数据挖掘实验

合集下载

数据挖掘安全实验报告

数据挖掘安全实验报告

一、实验背景随着信息技术的飞速发展,数据挖掘技术在各个领域得到了广泛应用。

然而,数据挖掘过程中涉及的大量个人信息和敏感数据,使得数据挖掘的安全和隐私问题日益突出。

为了提高数据挖掘的安全性,本实验针对数据挖掘过程中的安全风险进行了深入研究,并提出了相应的解决方案。

二、实验目的1. 分析数据挖掘过程中的安全风险;2. 设计数据挖掘安全实验方案;3. 验证实验方案的有效性;4. 提出提高数据挖掘安全性的建议。

三、实验方法1. 文献调研:通过查阅相关文献,了解数据挖掘安全领域的最新研究成果,为实验提供理论基础;2. 实验设计:根据文献调研结果,设计数据挖掘安全实验方案,包括实验环境、实验数据、实验方法等;3. 实验实施:在实验环境中,按照实验方案进行数据挖掘实验,并记录实验数据;4. 数据分析:对实验数据进行分析,评估实验方案的有效性;5. 结果总结:根据实验结果,提出提高数据挖掘安全性的建议。

四、实验内容1. 数据挖掘安全风险分析(1)数据泄露:数据挖掘过程中,未经授权的访问、篡改或泄露个人信息和敏感数据;(2)数据篡改:攻击者通过篡改数据,影响数据挖掘结果的准确性;(3)隐私侵犯:数据挖掘过程中,收集、存储、处理个人隐私信息时,可能侵犯个人隐私;(4)数据质量:数据挖掘过程中,数据质量低下可能导致挖掘结果不准确。

2. 数据挖掘安全实验方案(1)实验环境:搭建一个数据挖掘实验平台,包括数据源、数据挖掘工具、安全防护设备等;(2)实验数据:选取具有代表性的数据集,包括个人隐私信息、敏感数据等;(3)实验方法:采用数据加密、访问控制、数据脱敏等技术,提高数据挖掘安全性。

3. 实验实施(1)数据加密:对实验数据进行加密处理,确保数据在传输和存储过程中的安全性;(2)访问控制:设置访问权限,限制未经授权的访问;(3)数据脱敏:对个人隐私信息进行脱敏处理,降低隐私泄露风险;(4)数据质量检查:对实验数据进行质量检查,确保数据挖掘结果的准确性。

数据挖掘实验报告

数据挖掘实验报告

数据挖掘实验报告一、引言。

数据挖掘作为一种从大量数据中发现隐藏模式和信息的技术,已经被广泛应用于各个领域。

本实验旨在通过对给定数据集的分析和挖掘,探索其中潜在的规律和价值信息,为实际问题的决策提供支持和参考。

二、数据集描述。

本次实验使用的数据集包含了某电商平台上用户的购物记录,其中包括了用户的基本信息、购买商品的种类和数量、购买时间等多个维度的数据。

数据集共包括了10000条记录,涵盖了近一年的购物数据。

三、数据预处理。

在进行数据挖掘之前,我们首先对数据进行了预处理。

具体包括了数据清洗、缺失值处理、异常值处理等步骤。

通过对数据的清洗和处理,保证了后续挖掘分析的准确性和可靠性。

四、数据分析与挖掘。

1. 用户购买行为分析。

我们首先对用户的购买行为进行了分析,包括了用户购买的商品种类偏好、购买频次、购买金额分布等。

通过对用户购买行为的分析,我们发现了用户的购买偏好和消费习惯,为电商平台的商品推荐和营销策略提供了参考。

2. 商品关联规则挖掘。

通过关联规则挖掘,我们发现了一些商品之间的潜在关联关系。

例如,购买商品A的用户80%也会购买商品B,这为商品的搭配推荐和促销活动提供了依据。

3. 用户价值分析。

基于用户的购买金额、购买频次等指标,我们对用户的价值进行了分析和挖掘。

通过对用户价值的评估,可以针对不同价值的用户采取个性化的营销策略,提高用户忠诚度和购买转化率。

五、实验结果。

通过对数据的分析和挖掘,我们得到了一些有价值的实验结果和结论。

例如,发现了用户的购买偏好和消费习惯,发现了商品之间的关联规则,发现了用户的不同价值等。

这些结论为电商平台的运营和管理提供了一定的参考和决策支持。

六、结论与展望。

通过本次实验,我们对数据挖掘技术有了更深入的理解和应用。

同时,也发现了一些问题和不足,例如数据质量对挖掘结果的影响,挖掘算法的选择和优化等。

未来,我们将继续深入研究数据挖掘技术,不断提升数据挖掘的准确性和效率,为更多实际问题的决策提供更有力的支持。

数据挖掘实验报告结论(3篇)

数据挖掘实验报告结论(3篇)

第1篇一、实验概述本次数据挖掘实验以Apriori算法为核心,通过对GutenBerg和DBLP两个数据集进行关联规则挖掘,旨在探讨数据挖掘技术在知识发现中的应用。

实验过程中,我们遵循数据挖掘的一般流程,包括数据预处理、关联规则挖掘、结果分析和可视化等步骤。

二、实验结果分析1. 数据预处理在实验开始之前,我们对GutenBerg和DBLP数据集进行了预处理,包括数据清洗、数据集成和数据变换等。

通过对数据集的分析,我们发现了以下问题:(1)数据缺失:部分数据集存在缺失值,需要通过插补或删除缺失数据的方法进行处理。

(2)数据不一致:数据集中存在不同格式的数据,需要进行统一处理。

(3)数据噪声:数据集中存在一些异常值,需要通过滤波或聚类等方法进行处理。

2. 关联规则挖掘在数据预处理完成后,我们使用Apriori算法对数据集进行关联规则挖掘。

实验中,我们设置了不同的最小支持度和最小置信度阈值,以挖掘出不同粒度的关联规则。

以下是实验结果分析:(1)GutenBerg数据集在GutenBerg数据集中,我们以句子为篮子粒度,挖掘了林肯演讲集的关联规则。

通过分析挖掘结果,我们发现:- 单词“the”和“of”在句子中频繁出现,表明这两个词在林肯演讲中具有较高的出现频率。

- “and”和“to”等连接词也具有较高的出现频率,说明林肯演讲中句子结构较为复杂。

- 部分单词组合具有较高的置信度,如“war”和“soldier”,表明在林肯演讲中提到“war”时,很可能同时提到“soldier”。

(2)DBLP数据集在DBLP数据集中,我们以作者为单位,挖掘了作者之间的合作关系。

实验结果表明:- 部分作者之间存在较强的合作关系,如同一研究领域内的作者。

- 部分作者在多个研究领域均有合作关系,表明他们在不同领域具有一定的学术影响力。

3. 结果分析和可视化为了更好地展示实验结果,我们对挖掘出的关联规则进行了可视化处理。

通过可视化,我们可以直观地看出以下信息:(1)频繁项集的分布情况:通过柱状图展示频繁项集的分布情况,便于分析不同项集的出现频率。

(完整word版)数据挖掘实验报告-关联规则挖掘(word文档良心出品)

(完整word版)数据挖掘实验报告-关联规则挖掘(word文档良心出品)

数据挖掘实验报告(二)关联规则挖掘**: ***班级: 计算机1304学号: **********一、实验目的1. 1.掌握关联规则挖掘的Apriori算法;2.将Apriori算法用具体的编程语言实现。

二、实验设备PC一台, dev-c++5.11三、实验内容根据下列的Apriori算法进行编程:四、实验步骤1.编制程序。

2.调试程序。

可采用下面的数据库D作为原始数据调试程序, 得到的候选1项集、2项集、3项集分别为C1.C2.C3, 得到的频繁1项集、2项集、3项集分别为L1.L2.L3。

代码#include <stdio.h>#include<string.h>#define D 4 //事务的个数#define MinSupCount 2 //最小事务支持度数void main(){char a[4][5]={{'A','C','D'},{'B','C','E'},{'A','B','C','E'},{'B','E'}};charb[20],d[100],t,b2[100][10],b21[100 ][10];inti,j,k,x=0,flag=1,c[20]={0},x1=0,i1 =0,j1,counter=0,c1[100]={0},flag1= 1,j2,u=0,c2[100]={0},n[20],v=1;int count[100],temp;for(i=0;i<D;i++){for(j=0;a[i][j]!='\0';j++) {//用来判断之前保存的是否和a[i][j]一样, 不一样就保存, 一样就不保存for(k=0;k<x;k++){if(b[k]!=a[i][j]) ; else{flag=0;break;}}//用来判断是否相等 if(flag==1){b[x]=a[i][j];x++;}else flag=1;}}//计算筛选出的元素的支持度计数for(i=0;i<D;i++){for(j=0;a[i][j]!='\0';j++) {for(k=0;k<x;k++){if(a[i][j]==b[k]) {c[k]++;break; }}}}//对选出的项集进行筛选, 选出支持度计数大于等于2的, 并且保存到d[x1]数组中for(k=0;k<x;k++){if(c[k]>=MinSupCount){d[x1]=b[k];count[x1]=c[k];x1++;}}//对选出的项集中的元素进行排序for(i=0;i<x1-1;i++){for(j=0;j<x1-i-1;j++){if(d[j]>d[j+1]){t=d[j];d[j]=d[j+1];d[j+1]=t;temp=count[j];count[j]=count[j+1];count[j+1]=temp;}}}//打印出L1printf("L1 elements are:\n");for(i=0;i<x1;i++){printf("{%c} = %d \n",d[i],count[i]);}//计算每一行的元素个数, 并且保存到n[]数组中for(i=0;i<D;i++){for(j=0;a[i][j]!='\0';j++);n[i]=j;}//对a[][]数组的每一行进行排序for(i=0;i<D;i++){for(j=0;j<n[i]-1;j++){for(k=0;k<n[i]-j-1;k++) {if(a[i][k]>a[i][k+1]){t=a[i][k];a[i][k]=a[i][k+1]; a[i][k+1]=t;}}}}//把L1中的每一个元素都放在b2[i][0]中j1=x1;for(i=0;i<j1;i++){b2[i][0]=d[i];}//把L1中的元素进行组合, K=2开始, 表示x1个元素选K个元素的组合for(k=2;b2[0][0]!='\0';k++){ //u是用来计数组合总数的u=0;v=1;//v 是用来在进行输出各种组合的标识数 v=1 说明正在进行输出 for(i=0;i<100;i++){c2[i]=0;}for(i=0;i<j1;i++){for(i1=i+1;i1<j1;i1++) {for(j=0;j<k-2;j++) {if(b2[i][j]!=b2[i1][j]){flag1=0;break;}}//进行组合的部分if(flag1==1&&b2[i][k-2]!=b2[i1][k-2]){for(j2=0;j2<k-1;j2++){b21[u][j2]=b2[i][j2];}b21[u][k-1]=b2[i1][k-2];u++;}flag1=1;}}counter=0;for(i=0;i<D;i++) //a数组有5行元素{for(i1=0;i1<u;i1++) // 代表x1个元素选K个元素的所有组合总数 {for(j1=0;j1<k;j1++) //K 代表一个组合中的元素个数{for(j=0;a[i][j]!='\0';j++) //逐个比较每一行的元素{if(a[i][j]==b21[i1][j1])counter++;}}if(counter==k)c2[i1]++; //把每种组合数记录在c2数组中counter=0;} }j1=0;temp=0;//这里的temp 是用来分行//对u种情况进行选择, 选出支持度计数大于2的*/for(i=0;i<u;i++){if(c2[i]>=MinSupCount) {if(v==1){printf("L%d elements are:\n",k);v=0;}printf("{");for(j=0;j<k;j++)//输出每种组合k 个元素{b2[j1][j]=b21[i][j];printf("%c,",b2[j1][j]);}j1++;printf("\b}");printf(" = %d \n",c2[i]);temp++;}}b2[j1][0]='\0';}}五、结果截图。

数据挖掘实验报告

数据挖掘实验报告

数据挖掘实验报告数据挖掘是一门涉及发现、提取和分析大量数据的技术和过程,它可以揭示出隐藏在数据背后的模式、关系和趋势,对决策和预测具有重要的价值。

本文将介绍我在数据挖掘实验中的一些主要收获和心得体会。

实验一:数据预处理在数据挖掘的整个过程中,最重要的一环就是数据预处理。

数据预处理包括数据清洗、数据集成、数据转换和数据规约等步骤,目的是为了提高数据的质量和可用性。

首先,我对所使用的数据集进行了初步的观察和探索。

发现数据集中存在着一些缺失值和异常值。

为此,我使用了一些常见的缺失值处理方法,如均值替代、中值替代和删除等。

对于异常值,我采用了离群值检测和修正等方法,使得数据在后续的分析过程中更加真实可信。

其次,我进行了数据集成的工作。

数据集合并是为了整合多个来源的数据,从而得到更全面和综合的信息。

在这个过程中,我需要考虑数据的一致性和冗余情况。

通过采用数据压缩和去重等技术,我成功地完成了数据集成的工作。

接着,我进行了数据转换的处理。

数据转换是为了将原始的数据转换成适合数据挖掘算法处理的形式。

在这个实验中,我采用了数据标准化和归一化等方法,使得不同属性之间具备了可比性和可计算性,从而便于后续的分析过程。

最后,我进行了数据规约的操作。

数据规约的目的在于减少数据的维数和复杂度,以提高数据挖掘的效果。

在这个阶段,我采用了主成分分析和属性筛选等方法,通过压缩数据集的维度和减少冗余属性,成功地简化了数据结构,提高了挖掘效率。

实验二:关联规则挖掘关联规则挖掘是数据挖掘中常用的一种方法,它用于发现数据集中项集之间的关联关系。

在这个实验中,我使用了Apriori算法来进行关联规则的挖掘。

首先,我对数据进行了预处理,包括数据清洗和转换。

然后,我选择了适当的最小支持度和最小置信度阈值,通过对数据集的扫描和频繁项集生成,找出了数据集中的频繁项集。

接着,我使用了关联规则挖掘算法,从频繁项集中挖掘出了具有一定置信度的关联规则。

在实验过程中,我发现挖掘出的关联规则具有一定的实用性和可行性。

数据挖掘实验报告-数据预处理

数据挖掘实验报告-数据预处理

数据挖掘实验报告-数据预处理数据挖掘实验报告数据预处理一、实验目的本次实验的主要目的是深入了解和掌握数据预处理在数据挖掘过程中的重要性及相关技术,通过对实际数据集的处理,提高数据质量,为后续的数据挖掘和分析工作奠定良好的基础。

二、实验背景在当今数字化时代,数据的规模和复杂性不断增加,而原始数据往往存在着各种问题,如缺失值、噪声、异常值、不一致性等。

这些问题如果不加以处理,将会严重影响数据挖掘算法的性能和结果的准确性。

因此,数据预处理成为了数据挖掘过程中不可或缺的重要环节。

三、实验数据集本次实验使用了一个名为“销售数据”的数据集,该数据集包含了某公司在过去一年中不同产品的销售记录,包括产品名称、销售日期、销售数量、销售价格、客户信息等字段。

四、数据预处理技术(一)数据清洗1、处理缺失值首先,对数据集中的缺失值进行了识别和分析。

通过观察发现,“客户信息”字段存在部分缺失。

对于这些缺失值,采用了两种处理方法:一是如果缺失比例较小(小于5%),直接删除含有缺失值的记录;二是如果缺失比例较大,采用均值填充的方法进行补充。

2、处理噪声数据数据中的噪声通常表现为数据中的错误或异常值。

通过对销售数量和销售价格的观察,发现了一些明显不合理的数值,如销售数量为负数或销售价格过高或过低的情况。

对于这些噪声数据,采用了基于统计的方法进行识别和处理,将超出合理范围的数据视为噪声并进行删除。

(二)数据集成由于原始数据集可能来自多个数据源,存在着重复和不一致的问题。

在本次实验中,对“销售数据”进行了集成处理,通过对关键字段(如产品名称、销售日期)的比较和合并,消除了重复的记录,并确保了数据的一致性。

(三)数据变换1、数据标准化为了消除不同字段之间量纲的影响,对销售数量和销售价格进行了标准化处理,使其具有可比性。

2、数据离散化对于连续型的数据字段,如销售价格,采用了等宽离散化的方法将其转换为离散型数据,以便于后续的数据挖掘算法处理。

数据挖掘实验报告

数据挖掘实验报告

数据挖掘实验报告近年来,数据挖掘技术在各个领域得到了广泛的应用和发展。

作为一种从大量数据中自动或半自动地获取信息的技术手段,数据挖掘已经成为了解决复杂问题的重要工具。

本文就进行的一次数据挖掘实验进行介绍。

一、实验介绍本次实验使用的数据集是某电商平台的用户购买记录。

数据集中主要记录了用户的购买行为,包括商品名称、价格、购买时间、购买数量等。

本次实验旨在对用户购买行为进行分析,以发现用户的消费特点和购物习惯。

二、数据预处理在进行数据挖掘前,首先需要对原始数据进行处理。

本次实验对数据进行了以下处理:1. 数据清洗:去掉重复记录、缺失数据和异常值。

2. 数据转换:将数据转化为适合挖掘的形式,即去除无关数据和重要性较低的数据,并将数据标准化。

3. 数据集成:将多个数据源中的数据集成到一起,以便进行挖掘。

三、数据分析在进行数据分析时,首先需要选择适合的算法对数据进行分析。

本次实验使用了关联规则分析算法和聚类分析算法。

这两个算法对数据进行分析后,可以提取出不同方面的数据,以发现用户的消费特点和购物习惯。

1. 关联规则分析关联规则分析算法是一种从大规模数据中发现如果一个事件出现,另一个事件也经常出现的规则的方法。

本次实验中,通过关联规则分析找出购买某一件商品时,可能会购买的其他商品。

通过分析不同商品之间的关联,可以发现用户的消费行为和购物习惯。

2. 聚类分析聚类分析算法是一种将数据集划分为多个类别的方法,使得每个类别内数据的相似度高于类别间的相似度。

本次实验中,通过聚类分析将用户划分为不同的群组,以进一步发现用户的消费特点和购物习惯。

四、实验结论基于本次实验的数据挖掘分析,得到了以下结论:1. 用户的消费行为和购物习惯对其购买行为有重要影响,需通过分析消费行为和购物习惯来预测和推荐用户购买商品。

2. 不同商品之间具有一定的关联性,可以通过对商品之间的关联进行分析,来推广和营销相关商品。

3. 用户的购买行为和个人特性的关联值得深入研究,可以提供更加个性化的商品推荐服务。

数据挖掘实验报告

数据挖掘实验报告

数据挖掘实验报告一、实验目的本次数据挖掘实验的主要目的是深入了解数据挖掘的基本概念和方法,并通过实际操作来探索数据中潜在的有价值信息。

二、实验环境本次实验使用了以下软件和工具:1、 Python 编程语言,及其相关的数据挖掘库,如 Pandas、NumPy、Scikitlearn 等。

2、 Jupyter Notebook 作为开发环境,方便进行代码编写和结果展示。

三、实验数据实验所使用的数据来源于一个公开的数据集,该数据集包含了关于_____的相关信息。

具体包括_____、_____、_____等多个字段,数据量约为_____条记录。

四、实验步骤1、数据预处理首先,对原始数据进行了清洗,处理了缺失值和异常值。

对于缺失值,根据数据的特点和分布,采用了平均值、中位数或删除等方法进行处理。

对于异常值,通过箱线图等方法进行识别,并根据具体情况进行了修正或删除。

接着,对数据进行了标准化和归一化处理,使得不同特征之间具有可比性。

2、特征工程从原始数据中提取了有意义的特征。

例如,通过计算某些字段的均值、方差等统计量,以及构建新的特征组合,来增强数据的表达能力。

对特征进行了筛选和降维,使用了主成分分析(PCA)等方法,减少了特征的数量,同时保留了主要的信息。

3、模型选择与训练尝试了多种数据挖掘模型,包括决策树、随机森林、支持向量机(SVM)等。

使用交叉验证等技术对模型进行了评估和调优,选择了性能最优的模型。

4、模型评估使用测试集对训练好的模型进行了评估,计算了准确率、召回率、F1 值等指标,以评估模型的性能。

五、实验结果与分析1、不同模型的性能比较决策树模型在准确率上表现较好,但在处理复杂数据时容易出现过拟合现象。

随机森林模型在稳定性和泛化能力方面表现出色,准确率和召回率都比较高。

SVM 模型对于线性可分的数据表现良好,但对于非线性数据的处理能力相对较弱。

2、特征工程的影响经过合理的特征工程处理,模型的性能得到了显著提升,表明有效的特征提取和选择对于数据挖掘任务至关重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告说明本课程一共需要写两个实验报告:实验报告一:基于人工神经网络的曲线拟合实验目的:首先,熟悉人工神经网络的产生背景、算法的思想和原理以及步骤;其次,熟悉人工神经网络的Matlab工具箱;最后,通过对曲线的拟合的实验,熟练掌握神经网络的程序设计。

实验时间:第11周周二9-10节、第12周周二9-10节;学时:4参考程序:实验数据集文件名:data.mat%% 清空环境变量clcclear%% 训练数据预测数据提取及归一化%下载输入输出数据load data input output %input 是2000行2列,output是1行2000列%从1到2000间随机排序k=rand(1,2000); %随机生成一个1行2000列的矩阵[m,n]=sort(k); %对矩阵K排序,其中m表示从小到大的排序结果,n表示m中各数据的排序前的索引(位置结果)%产生训练数据和预测数据input_train=input(n(1:1900),:)'; %input_train为2行1900列的训练的输入矩阵output_train=output(n(1:1900)); %output_train为1行1900列的训练的输出矩阵input_test=input(n(1901:2000),:)';output_test=output(n(1901:2000));%选连样本输入输出数据归一化[inputn,inputps]=mapminmax(input_train); % mapminmax是对矩阵的行进行归一化处理,其中inputn为归一化后的数据矩阵,inputps是归一化后的结构体,包含最大值、最小值、平均值等信息[outputn,outputps]=mapminmax(output_train);%% BP网络训练% %初始化网络结构net=newff(inputn,outputn,5);net.trainParam.epochs=100; %迭代次数net.trainParam.lr=0.1; %学习率net.trainParam.goal=0.00004;%目标%网络训练net=train(net,inputn,outputn);%% BP网络预测%预测数据归一化inputn_test=mapminmax('apply',input_test,inputps); %按照inputps的规则进行反归一化%网络预测输出an=sim(net,inputn_test);%网络输出反归一化BPoutput=mapminmax('reverse',an,outputps);%% 结果分析figure(1)plot(BPoutput,':og')hold onplot(output_test,'-*');legend('预测输出','期望输出')title('BP网络预测输出','fontsize',12)ylabel('函数输出','fontsize',12)xlabel('样本','fontsize',12)%预测误差error=BPoutput-output_test;figure(2)plot(error,'-*')title('BP网络预测误差','fontsize',12)ylabel('误差','fontsize',12)xlabel('样本','fontsize',12)figure(3)plot((output_test-BPoutput)./BPoutput,'-*');title('神经网络预测误差百分比')errorsum=sum(abs(error))实验报告二:基于支持向量机的葡萄酒分类实验目的:首先,熟悉支持向量机的产生背景、算法的思想和原理以及步骤;其次,熟悉支持向量机的Matlab软件包---LibSVM(使用LibSVM软件时,请先安装VC软件);最后,通过对葡萄酒分类的实验,熟练掌握支持向量机的程序设计。

实验时间:第13周周二9-10节、第14周周二9-10节、第15周周二9-10节;学时:6参考程序:实验数据集文件名:chapter12_wine.mat%% SVM的数据分类预测----意大利葡萄酒种类识别% 问题描述:wine的数据来自于UCI数据库,记录的是在意大利同一区域上三种不同品种的葡萄酒的化学成分,数据里有178个样本,每个样本含有13个特征分量(化学成分),每个样本的类标签已给。

%% 清空环境变量close all;clear;clc;format compact; %紧凑格式。

数据之间无空行%% 数据提取% 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量load chapter12_wine.mat;% 画出测试数据的box可视化图figure;boxplot(wine,'orientation','horizontal','labels',categories);title('wine数据的box可视化图','FontSize',12);xlabel('属性值','FontSize',12);grid on;% 画出测试数据的分维可视化图%% 画出178个样本的类别图figuresubplot(3,5,1);hold onfor run = 1:178plot(run,wine_labels(run),'*');endxlabel('样本','FontSize',10);ylabel('类别标签','FontSize',10);title('class','FontSize',10);%% 按照属性进行绘图for run = 2:14subplot(3,5,run);hold on;str = ['attrib ',num2str(run-1)]; %num2str将数值转化为字符for i = 1:178plot(i,wine(i,run-1),'*');endxlabel('样本','FontSize',10);ylabel('属性值','FontSize',10);title(str,'FontSize',10);end%% 选定训练集和测试集% 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集train_wine =[wine(1:30,:);wine(60:95,:);wine(131:153,:)];% 相应的训练集的标签也要分离出来train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)];% 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)];% 相应的测试集的标签也要分离出来test_wine_labels=[wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)];%% 数据预处理% 数据预处理,将训练集和测试集归一化到[0,1]区间[mtrain,ntrain] = size(train_wine);%mtrain为train_wine行数,ntrain为train_wine列数[mtest,ntest] = size(test_wine);dataset = [train_wine;test_wine];% mapminmax为MATLAB自带的归一化函数[dataset_scale,ps] = mapminmax(dataset',0,1);dataset_scale = dataset_scale';train_wine = dataset_scale(1:mtrain,:);test_wine = dataset_scale( (mtrain+1):(mtrain+mtest),: );%% SVM网络训练model = svmtrain(train_wine_labels, train_wine, '-c 2 -g 1');%% SVM网络预测[predict_label, accuracy] = svmpredict(test_wine_labels, test_wine, model);%% 结果分析% 测试集的实际分类和预测分类图% 通过图可以看出只有一个测试样本是被错分的figure;hold on;plot(test_wine_labels,'o');plot(predict_label,'r*');xlabel('测试集样本','FontSize',12);ylabel('类别标签','FontSize',12);legend('实际测试集分类','预测测试集分类');title('测试集的实际分类和预测分类图','FontSize',12);grid on;以上程序请在Matlab7.1以上版本运行。

注意事项:实验报告按照其规定的框架和格式书写,尽量详细,特别是程序设计部分和实验结果(尽量用可视化的方法来显示试验结果)。

本学期第18周周五之前各班统一收齐之后交到基础数学教研室。

相关文档
最新文档