,有利于工程师们对系统进行全面的分析和评估。
自动控制原理方框图主要包括系统的输入、输出、控制器、执行器和被控对象等几个基本组成部分。
通过方框图,我们可以清晰地看到这些组成部分之间的关系,以及它们是如何相互作用的。
这有助于工程师们更好地理解系统的工作原理,从而更好地进行系统的设计和调试。
在实际工程中,方框图常常被用于描述和分析各种类型的控制系统,比如PID控制系统、模糊控制系统、神经网络控制系统等。
通过方框图,工程师们可以清晰地看到系统的结构和动态特性,有助于他们更好地理解系统的工作原理,从而更好地进行系统的设计和调试。
除此之外,方框图还可以用于系统的故障诊断和故障排除。
通过对系统的方框图进行分析,工程师们可以清晰地看到系统中存在的问题,并且能够有针对性地进行故障排除。
这对于提高系统的可靠性和稳定性非常重要。
总的来说,自动控制原理方框图是一种非常重要的工具,它能够帮助工程师们更好地理解和分析控制系统,有助于他们更好地进行系统的设计和调试。
因此,掌握方框图的绘制和分析方法对于自动控制工程师来说是非常重要的。
希望通过本文的介绍,能够对方框图有一个更加清晰的认识。
自动控制原理与系统第三章 自动控制系统的数学模型

④将该方程整理成标准形式。即把与输入量有关的 各项放在方程的右边,把与输出量有关的各项放在 方程的左边,各导数项按降幂排列,并将方程中的 系数化为具有一定物理意义的表示形式,如时间常
二、微分方程建立举例
[例3-1]直流电动机的微分方程。
1.直流电动机(Direct-Current Motor)各物理量间的 关系。
②在各环节功能框的基础上,首先确定系统的 给定量(输入量)和输出量,然后从给定量开始,由
左至右,根据相互作用的顺序,依次画出各个环节, 直至得出所需要的输出量,并使它们符合各作用量 间的关系。
③然后由内到外,画出各反馈环节,最后在图上标 明输入量、输出量、扰动量和各中间参变量。
④这样就可以得到整个控制系统的框图。
①列出直流电动机各个环节的微分方程[参见 式3-1~式3-4],然后由微分方程→拉氏变换式→ 传递函数→功能框。今将直流电动机的各功能框列 于表3-1中。
②如今以电动机电枢电压作为输入量,以电动 机的角位移θ 为输出量。于是可由开始,按照电动 机的工作原理,由依次组合各环节的功能框,然后 再加上电势反馈功能框,如图3-15所示。
(或环节)的固有特性。它是系统的复数域模型,也 是自动控制系统最常用的数学模型。
3.对同一个系统,若选取不同的输出量或不同 的输入量,则其对应的微分方程表达式和传递函数 也不相同。
4.典型环节的传递函数有
对一般的自动控制系统,应尽可能将它分解为 若干个典型的环节,以利于理解系统的构成和系统 的分析。
它还清楚地表明了各环节间的相互联系,因此它是 理解和分析系统的重要方法。
①全面了解系统的工作原理、结构组成和支配系统 工作的物理规律,并确定系统的输入量(给定量)和 输出量(被控量) ②将系统分解成若干个单元(或环节或部件),然后 从被控量出发,由控制对象→执行环节→功率。
自动控制原理控制系统的结构图

比较点后移
R(s)
G(s)
比较点前移
+
Q(s)
C(s)
R(s)
+
C(s) G(s)
比较点后移
Q(s)
R(s)
+
C(s) G(s)
Q(s)
C(s) R(s)G(s) Q(s)
[R(s) Q(s) ]G(s) G(s)
R(s)
C(s) G(s)
+
Q(s)
G(s)
C(s) [R(s) Q(s)]G(s)
R(s)G(s) Q(s)G(1s6 )
(5)引出点旳移动(前移、后移)
引出点前移
R(s)
G(s)
分支点(引出点)前移
C(s) C(s)
引出点后移
R(s)
G(s)
R(s)
分支点(引出点)后移
R(s)
G(s)
C(s)
G(s)
C(s)
C(s) R(s)G(s)
G(s) R(s)
C(s) R(s)
将 C(s) E(s)G(s) 代入上式,消去G(s)即得:
E(s) R(s)
1
H
1 (s)G(s)
1
1 开环传递函数
31
N(s)
+ E(s)
++
C(s)
R(s)
G1(s)
G2 (s)
-
B(s)
H(s)
(1)
打开反馈
C(s) R(s)
1
G(s) H (s)G(s)
前向通路传递函数 1 开环传递函数
注意:进行相加减旳量,必须具有相同旳量纲。
X1 +
+
X1+X2 R1(s)
自动控制原理方框图的化简课件

化简过程中的误差分析
误差来源分析
分析化简过程中可能产生的误差来源,如近似处理、线性化等。
误差传递与影响
评估误差对系统性能的影响,了解误差传递的方式和程度。
误差补偿与修正
根据误差分析结果,采取适当的补偿和修正措施,减小误差对系 统性能的影响。
化简后系统的性能分析
稳定性分析
通过化简后系统的传递函数或状态方程,分析系统的 稳定性。
方框图的组成元素
总结词
方框图由输入、输出、转换和反馈四个基本元素组成。
详细描述
方框图由输入、输出、转换和反馈四个基本元素组成。输入是系统接收的信号 或信息,输出是系统输出的信号或信息,转换是系统内部对输入进行处理的过 程,反馈则是系统对输出的反应或调整。
方框图的作用
• 总结词:方框图可以清晰地表示系统的结构、功能和动态特性。
04
方框图化简的注意事项
化简方法的适用性
确定化简方法的适用范围
01
不同的化简方法适用于不同类型和规模的方框图,应先判断所
处理的方框图是否适用。
理解化简方法的原理
02
掌握化简方法的原理和步骤,确保正确应用化简方法。
考虑化简后的系统性能
03
在化简方框图时,应考虑化简对系统性能的影响,如稳定性、
动态响应等。
02
通过化简方框图,可以快速识 别故障传递路径和关键环节, 提高故障诊断的效率和准确性 。
03
化简后的方框图可以作为故障 诊断的参考模型,为故障排除 提供指导和支持。
谢谢观看
• 详细描述:方框图具有多种作用。首先,它可以清晰地表示系统的结构,将复杂的系统分解为若干个简单的组成部分, 便于理解和分析。其次,通过方框图可以明确地表示出系统的功能,即各个组成部分的作用及其相互关系。此外,方框 图还可以表示系统的动态特性,例如信号的传递、处理和反馈过程,有助于揭示系统的动态行为和性能。在自动控制原 理中,方框图是分析和设计控制系统的重要工具之一。通过对方框图的分析,可以了解系统的性能、稳定性、可控性和 可观测性等方面的问题,为控制系统的设计和优化提供依据。
自动控制原理第二章方框图

R1C2s
(R1C1s 1)(R2C2s 1) R1C2s
(R1C1s 1)(R2C2s 1)
解法二:
ui (s)
-
1 I1(s) - 1 u(s)
R1
I (s) C1s
-
1
1 uo (s)
R2 I2(s) C2s
ui (s) 1
R1
ui (s) 1
R1
-
1
-
C1s
1 R1
-
1
-
C1s
1 R1
1
自动控制原理第二章方框图自动控制方框图闭环控制系统方框图串级控制系统方框图前馈控制系统方框图控制系统方框图单回路控制系统方框图过程控制系统的方框图自动调节系统方框图控制方框图
传递函数的表达形式
有理分式形式:G(s)
b0 s m a0 s n
b1s m1 a1s n1
bm1s an1s
bm an
H3
相加点移动 G3 G1
G3 G1
向同无类用移功动
G2
错!
G2
H1
G(s) G1G2 G2G3 1 G1G2 H1
G2
G1 H1
总的结构图如下:
ui (s)
-
1 I1(s) - 1 u(s)
R1
I (s) C1s
-
1
1 uo (s)
R2 I2(s) C2s
ui (s)
-
C2s
1 I1(s) - 1 u(s)
X 2 (s)
X (s) G(s) Y (s)
X 2 (s)
X1(s)
相加点和分支点在一般情况下,不能互换。
X 3 (s)
X (s)
自动控制原理 控制系统的结构图

12
(1)串联连接
R( s )
U (s) 1
G (s) 1
G (s) 2
C( s )
R(s)
C(s)
G(s)
(a)
(b)
特点:前一环节的输出量就是后一环节的输入量
U1(s) G1(s)R(s) C(s) G2 (s)U1(s) G2 (s)G1(s)R(s)
注意:进行相加减的量,必须具有相同的量纲。
X1 +
+
X1+X2 R1(s)
-
R1(s)R2(s)
X1
X2
R2(s)
X3
X1-X2 +X3 -
X2
4
(4) 引出点(分支点、测量点) 表示信号测量或引出的位置
R(s)
G (s) 1
X(s)
G (s) 2
C(s)
X(s) 引出点示意图
注意:同一位置引出的信号大小和性质完全一样
G(s)
分支点(引出点)前移
C(s) C(s)
引出点后移
R(s)
G(s)
R(s)
分支点(引出点)后移
R(s)
G(s)
C(s)
G(s)
C(s)
C(s) R(s)G(s)
G(s) R(s)
C(s) R(s)
C(s) R(s)
G1(s)G2
(s)
G(s)
结论:
n
G(s) Gi (s) n为相串联的环节数 i 1
串联环节的等效传递函数等于所有传递函数的乘积
13
(2)并联连接
G1 (s)
自动控制理论第六讲 方框图

06
总结与展望
本讲内容总结
方框图基本概念
方框图的绘制方法
介绍了方框图的基本元素,包括方块、箭 头、分支点和交汇点等,以及它们在控制 系统中的含义。
详细讲解了如何根据控制系统的结构和功 能,选择合适的方块和连接方式,绘制出 清晰、准确的方框图。
方框图的分析方法
方框图在控制系统中的应用
介绍了方框图的分析步骤和方法,包括前 向通路、反馈通路、开环传递函数和闭环 传递函数的计算等。
梅森公式介绍
01
梅森公式是一种用于求解复杂控制系统方框图传递函
数的数学方法。
梅森公式应用步骤
02 首先找出所有前向通道、回路和不相交回路的传递函
数;然后按照梅森公式计算系统的总传递函数。
梅森公式在化简复杂方框图中的优势
03
能够简化计算过程,避免繁琐的代数运算,提高求解
效率。
实例分析:典型系统方框图化简过程
05
方框图在控制系统分析中的应用
稳定性分析:通过方框图判断系统稳定性
01
稳定性定义
系统受到扰动后,能够自动恢复到平衡状态的能力。
02 03
稳定性判据
通过方框图中各环节传递函数的极点位置,判断系统是否稳定。若极点 全部位于复平面的左半部分,则系统稳定;若有极点位于复平面的右半 部分,则系统不稳定。
结合实际工程问题进行实践
通过实际工程问题,将所学的方框图知识应用到实践中去,提高分析 和解决问题的能力。
拓展相关领域的知识
学习与自动控制理论相关的其他领域知识,如现代控制理论、智能控 制等,以完善自己的知识体系。
THANKS
感谢观看
方框图的作用
方框图是一种用图形符号表示系统各 环节间相互关系的图解表示法,它简 洁明了地表示了系统的结构和功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、图1是一个液位控制系统原理图。
自动控制器通过比较实际液位与希望液位来调整气动阀门的开度,对误差进行修正,从而达到保持液位不变的目的。
(1)画出系统的控制方框图(方框内可用文字说明),并指出什么是输入量,什么是输出量。
(2)试画出相应的人工操纵液位控制系统方块图。
解:
(1)系统控制方框图如图1所示。
如图所示,输入量:希望液位;输出量:实际液位。
(2)相应的人工操纵液位控制系统方块图如图2所示。
希望液位实际液位
肌肉、手阀门水箱
眼睛
图2
脑
2、图2是恒温箱的温度自动控制系统。
要求:(1)指出系统的被控对象、被控量以及各部件的作用,画出系统的方框图;
(2)当恒温箱的温度变化时,试述系统的调节过程;
(3)指出系统属于哪种类型
图2 温度控制系统解:(1)被控对象:恒温箱;被控量:温度;
电阻丝:加热;热电偶:测温;电位器:比较;电压放大、功率放大:误差信号放大;
电机、减速器、调压器:执行部件。
电机
减速器
调压器
(2)设给定温度T0,当T>T0时,e<0,电机反转,调压器给出电压下降,恒温箱温度T 下降;反之,当T<T0时,e>0,电机正转,调压器给出电压上升,恒温箱温度T 上升。
(3)系统属于恒值控制系统。
3、 图3是仓库大门自动控制系统原理图。
(1) 说明系统自动控制大门开闭的工作原理; (2) 画出系统方框图。
图3放大器
伺服电动机
绞盘
关门开关
开门开关
门
u
仓库大门自动控制系统原理图
、解:(1)工作原理:当合上开门开关时,电位器桥式测量电路产生一个偏差电压信号。
此偏差电压经放大后,驱动伺服电动机带动绞盘转动,使大门向上提起。
与此同时,与大门连在一起的电位器电刷上移,使桥式测量电路重新达到平衡,电动机停止转动,开门开关自动断开。
反之,当合上关门开关时,伺服电动机反向转动,带动绞盘转动使大门关闭,从而实现远距离自动控制大门开启的要求。
(2)仓库大门自动控制系统原理方框图:。