二次函数典型例题及练习题
二次函数各知识点、考点、典型例题及练习

二次函数各知识点、考点、典型例题及对应练习(超全)【典型例题】题型 1 二次函数的概念例1(基础).二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 点拨:本题主要考察二次函数的顶点坐标公式 例2.(拓展,2008年武汉市中考题,12) 下列命题中正确的是○1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。
○3当c=-5时,不论b 为何值,抛物线y=ax 2+bx+c 一定过y 轴上一定点。
○4若抛物线y=ax 2+bx+c 与x 轴有唯一公共点,则方程ax 2+bx+c=0有两个相等的实数根。
○5若抛物线y=ax 2+bx+c 与x 轴有两个交点A 、B ,与y 轴交于c 点,c=4,S △ABC=6,则抛物线解析式为y=x 2-5x+4。
○6若抛物线y=ax 2+bx+c (a ≠0)的顶点在x 轴下方,则一元二次方程ax 2+bx+c=0有两个不相等的实数根。
○7若抛物线y=ax 2+bx+c (a ≠0)经过原点,则一元二次方程ax 2+bx+c=0必有一根为0。
○8若a -b+c=2,则抛物线y=ax 2+bx+c (a ≠0)必过一定点。
○9若b 2<3ac ,则抛物线y=ax 2+bx+c 与x 轴一定没有交点。
○10若一元二次方程ax 2+bx+c=0有两个不相等的实数根,则函数y=cx 2+bx+a 的图象与x 轴必有两个交点。
○11若b=0,则抛物线y=ax 2+bx+c 与x 轴的两个交点一个在原点左边,一个在原点右边。
点拨:本题主要考查二次函数图象及其性质,一元二次方程根与系数的关系,及二次函数和一元二次方程二者之间的联系。
九年级数学上册第二十二章二次函数典型例题(带答案)

九年级数学上册第二十二章二次函数典型例题单选题1、若二次函数y=ax2+bx+c的图像如图所示,则下列说法不正确的是()A.当1<x<3时,y>0B.当x=2时,y有最大值C.图像经过点(4,−3)D.当y<−3时,x<0答案:D分析:观察图象可知抛物线开口方向,根据图象经过(1,0),(3,0)可得抛物线对称轴为直线x=2,进而求解.解:∵抛物线开口向下,经过点(1,0),(3,0),∴抛物线对称轴为直线x=2,∴当1<x<3时,y>0,A选项正确,不符合题意.当x=2时y有最大值,B选项正确,不符合题意.∵图象经过(0,−3),抛物线对称轴为直线x=2,∴抛物线经过点(4,−3),C选项正确,不符合题意.当x<0或x>4时,y<−3,选项D错误,符合题意.故选D.小提示:本题考查二次函数的图象及性质,能够根据函数图象找出对称轴、判断开口方向和增减性是解题的关键.2、已知二次函数y=ax2+2ax+a−1的图象只经过三个象限,下列说法正确的是()A.开口向下B.顶点在第一象限C.a≥1D.当x>1时,y的最小值为-1答案:C分析:二次函数y=ax2+2ax+a−1的图象只经过三个象限,要满足条件,常数项大于等于0,解不等式即得.∵二次函数y=ax2+2ax+a−1的图象只经过三个象限,∴a-1≥0,∴a≥1.故选C.小提示:本题考查了二次函数y=ax2+2ax+a−1的图象只经过三个象限,运用函数图象与x轴的两个交点横坐标的积大于等于0,即常数项大于等于0,是解决此类问题的关键.3、已知a<−1,点(a−1,y1),(a,y2),(a+1,y3)都在函数y=3x2−2的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y3<y2<y1答案:D分析:先求出抛物线的对称轴,抛物线y=3x2-2的对称轴为y轴,即直线x=0,图象开口向上,当a<-1时,a-1<a<a+1<0,在对称轴左边,y随x的增大而减小,由此可判断y1,y2,y3的大小关系.解:∵当a<-1时,a-1<a<a+1<0,而抛物线y=3x2-2的对称轴为直线x=0,开口向上,∴三点都在对称轴的左边,y随x的增大而减小,∴y1>y2>y3.故选:D.小提示:本题考查的是二次函数图象上点的坐标特点,当二次项系数a>0时,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大;a<0时,在对称轴的左边,y随x的增大而增大,在对称轴的右边,y随x的增大而减小.4、某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y(件)与销售单价x (元)之间满足函数关系式y=−5x+550,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?()A.90元,4500元B.80元,4500元C.90元,4000元D.80元,4000元答案:B分析:设每月所获利润为w ,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可. 解:设每月总利润为w ,依题意得:w =y(x −50)=(−5x +550)(x −50)=−5x 2+800x −27500=−5(x −80)2+4500∵−5<0,此图象开口向下,又x ≥50,∴当x =80时,w 有最大值,最大值为4500元.故选:B .小提示:本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键.5、下表中列出的是一个二次函数的自变量x 与函数y 的几组对应值:B .这个函数的图象与x 轴无交点C .这个函数的最小值小于-6D .当x >1时,y 的值随x 值的增大而增大答案:C分析:利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断. 解:设二次函数的解析式为y =ax 2+bx +c ,依题意得:{4a −2b +c =6c =−4a +b +c =−6 ,解得:{a =1b =−3c =−4, ∴二次函数的解析式为y =x 2−3x −4=(x −32)2−254,∵a =1>0,∴这个函数的图象开口向上,故A 选项不符合题意;∵△=b 2−4ac =(−3)2−4×1×(−4)=25>0,∴这个函数的图象与x 轴有两个不同的交点,故B 选项不符合题意;∵a =1>0,∴当x =32时,这个函数有最小值−254<−6,故C 选项符合题意;∵这个函数的图象的顶点坐标为(32,−254), ∴当x >32时,y 的值随x 值的增大而增大,故D 选项不符合题意; 故选:C .小提示:本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键.6、如图所示是二次函数y =ax 2+bx +c (a ≠0)的图象,以下结论:①abc <0;②3a +c =0;③ax 2+bx +c =0的两个根是x 1=−1,x 2=3;④4a +2b +c >0,其中正确的是( )A .③④B .①②C .②③D .②③④答案:C分析:根据二次函数的图象与性质即可求出答案.解:①由图象可知:a >0,c <0,由对称轴可知:−b 2a >0,∴b <0,∴abc >0,故①错误;②由对称轴可知:−b 2a =1,∴b =−2a ,∵抛物线过点(1,0),∴a −b +c =0,∴a+2a+c=0,∴3a+c=0,故②正确;③由对称轴为直线x=1,抛物线过点(−1,0),∴抛物线与x轴的另一个交点为(3,0),∴ax2+bx+c=0的两个根是x1=−1,x2=3,故③正确;④由图象可知,当x=2时,y<0,∴4a+2b+c<0,故④错误;故选:C.小提示:本题考查二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.7、对于抛物线y=−3(x+1)2−2,下列说法正确的是()A.抛物线开口向上B.当x>−1时,y随x增大而减小C.函数最小值为﹣2D.顶点坐标为(1,﹣2)答案:B分析:根据二次函数图象的性质对各项进行分析判断即可.解:抛物线解析式y=−3(x+1)2−2可知,A、由于a=−3<0,故抛物线开口方向向下,选项不符合题意;B、抛物线对称轴为x=−1,结合其开口方向向下,可知当x>−1时,y随x增大而减小,选项说法正确,符合题意;C、由于抛物线开口方向向下,故函数有最大值,且最大值为-2,选项不符合题意;D、抛物线顶点坐标为(-1,-2),选项不符合题意.故选:B.小提示:本题主要考查了二次函数的性质,解题关键是熟练运用抛物线的开口方向、对称轴、顶点坐标以及二次函数图象的增减性解题.8、已知实数a,b满足b−a=1,则代数式a2+2b−6a+7的最小值等于()A.5B.4C.3D.2答案:A分析:由已知得b=a+1,代入代数式即得a2-4a+9变形为(a-2)2+5,再根据二次函数性质求解.解:∵b-a=1,∴b=a+1,∴a2+2b-6a+7=a2+2(a+1)-6a+7=a2-4a+9=(a-2)2+5,∵(a-2)2≥0,∴当a=2时,代数式a2+2b-6a+7有最小值,最小值为5,故选:A.小提示:本题考查二次函数的最值,通过变形将代数式化成(a-2)2+5是解题的关键.9、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为()A.4√5米B.10米C.4√6米D.12米答案:B分析:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣1x²,再将y=﹣1代25入解析式,求出C、D点的横坐标即可求CD的长.解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,∵O 点到水面AB 的距离为4米,∴A 、B 点的纵坐标为﹣4,∵水面AB 宽为20米,∴A (﹣10,﹣4),B (10,﹣4),将A 代入y =ax 2,﹣4=100a ,∴a =﹣125, ∴y =﹣125x 2, ∵水位上升3米就达到警戒水位CD ,∴C 点的纵坐标为﹣1,∴﹣1=﹣125x 2, ∴x =±5,∴CD =10,故选:B .小提示:本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.10、已知抛物线y =ax 2 +bx +c 的对称轴为x =1,与x 轴正半轴的交点为A (3,0),其部分图象如图所示,有下列结论:①abc >0;②2c ﹣3b <0</span>;③5a +b +2c =0;④若B (43,y 1)、C (13,y 2)、D (−13,y 3)是抛物线上的三点,则y 1<y 2<y 3.其中正确结论的个数有( )A .1B .2C .3D .4答案:B分析:根据二次函数的图象与性质一一判断即可.解:由图象可知,开口向上,图象与y轴负半轴有交点,则a>0,c<0,对称轴为直线x=−b2a=1,则b=−2a<0,∴abc>0,故①正确;当x=3时,y=9a+3b+c=0,∵b=−2a,∴3a+c=0,即3a=−c∴2c−3b=2×(−3a)−3×(−2a)=0,故②错误;∵对称轴为直线x=−b2a=1,∴抛物线与x轴负半轴的交点为(−1,0),∴a−b+c=0,∵9a+3b+c=0,两式相加,则10a+2b+2c=0,∴5a+b+c=0,故③错误;∵|−13−1|=43,|13−1|=23,|43−1|=13,∴43>23>13,∴根据开口向上,离对称轴越近其对应的函数值越小,则有y3>y2>y1,故④正确;∴正确的结论有2个,故选:B小提示:本题考查了二次函数的图象及性质;熟练掌握二次函数图象及性质,能够通过函数图象提取信息是解题的关键.填空题11、已知函数y=mx2+2mx+1在−3⩽x⩽2上有最大值4,则常数m的值为 __.答案:38或−3分析:分两种情况:m>0和m<0分别求y的最大值即可.解:y=mx2+2mx+1=m(x+1)2+1−m.当m>0时,当x=2时,y有最大值,∴4m+4m+1=4,∴m=3;8当m<0时,当x=−1时,y有最大值,∴m−2m+1=4,∴m=−3,或−3.综上所述:m的值为38故答案是:3或−3.8小提示:本题考查了二次函数的最值,熟练掌握二次函数的图象及性质,解题时,注意要分类讨论,以防漏解.12、二次函数y=(x-1)2+2的最小值是__________.答案:2分析:根据二次函数y=(x-1)2+2的性质得抛物线的开口向上,即当横坐标等于在对称轴的值时函数取得最小值.解:二次函数y=(x-1)2+2的展开式为:y=x2−2x+3,∵a=1>0,∴抛物线的开口向上,∴当x=−−2=1时,有最小值y=2,2所以答案是:2.小提示:本题考查了二次函数的性质,解题的关键是掌握二次函数的性质.13、如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏州的历史文化.如图②,“门”的内侧曲线呈抛物线形,已知其底部宽度为80米,高度为200米.则离地面150米处的水平宽度(即CD的长)为______.答案:40米分析:以底部所在的直线为x轴,以线段CD的垂直平分线所在的直线为y轴建立平面直角坐标系,用待定系数法求得抛物线的解析式,则可知点C、D的横坐标,进而可得CD的长.解:如图,以底部所在的直线为x轴,以线段CD的垂直平分线所在的直线为y轴建立平面直角坐标系:∴A(−40,0),B(40,0),E(0,200)设抛物线的解析式为y=a(x+40)(x−40),将E(0,200)代入,得:200=a(0+40)(0−40),,解得:a=−18∴抛物线的解析式为y=−1x2+200,8x2+200=150,将y=150代入得:−18解得:x=±20,∴C(−20,150),D(20,150),∴CD=40,所以答案是:40米.小提示:本题考查了二次函数在实际问题中的应用.解题的关键在于建立二次函数模型.体现了数形结合的思想.14、抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y<0时,x的取值范围是_____.答案:﹣3<x<1分析:根据抛物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为(﹣3,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.所以答案是:﹣3<x<1.小提示:本题考查了二次函数的性质和数形结合能力,熟练掌握并灵活运用是解题的关键.15、如图,在平面直角坐标系中,菱形ABCD的一边AB在x轴上,顶点B在x轴正半轴上.若抛物线y=x2﹣5x+4经过点C、D,则点B的坐标为______.答案:(2,0)分析:根据抛物线y=x2﹣5x+4经过点C、D和二次函数图象具有对称性,可以求得该抛物线的对称轴和CD 的长,然后根据菱形的性质和勾股定理可以求得AO的长,从而可以求得OB的长,进而写出点B的坐标.解:∵抛物线y=x2﹣5x+4,∴该抛物线的对称轴是直线x=5,点D的坐标为(0,4),2∴OD=4,∵抛物线y=x2﹣5x+4经过点C、D,∵四边形ABCD为菱形,AB在x轴上,∴CD∥AB,即CD∥x轴,∴CD=5×2=5,2∴AD=5,∵∠AOD=90°,OD=4,AD=5,∴AO=√AD2−OD2=√52−42=3,∵AB=5,∴OB=5﹣3=2,∴点B的坐标为(2,0),所以答案是:(2,0).小提示:本题考查二次函数的性质、二次函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.解答题16、如图,点P(a,3)在抛物线C:y=4−(6−x)2上,且在C的对称轴右侧.(1)写出C的对称轴和y的最大值,并求a的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为P′,C′.平移该胶片,使C′所在抛物线对应的函数恰为y=−x2+6x−9.求点P′移动的最短路程.答案:(1)对称轴为直线x=6,y的最大值为4,a=7(2)5分析:(1)由y=a(x−ℎ)2+k的性质得开口方向,对称轴和最值,把P(a,3)代入y=4−(6−x)2中即可得出a的值;(2)由y=−x2+6x−9=−(x−3)2,得出抛物线y=−x2+6x−9是由抛物线C:y=−(x−6)2+4向左平移3个单位,再向下平移4个单位得到,即可求出点P′移动的最短路程.(1)y=4−(6−x)2=−(x−6)2+4,∴对称轴为直线x=6,∵−1<0,∴抛物线开口向下,有最大值,即y的最大值为4,把P(a,3)代入y=4−(6−x)2中得:4−(6−a)2=3,解得:a=5或a=7,∵点P(a,3)在C的对称轴右侧,∴a=7;(2)∵y=−x2+6x−9=−(x−3)2,∴y=−(x−3)2是由y=−(x−6)2+4向左平移3个单位,再向下平移4个单位得到,平移距离为√32+42=5,∴P′移动的最短路程为5.小提示:本题考查二次函数y=a(x−ℎ)2+k的图像与性质,掌握二次函数y=a(x−ℎ)2+k的性质以及平移的方法是解题的关键.17、今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有A,B两个景点,售票处出示的三种购票方式如表所示:2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?答案:(1)20%;(2)①798万元,②当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元分析:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x,则四月份的游客为4(1+x)人,五月份的游客为4(1+x)2人,再列方程,解方程可得答案;(2)①分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;②设丙种门票价格降低m 元,景区六月份的门票总收入为W万元,再列出W与m的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案.解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x,由题意,得4(1+x)2=5.76∴(1+x)2=1.44,解这个方程,得x1=0.2,x2=−2.2(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%.(2)①由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:0.6+0.4=1(万人),购买甲种门票的人数为:2−0.6=1.4(万人),购买乙种门票的人数为:3−0.4=2.6(万人),所以:门票收入问;100×1.4+80×2.6+(160−10)×(2+1)=798(万元)答:景区六月份的门票总收入为798万元.②设丙种门票价格降低m元,景区六月份的门票总收入为W万元,由题意,得W=100(2−0.06m)+80(3−0.04m)+(160−m)(2+0.06m+0.04m)化简,得W=−0.1(m−24)2+817.6,∵−0.1<0,∴当m=24时,W取最大值,为817.6万元.答:当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元.小提示:本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键.18、已知,如图,二次函数y=−x2+bx+c的图像与x轴交于A,B两点,与y轴交于点C(0, 6),且经过点(1, 10)(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标和对称轴.(3)求△ABC的面积,写出y>0时x的取值范围.答案:(1)y=−x2+5x+6;(2)顶点坐标是(52, 494),对称轴是x=52;(3)ΔABC的面积为21,y>0时,x的取值范围是-1<x<6.分析:(1)直接利用待定系数法将已知点代入得出方程组求出答案;(2)直接利用配方法求出抛物线顶点坐标和对称轴即可;(3)首先求出抛物线与x轴的交点坐标,然后利用三角形面积公式和图像得出答案.(1)∵二次函数y=−x2+bx+c的图像经过点C(0, 6)、(1, 10),∴{c =6−1+b +c =10, 解这个方程组,得{b =5c =6, ∴该二次函数的解析式是y =−x 2+5x +6;(2)y =−x 2+5x +6=−(x −52)2+494,∴顶点坐标是(52, 494); 对称轴是x =52; (3)∵二次函数y =−x 2+5x +6的图像与x 轴交于A ,B 两点,∴−x 2+5x +6=0,解这个方程得:x 1=−1,x 2=6,即二次函数y =−x 2+5x +6与x 轴的两个交点的坐标为A (−1, 0),B (6, 0).∴ΔABC 的面积S △ABC =12AB ×OC =12×|6−(−1)|×6=21. 由图像可得,当-1<x <6时,y >0,故y >0时,x 的取值范围是-1<x <6.小提示:本题主要考查了待定系数法求函数表达式,求三角形面积,图像法求自变量求职范围,用配方法求抛物线顶点坐标和对称轴,求出函数表达式是解决问题的关键.。
二次函数实际应用例题与解答,中考数学二次函数解决实际应用问题经典题型及答案解析

二次函数实际应用示例1.在排球家中,_队员站在边线发球,发球方向与边线垂直,球开始飞行时距地面1.9米,当球飞行距离为9米时达最大高度5.5米,已知球场长18米,问这样发球是否会直接把球打出边线?思路解析*先建立坐标系,如图,根据已知条件求出抛物线的解析式,再 求抛物线与x轴的交点坐标(横坐标为正),若这点的横坐标大于18,就可判断球出线.解:以发球员站立位置为原点,球运动的水平方向为x轴,建立直角坐标系伽图).由于其图象的顶点为(95执设二^函教关系式为y=a(x-9)、S.5(3丰0),由已知,这个函数的图象过(0,1.9),可以得到1.9=0(0-9)2+552解得a----7,45所以,所求二}欠函数的关系式是y=-M(x-9)2十5.5.45排球落在x轴上,则y=O,因此,-:(x・9)2+5.5=0.解方程,得*=9十半点0.1,X2=9-峪(负值,不合题意,舍去).所以,排球约在20」米远处落下,因为20.1>18,所以,这样发球会直接把球打出边线,2.某工厂大门是一抛物线型水泥建筑物,如图26.3-9所示,大门地面亮AB二4m,解:以队员甲投球站立位置为原点,球运动的水平方向为X轴,建立直角坐标系.由于球在空中的路径为抛物线,其图象的顶点为(4,4),设二}欠函数关系式为y=a(x-4)2-4(g0),由已知,这个函数的图象过(024),可以得到24=3(0-4)2+4.解得a=-0.1.所以所求二次函数的关系式是y=-0.1(x-4)2+4当x二7时,y=-0.1(x-4)2+4=3.1.因为3.1=3+0.1,0.1在篮球偏离球圈中心10cm以内.答:这个球能投中.综合•应用4.(2010安徽模拟)如图26.3-10,在平面直角坐标系中,二}欠函数y=ax2十c(a ")的图象过正方形ABO(:的三个顶点A、B、C,则ac的值是.思路解析:图中,正方形和抛物线都关于y轴对称,欲求ac的值,需求抛物线的解析式,点A、B、C都在抛物线上,它们的坐标跟正方形的边长有关,可设正方形的边长为2m「则A(0r2整m)、B(-皿阳7^所)、C(72w r把A、B的坐标值代入y=a*十c中,得a=四,c=2&,所以Imac=—X =2.2ni5.有一种螃蟹,从海上捕获后不放乔,最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种;SB〔000千克放养在塘内,此时市场价为每千克30元.据测算,此后每千克活蟹的市场价每天可上升1元,但放养一天需各种费用400元,且平均每天还有10千克螯死去,假定死蟹均于当天全部售出,售价是每千克20元⑴设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售点颔Q元,写出Q关于x的函数关系式;⑶该经销商将这批蟹放弄多少天后出售,可获得最大利润(利润=销售总额-收购成本-费用)?最大利润是多少?思路解析:⑴市场价每天上升1元,则P=30+X;(2)销售总额为活蟹销售和死蟹销售两部分的和,活蟹数量每天减少10千克,死蟹数量跟放养天数成正比;(3)根据利润计算式表达,可没利润为w元,用函数瞄解决.答案:⑴P=30+x.(2)Q=(30+x)(1000-10x)+20-10x=-10x2+900x+30000.⑶设利润为w元,则w=(-10x2+900x+30000)-30-1000-400x=-10(x-Z5)2-»-6250.」.当x=25时,w有最大值,最大值为6250.答;经销商将这批蟹放养25天后出售,可获得最大?IJ润,6.将一条长为20cm的铁丝雪成两段,并以每一段铁丝的长度为周长做成f正方形.⑴要使这两个正方形的面积之和等于17cm2,那么这段铁丝磐成两段后的长:度分别是多少?(2)两个正方形的面积之和可能等于12cm?吗?若能,求出两段铁丝的长度;若不能,请说明理由.思路解析;用方程或函数考虑.设其中一段长为x cm,列出面积和的表达式,构成方程或函数,用它们的性质解决问题.方法一:⑴解:设剪成两段后其中一段为x cm,则另一段为(20-x)cm.由题意得(三沪+(竺1沪=17.4 4解得冶=16,x2=4.当为=16时,20-x=4;当x2=4时,20-x=16.答:这段铁丝雪成两段后的长度分别是16cm和4cm.(2)不能.理由是:(料牛)5.整理,得x<20x+104=0.•,A=b2-4ac=-16<0,.,此方程无配即不能雪成两段使得面积和为12新.方法二:剪成两段后其中一段为x cm,两个正方形面积的和为yen?.则y=弓尸+=;(x.10)2+12.5(0<x<20)・当y=17时,有上(乂-10)112.5=17.S解方程,得Xi=16,x2=4.当xi=16时,20*4;当X2二4时,20*16.答:这段铁丝剪成两段后的长度分别是16cm和4cm.(2)不能.理由是:函数y=|(x-10)2+1Z5中,a二;>0,当x=10时,函数有最小值,最小值88为12.5.•.・12v125,所以不能勇成两段使得面积和为12cm2.7.我市英山县某茶厂种植,春蕊牌“绿茶,由历任来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y(jt)与上市时间t庆)的关系可以近似地用如图①中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z齿)与上市时间t庆)的关系可以近似地用如图②的抛物肆图263-11①图26.3-11-②⑴写出图①中表示的市场销售单价y团)与上市时间t庆)(t>0)的函数关系式;(2)求出图②中表示的种梢成本单价z员)与上市时间t庆)(t>0)的函敬关系式;⑶认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价缺?(说明:市场铠售单价和种植成本单价的单位:元/500克.)思路解析:从图形中得出相关数据,用分段函薮表示市场销售单价,种植成本是一E碰物线,再分别计算各时段的纯收益单价,匕咸得出结论.解:(1)①当0冬X三120时,y=-|x-b160;②当120<xE50时,y=80;2③当150UX式180时,y=±x-+20.5(2)设z=a(x・110)」20,N OC1把X=6O,y=W代入,^=a(60-110)120解得。
二次函数经典例题及答案

二次函数经典例题及答案1.已知抛物线的顶点为P(-4,-),与x轴交于A、B两点,与y轴交于点C,其中B点坐标为(1,0)。
(1)求这条抛物线的函数关系式;(2)若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ADQ为等腰三角形?若存在,请求出符合条件的点Q的坐标;若不存在,请说明理由.y=x2+4x - ;存在点Q1(-1,-4),Q2(2-9,-),Q3(-,-).试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a(x+4)2-,然后把点B的坐标代入解析式求出a的值,即可得解;(2)先根据顶点坐标求出点D的坐标,再根据抛物线解析式求出点A、C 的坐标,从而得到OA、OC、AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出∠OAC的正弦值与余弦值,再分①AD=Q1D时,过Q1作Q1E1⊥x轴于点E1,根据等腰三角形三线合一的性质求出AQ1,再利用∠OAC的正弦求出Q1E1的长度,根据∠OAC的余弦求出AE1的长度,然后求出OE1,从而得到点Q1的坐标;②AD=AQ2时,过Q2作Q2E2⊥x轴于点E2,利用∠OAC的正弦求出Q2E2的长度,根据∠OAC的余弦求出AE2的长度,然后求出OE2,从而得到点Q2的坐标;③AQ3=DQ3时,过Q3作Q3E3⊥x轴于点E3,根据等腰三角形三线合一的性质求出AE3的长度,然后求出OE3,再由相似三角形对应边成比例列式求出Q3E3的长度,从而得到点Q3的坐标.试题解析:(1)∵抛物线顶点坐标为(-4,-),∴设抛物线解析式为y=a(x+4)2-∵抛物线过点B(1,0),∴a(1+4)2-=0,解得a=,所以,抛物线解析式为y=(x+4)2-,即 y=x2+4x-;(2)存在点Q1(-1,-4),Q2(2-9,-),Q3(-,-).理由如下:∵抛物线顶点坐标为(-4,-),∴点D的坐标为(-4,0),令x=0,则y=-,令y=0,则x2+4x-=0,整理得,x2+8x-9=0,解得x1=1,x2=-9,∴点A(-9,0),C(0,-),∴OA=9,OC=,AD=-4-(-9)=-4+9=5,在Rt△AOC中,根据勾股定理,AC=∴sin∠OAC=cos∠OAC=,①AD=Q1D时,过Q1作Q1E1⊥x轴于点E1,根据等腰三角形三线合一的性质,AQ1=2•ADcos∠OAC=2×5×,Q1E1=AQ1•sin∠OAC=×=4,AE1=AQ1•cos∠OAC=×=8,所以,OE1=OA-AE1=9-8=1,所以,点Q1的坐标为(-1,-4);②AD=AQ2时,过Q2作Q2E2⊥x轴于点E2,Q2E2=AQ2•sin∠OAC=5×=,AE2=AQ2•cos∠OAC=5×=2,所以,OE2=OA-AE2=9-2,所以,点Q2的坐标为(2-9,-);③AQ3=DQ3时,过Q3作Q3E3⊥x轴于点E3,则AE3=AD=×5=,所以,OE3=9-=,∵Q3E3⊥x轴,OC⊥OA,∴△AQ3E3∽△ACO,∴,即,解得Q3E3=,所以,点Q3的坐标为(-,-),综上所述,在线段AC上存在点Q1(-1,-4),Q2(2 -9,-),Q3(-,-),使得△ADQ为等腰三角形.2.如图,直线y=﹣x+3与x轴,y轴分别交于B,C两点,抛物线y=﹣x2+bx+c经过B,C两点,点A是抛物线与x轴的另一个交点.(1)求B、C两点坐标;(2)求此抛物线的函数解析式;(3)在抛物线上是否存在点P,使S△PAB=S△CAB,若存在,求出P点坐标,若不存在,请说明理由.1)B(3,0)C(0,3)(2)此抛物线的解析式为y=﹣x2+2x+3.(3)存在这样的P点,其坐标为P(0,3),(2,3)(1+,﹣3)或(1﹣,﹣3).试题分析:(1)已知了过B、C两点的直线的解析式,当x=0时可求出C 点的坐标,当y=0是可求出B点的坐标.(2)由于抛物线的解析式中只有两个待定系数,因此将B、C两点的坐标代入抛物线中即可求出抛物线的解析式.(3)根据(2)的抛物线的解析式可得出A点的坐标,由此可求出AB的长,由于S△PAB=S△CAB,而AB边为定值.由此可求出P点的纵坐标,然后将P点的纵坐标代入抛物线的解析式中即可求出P点的坐标.试题解析:(1)∵直线y=﹣x+3经过B、C∴当x=0时y=3当y=0时x=3∴B(3,0)C(0,3)(2)∵抛物线y=﹣x2+bx+c经过B、C∴.∴b=2,c=3.∴此抛物线的解析式为y=﹣x2+2x+3.(3)当y=0时,﹣x2+2x+3=0;x1=﹣1,x2=3.∴A(﹣1,0)设P(x,y)∵S△PAB=S△CAB∴×4×|y|=×4×3∴y=3或y=﹣3①当y=3时,3=﹣x2+2x+3∴x1=0,x2=2P(0,3)或(2,3)②当y=﹣3时,﹣3=﹣x2+2x+3∴x1=1+,x2=1﹣∴P(1+,﹣3)或(1﹣,﹣3).因此存在这样的P点,其坐标为P(0,3),(2,3)(1+,﹣3)或(1﹣,﹣3).3.已知:如图,抛物线y=ax2+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.(1)求抛物线的函数表达式;(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ∥y轴交直线BC于点Q.①当x取何值时,线段PQ的长度取得最大值,其最大值是多少?②是否存在这样的点P,使△OAQ为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.(1)所求抛物线的函数表达式是y=x2﹣x+2.(2)当x=3时,线段PQ的长度取得最大值.最大值是1.(3)P(3,0)或P(,)或P(,).试题分析:(1)已知了A,B的坐标,可用待定系数法求出函数的解析式.(2)①QP其实就是一次函数与二次函数的差,二次函数的解析式在(1)中已经求出,而一次函数可根据B,C的坐标,用待定系数法求出.那么让一次函数的解析式减去二次函数的解析式,得出的新的函数就是关于PQ,x的函数关系式,那么可根据函数的性质求出PQ的最大值以及相对应的x的取值.(3)分三种情况进行讨论:当∠QOA=90°时,Q与C重合,显然不合题意.因此这种情况不成立;当∠OAQ=90°时,P与A重合,因此P的坐标就是A的坐标;当∠OQA=90°时,如果设QP与x轴的交点为D,那么根据射影定理可得出DQ2=OD•DA.由此可得出关于x的方程即可求出x的值,然后将x代入二次函数式中即可得出P的坐标.试题解析:(1)∵抛物线过A(3,0),B(6,0),∴,解得:,∴所求抛物线的函数表达式是y=x2﹣x+2.(2)①∵当x=0时,y=2,∴点C的坐标为(0,2).设直线BC的函数表达式是y=kx+b.则有,解得:.∴直线BC的函数表达式是y=﹣x+2.∵0<x<6,点P、Q的横坐标相同,∴PQ=y Q﹣y P=(﹣x+2)﹣(x2﹣x+2)=﹣x2+x=﹣(x﹣3)2+1∴当x=3时,线段PQ的长度取得最大值.最大值是1.②解:当∠OAQ=90°时,点P与点A重合,∴P(3,0)当∠QOA=90°时,点P与点C重合,∴x=0(不合题意)当∠OQA=90°时,设PQ与x轴交于点D.∵∠ODQ+∠ADQ=90°,∠QAD+∠AQD=90°,∴∠OQD=∠QAD.又∵∠ODQ=∠QDA=90°,∴△ODQ∽△QDA.∴,即DQ2=OD•DA.∴(﹣x+2)2=x(3﹣x),10x2﹣39x+36=0,∴x1=,x2=,∴y1=×()2﹣+2=;y2=×()2﹣+2=;∴P(,)或P(,).∴所求的点P的坐标是P(3,0)或P(,)或P(,).4.如图所示,在平面直角坐标系中,抛物线()经过A(-1,0)、B(3,0)两点,抛物线与y轴交点为C,其顶点为D,连接BD,点P是线段BD上一个动点(不与B,D重合),过点P作y轴的垂线,垂足为E,连接BE.(1)求抛物线的解析式,并写出顶点D的坐标;(2)如果P点的坐标为(,),△PBE的面积为,求与的函数关系式,写出自变量的取值范围.(1),D(1,4);(2)().试题分析:(1)本题需先根据抛物线经过A(﹣1,0)、B(3,0)两点,分别求出a、b的值,再代入抛物线即可求出它的解析式.(2)本题首先设出BD解析式,再把B、D两点坐标代入求出k、b的值,得出BD解析式,再根据面积公式即可求出最大值.试题解析:(1)∵抛物线()经过A(﹣1,0)、B(3,0)两点∴把(﹣1,0)B(3,0)代入抛物线得:,,∴抛物线解析式为:,∵=,∴顶点D的坐标为(1,4);(2)设直线BD解析式为:(),把B、D两点坐标代入,得:,解得5.如图,抛物线与x轴相交于B,C两点,与y轴相交于点A,点P(,)(a是任意实数)在抛物线上,直线经过A,B两点.(1)求直线AB的解析式;(2)平行于y轴的直线交直线AB于点D,交抛物线于点E.①直线(0≤t≤4)与直线AB相交F,与抛物线相交于点G.若FG∶DE=3∶4,求t的值;②将抛物线向上平移m(m>0)个单位,当EO平分∠AED时,求m的值.1);(2)①1或3;②.试题分析:(1)根据点P的坐标,可得出抛物线解析式,然后求出A、B、C的坐标,利用待定系数法求出直线AB的解析式;(2)①根据点E(2,5),D(2,1),G(,),F(,),表示出DE、FG,再由FG:DE=3:4,可得出t的值;②设点A(0,2+m),则点E(2,5+m),作AH⊥DE,垂足为H,在Rt△AEH中利用勾股定理求出AE,根据EO平分∠AED及平行线的性质可推出∠AEO=∠AOE,AO=AE,继而可得出m的值.试题解析:(1)∵P(,)(a是实数)在抛物线上,∴抛物线的解析式为=﹣,当时,即,解得,,当x=0时,y=2.∴A(0,2),B(4,0),C(,0),将点A、B的坐标代入,得:∴,解得:,故直线AB的解析式为;(2)①∵点E(2,5),D(2,1),G(,),F(,),∴DE=4,FG==,∵FG:DE=3:4,∴,解得,.②设点A(0,2+m),则点E(2,5+m),作AH⊥DE,垂足为H,∴=,即AE=,∵EO平分∠AED,∴∠AEO=∠DEO,∵AO∥ED,∴∠DEO=∠AOE,∴∠AEO=∠AOE,∴AO=AE,即,解得m=.6.如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(–1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当P,Q运动t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状并求说明理由.(3)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由(1)y=x2﹣x﹣4.C(0,﹣4);(2)四边形APDQ为菱形;(3)存在满足条件的点E,点E的坐标为(﹣,0)或(﹣,0)或(﹣1,0)或(7,0).试题分析:(1)将A,B点坐标代入函数y=x2+bx+c中,求得b、c,进而可求解析式及C坐标.(2)注意到P,Q运动速度相同,则△APQ运动时都为等腰三角形,又由A、D对称,则AP=DP,AQ=DQ,易得四边形四边都相等,即菱形.(3)等腰三角形有三种情况,AE=EQ,AQ=EQ,AE=AQ.借助垂直平分线,画圆易得E大致位置,设边长为x,表示其他边后利用勾股定理易得E坐标.试题解析:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),∴,解得,∴y=x2﹣x﹣4.∴C(0,﹣4).(2)四边形APDQ为菱形.理由如下:如图,D点关于PQ与A点对称,过点Q作,FQ⊥AP于F,∵AP=AQ=t,AP=DP,AQ=DQ,∴AP=AQ=QD=DP,∴四边形AQDP为菱形(3)存在.如图1,过点Q作QD⊥OA于D,此时QD∥OC,∵A(3,0),B(﹣1,0),C(0,﹣4),O(0,0)∴AB=4,OA=3,OC=4,∴AC==5,∵当点P运动到B点时,点Q停止运动,AB=4,∴AQ=4.∵QD∥OC,∴,∴,∴QD=,AD=.①作AQ的垂直平分线,交AO于E,此时AE=EQ,即△AEQ为等腰三角形,设AE=x,则EQ=x,DE=AD﹣AE=﹣x,∴在Rt△EDQ中,(﹣x)2+()2=x2,解得 x=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).②以Q为圆心,AQ长半径画圆,交x轴于E,此时QE=QA=4,∵ED=AD=,∴AE=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).③当AE=AQ=4时,1.当E在A点左边时,∵OA﹣AE=3﹣4=﹣1,∴E(﹣1,0).2.当E在A点右边时,∵OA+AE=3+4=7,∴E(7,0).综上所述,存在满足条件的点E,点E的坐标为(﹣,0)或(﹣,0)或(﹣1,0)或(7,0).7.如图,已知抛物线与x轴的一个交点为A(-1,0),另一个交点为B,与y轴的交点为C(0,-3),其顶点为D,对称轴为直线.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ACM是以AC为一腰的等腰三角形时,求点M的坐标;(3)将△OBC沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形△EFG,将△EFG与△BCD重叠部分的面积记为S,用含m的代数式表示S.(1);(2)M的坐标为,,;(3).试题分析:(1)抛物线与x轴的一个交点为A(-1,0),对称轴为直线,得到抛物线与x轴的另一个交点为B(3,0),把A、B、C的坐标代入抛物线,即可得到抛物线的解析式;(2)①当AC=AM时C、M关于x轴对称,得到M;②当AC=CM时,AC=,以C为圆心,AC为半径作圆与y轴有两个交点,为M或M;(3)分别求出直线BC、BD的解析式,分两段计算重叠的面积:①,②.试题解析:(1)由题意可知,抛物线与x轴的另一个交点为B(3,0),则,,解得,故抛物线的解析式为:;(2)①当AC=AM时C、M关于x轴对称,得到M;②当AC=CM时,AC=,以C为圆心,AC为半径作圆与y轴有两个交点,为M 或M;所以,点M的坐标为,,;(3)记平移后的三角形为△EFG.设直线BC的解析式为y=kx+b,则:,解得:,则直线BC的解析式为,△OBC沿x轴向右平移m个单位长度(0<m<3)得到△EFG,易得直线FG的解析式为.设直线BD的解析式为y=k′x+b′,则:,解得,则直线BD的解析式为,连结CG,直线CG交BD于H,则H(,-3).在△OBC沿x轴向右平移的过程中,①当时,如图1所示.设EG交BC于点P,GF交BD于点Q,则CG=BF=m,BE=PE=3﹣m,联立,解得,即点Q(3﹣m,-2m),==②当时,如图2所示.设EG交BC于点P,交BD于点N,则OE=m,BE=PE=3﹣m,又因为直线BD的解析式为,所以当x=m时,得y=2m﹣6,所以点N(m,2m-6).===,综上所述,.8.如图①,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(2,0)和点B(-6,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与轴交于点M ,在对称轴上存在点P,使△CMP为等腰三角形,请直接写出所有符合条件的点P的坐标.(3)设点Q是抛物线对称轴上的一个动点,当点Q满足最大时,求出Q点的坐标.(4)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.(1)y=-x2-2x+6;(2)P(-2,)或P(-2,2)或P(-2,-2)或P(-2,12);(3)当Q在(-2,12)的位置时,|QB-QC|最大;(4)最大值为;E坐标为(-3,).试题分析:(1)将点A(2,0)和点B(-6,0)分别代入y=ax2+bx+6,得到关于a、b的二元一次方程组,解方程组求出a、b的值,进而得到抛物线的解析式;(2)根据(1)的函数解析式得出抛物线的对称轴为x=-2,再求出M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,6),根据M、C的坐标求出CM的距离.然后分三种情况进行讨论:①CP=PM;②CM=MP;③CM=CP;(3)由抛物线的对称性可知QB=QA,故当Q、C、A三点共线时,|QB-QC| 最大,连结AC并延长,交对称轴于点Q,利用待定系数法求出直线AC的解析式,再将x=-2代入,求出y的值,进而得到Q点的坐标;(4)由于四边形BOCE不是规则的四边形,因此可将四边形BOCE分割成规则的图形进行计算,过E作EF⊥x轴于F,四边形BOCE的面积=三角形BFE的面积+直角梯形FOCE的面积.直角梯形FOCE中,FO为E的横坐标的绝对值,EF为E的纵坐标,已知C的纵坐标,就知道了OC的长.在三角形BFE中,BF=BO-OF,因此可用E的横坐标表示出BF的长.如果根据抛物线设出E的坐标,然后代入上面的线段中,即可得出关于四边形BOCE的面积与E的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE的最大值及对应的E的横坐标的值.即可求出此时E的坐标.试题解析:(1)由题知:,解得:,故所求抛物线解析式为:y=-x2-2x+6;(2)∵抛物线解析式为:y=-x2-2x+6,∴对称轴为x=,设P点坐标为(-2,t),∵当x=0时,y=6,∴C(0,6),M(-2,0),∴CM2=(-2-0)2+(0-6)2=40.①当CP=PM时,(-2)2+(t-6)2=t2,解得t=,∴P点坐标为:P1(-2,);②当CM=PM时,40=t2,解得t=±2,∴P点坐标为:P2(-2,2)或P3(-2,-2);③当CM=CP时,由勾股定理得:40=(-2)2+(t-6)2,解得t=12,∴P点坐标为:P4(-2,12).综上所述,存在符合条件的点P,其坐标为P(-2,)或P(-2,2)或P(-2,-2)或P(-2,12);(3)∵点A(2,0)和点B(-6,0)关于抛物线的对称轴x=-2对称,∴QB=QA,∴|QB-QC|=|QA-QC|,要使|QB-QC|最大,则连结AC并延长,与直线x=-2相交于点Q,即点Q为直线AC与直线x=-2的交点,设直线AC的解析式为y=kx+m,∵A(2,0),C(0,6),∴,解得,∴y=-3x+6,当x=-2时,y=-3×(-2)+6=12,故当Q在(-2,12)的位置时,|QB-QC|最大;(4)过点E作EF⊥x轴于点F,设E(n,-n2-2n+6)(-6<n<0),则EF=-n2-2n+6,BF=n+6,OF=-n,S四边形BOCE=BF•EF+(OC+EF)•OF=(n+6)•(-n2-2n+6)+(6-n2-2n+6)•(-n)=-n2-9n+18=-(n+3)2+,所以当n=-3时,S四边形BOCE最大,且最大值为此时,点E坐标为(-3,).9.如图,在平面直角坐标系中,一抛物线的对称轴为直线,与y轴负半轴交于C点,与x轴交于A、B两点,其中B点的坐标为(3,0),且OB=OC.(1)求此抛物线的解析式;(2)若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.(1);(2)P点的坐标为,的最大值为;(3)Q(-,0)或(,0)或(,0)或(,0)或(1,0).试题分析:(1)设抛物线的解析式为,根据已知得到C(0,﹣3),A(﹣1,0),代入得到方程组,求出方程组的解即可;(2)过点P作y轴的平行线与AG交于点F,求出点G的坐标(2,﹣3),设直线AG为,代入得到,求出方程组的解得出直线AG为,设P(x,),则F(x,﹣x﹣1),PF,根据三角形的面积公式求出△APG的面积,化成顶点式即可;(3)存在.根据MN∥x轴,且M、N在抛物线上,得到M、N关于直线x=1对称,设点M为(m,)且m>1,得到MN=2(m﹣1),当∠QMN=90°,且MN=MQ时,由△MNQ为等腰直角三角形,得到,求出m的值,得出点M和点Q的坐标;当∠QNM=90°,且MN=NQ 时,同理可求点Q的坐标,当∠NQM=90°,且MQ=NQ时,过Q作QE⊥MN于点E,则QE=MN,根据抛物线及等腰直角三角形的轴对称性,得到点Q的坐标.试题解析:(1)设抛物线的解析式为,由已知得:C(0,﹣3),A(﹣1,0),∴,解得,∴抛物线的解析式为;(2)过点P作y轴的平行线与AG交于点Q,由,令x=2,则y=-3,∴点G为(2,-3),设直线AG为,∴,解得:,即直线AG为,设P(x,),则F(x,-x-1),PF.∵,∴当时,△APG的面积最大,此时P点的坐标为,(3)存在.∵MN∥x轴,且M、N在抛物线上,∴M、N关于直线x=1对称,设点M为(,)且,∴,当∠QMN=90°,且MN=MQ时,△MNQ为等腰直角三角形,∴MQ⊥MN 即MQ⊥x轴,∴,即或,解得,(舍)或,(舍),∴点M为(,)或(,),∴点Q为(,0)或(,0),当∠QNM=90°,且MN=NQ时,△MNQ为等腰直角三角形,同理可求点Q为(-,0)或(,0),当∠NQM=90°,且MQ=NQ时,△MNQ为等腰直角三角形,过Q作QE⊥MN于点E,则QE=MN,,∵方程有解,∴由抛物线及等腰直角三角形的轴对称性知点Q为(1,0),综上所述,满足存在满足条件的点Q,分别为(-,0)或(,0)或(,0)或(,0)或(1,0).0,AD = 2,BC = 6,10.在梯形ABCD中,AD∥BC,BA⊥AC,∠ABC = 45以BC所在直线为x轴,建立如图所示的平面直角坐标系,点A在y轴上.(1)求过A、D、C三点的抛物线的解析式;(2)求△ADC的外接圆的圆心M的坐标,并求⊙M的半径;(3)E为抛物线对称轴上一点,F为y轴上一点,求当ED+EC+FD+FC最小时,EF的长;(4)设Q为射线CB上任意一点,点P为对称轴左侧抛物线上任意一点,问是否存在这样的点P、Q,使得以P、Q、C为顶点的三角形与△ADC相似?若存在,直接写出点P、Q的坐标,若不存在,则说明理由.(1)由题意知C(3,0)、A(0,3).如图1,过D作x轴垂线,由矩形性质得D(2,3).由抛物线的对称性可知抛物线与x轴另一交点为(﹣1,0).设抛物线的解析式为y=a(x+1)(x﹣3).将(0,3)代入得a=﹣1,所以.(2)由外接圆知识知M为对称轴与AC中垂线的交点.由等腰直角三角形性质得OM平分∠AOC,即yOM=x,∴M(1,1).连MC得MC=,即半径为.(3)如图2,由对称性可知:当ED+EC+FD+FC最小时,E为对称轴与AC交点,F为BD与y 轴交点,∵∠B=45°,∠AOB=90°,∴AO=BO=3,故B点坐标为:(﹣3,0),再利用D(2,3),代入y=ax+b,得:,解得:,故BD直线解析式为:,当x=0,y=,根据对称轴为直线x=1,则y=2,故F(0,)、E(1,2),EF===.(4)可得△ADC中,AD=2,AC=,DC=.假设存在,显然∠QCP<90°,则∠QCP=45°或∠QCP=∠CAD.如图3,当∠QCP=45°时,OR=OC=3,则R点坐标为(0,﹣3),将C,R代入y=ax+b得出:,解得:,这时直线CP的解析式为y=x﹣3,同理可得另一解析式为:y=﹣x+3.当直线CP的解析式为y=x﹣3时,则,解得:,可求得P(﹣2,﹣5),故PC==.设CQ=x,则,解得:x=或x=15.∴Q (,0)或(﹣12,0).当y=﹣x+3即P与A重合时,CQ=y,则=,即=,或=,解得CQ=2或9,故Q (1,0)或(﹣6,0).如图4,当∠QCP=∠ACD时,设CP交y轴于H,连接ED,则ED⊥AC,∴DE=,EC=,易证:△CDE∽△CHQ,所以=,∴HO=.可求HC的解析式为.联解,得P,PC=.设CQ=x,知,∴x=或x=,∴Q或.同理当H在y轴正半轴上时,HC的解析式为.∴P’,∴PC=∴,∴CQ=或。
初中二次函数经典例题20题

以下是20个初中二次函数的经典例题:1. 已知二次函数y=x^2-2x-3,求出这个函数的对称轴、顶点坐标和开口方向。
2. 已知二次函数y=ax^2+bx+c的图像经过点(1,0),(0,3),且对称轴为x=2,求这个函数的解析式。
3. 已知二次函数y=x^2+mx-n的图像与x轴交于点(1,0)和(x2,0),求m和n的值。
4. 已知二次函数y=x^2-6x+8,求出这个函数的最大值和最小值。
5. 已知二次函数y=-x^2+4x-3,求出这个函数的顶点坐标、对称轴和开口方向。
6. 已知二次函数y=ax^2+bx+c的图像经过点(2,0)、(4,0)和(1,3),求这个函数的解析式。
7. 已知二次函数y=x^2-8x+12,求出这个函数的对称轴、顶点坐标和开口方向。
8. 已知二次函数y=ax^2+bx+c的图像与x轴交于点(x1,0)和(x2,0),且x1<x2,当自变量为何值时,函数值为0?9. 已知二次函数y=ax^2+bx+c的图像经过点(0,0)、(1,1)和(-1,3),求这个函数的解析式。
10. 已知二次函数y=x^2-4x+1,求出这个函数的最大值和最小值。
11. 已知二次函数y=-x^2+6x-8,求出这个函数的顶点坐标、对称轴和开口方向。
12. 已知二次函数y=ax^2+bx+c的图像与x轴交于点(m,0)和(n,0),且m<n,当自变量为何值时,函数值为0?13. 已知二次函数y=ax^2+bx+c的图像经过点(0,0)、(4,0)和(2,3),求这个函数的解析式。
14. 已知二次函数y=x^2-2mx+m^2-m,求出这个函数的对称轴、顶点坐标和开口方向。
15. 已知二次函数y=-x^2+8x-15,求出这个函数的最大值和最小值。
16. 已知二次函数y=ax^2+bx+c的图像经过点(m,0)和(n,0),且m>n,当自变量为何值时,函数值为0?17. 已知二次函数y=ax^2+bx+c的图像经过点(0,0)、(4,0)和(-2,-5),求这个函数的解析式。
一元二次函数经典题目带答案附解析

一元二次函数经典题目带答案附解析一、单选题(共7题;共14分)1.如图,已知二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于C点,OA=OC则由抛物线的特征写出如下结论()A. abc>0B. 4ac-b2>0C. a-b+c>0D. ac+b+1=02.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A. abc<0B. b2﹣4ac<0C. a﹣b+c<0D. 2a+b=03.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择—个参加活动,两人恰好选择同—场馆的概率是( )A. B. C. D.4.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为( )A. 27B. 23C. 22D. 185.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB 绕点O逆时针旋转90°,点B的对应点的坐标是()A. B. C. D.6.如图,一条公路的转弯处是一段圆弧(AB),点O是这段弧所在圆的圆心,AB=40m,点C是AB的中点,且CD=10m,则这段弯路所在圆的半径为()A. 25mB. 24mC. 30mD. 60m7.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为()A. B. 2 C. 2 D. (1+2 )二、填空题(共2题;共2分)8.柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:种子数n 30 75 130 210 480 856 1250 2300发芽数m 28 72 125 200 457 814 1187 21850.9333 0.9600 0.9615 0.9524 0.9521 0.9509 0.9496 0.9500发芽频率依据上面的数据可以估计,这种植物种子在该实验条件下发芽的概率约是________(结果精确到0.01). 9.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是________.三、作图题(共1题;共5分)10.已知:在平面直角坐标系中,的三个顶点的坐标分别为,,.①画出关于原点成中心对称的,并写出点的坐标;②画出将绕点按顺时针旋转所得的.四、综合题(共13题;共178分)11.如图,已知抛物线y=ax2+bx+c的顶点为A(4,3),与y轴相交于点B(0,﹣5),对称轴为直线l,点M是线段AB的中点.(1)求抛物线的表达式;(2)写出点M的坐标并求直线AB的表达式;(3)设动点P,Q分别在抛物线和对称轴l上,当以A,P,Q,M为顶点的四边形是平行四边形时,求P,Q两点的坐标.12.已知函数y=x2+bx+c(b,c为常数)的图象经过点(-2,4)(1)求b,c满足的关系式(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式(3)若该函数的图象不经过第三象限,当-5sx≤1时,函数的最大值与最小值之差为16,求b的值13.已知抛物线y=2x2-4x+c与x轴有两个不同的交点.(1)求c的取值范围;(2)若抛物线y=2x2-4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由.14.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加元,每天售出件.(1)请写出与之间的函数表达式;(2)当为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?15.如图所示・二次函数的图像与一次函数的图像交于A、B两点,点B 在点A的右側,直线AB分别与x、y轴交于C、D两点,其中k<0.(1)求A、B两点的横坐标;(2)若△OAB是以OA为腰的等腰三角形,求k的值;(3)二次函数图像的对称轴与x轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k的值;若不存在,说明理由.16.如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标。
二次函数的经典例题

二次函数的经典例题
例题:已知二次函数y = ax^2+bx + c的图象经过点(-1,0),(3,0),且顶点的纵坐标为-8,求二次函数的表达式。
解析:
1. 分析已知条件
- 因为二次函数y = ax^2+bx + c的图象经过点( - 1,0)和(3,0),所以这两点是二次函数图象与x轴的交点。
- 那么二次函数的对称轴为x=(-1 + 3)/(2)=1。
2. 求顶点坐标
- 已知顶点的纵坐标为-8,且顶点横坐标x = 1,所以顶点坐标为(1,-8)。
3. 设二次函数的表达式
- 设二次函数的表达式为y=a(x - 1)^2-8(顶点式)。
4. 代入已知点求解a
- 把点(-1,0)代入y=a(x - 1)^2-8得:
- 0=a(-1 - 1)^2-8。
- 即0 = 4a-8。
- 移项可得4a=8,解得a = 2。
5. 得出二次函数表达式
- 把a = 2代入y=a(x - 1)^2-8得y = 2(x - 1)^2-8。
- 展开y=2(x^2-2x + 1)-8=2x^2-4x+2 - 8=2x^2-4x - 6。
所以,二次函数的表达式为y = 2x^2-4x - 6。
二次函数知识点经典例题及相应练习

二次函数知识点经典型例题及相应练习一、基础知识点:1.二次函数的定义:形如c bx ax y ++=2(a ≠0,a ,b ,c 为常数)的函数为二次函数.2.二次函数的图象及性质:(1)二次函数y=ax 2 (a ≠0)的图象是一条抛物线,其顶点是原点,对称轴是y 轴;当a >0时,抛物线开口向上,顶点是最低点;当a <0时,抛物线开口向下,顶点是最高点;a 越小,抛物线开口越大.(2)二次函数c bx ax y ++=2的图象是一条抛物线.顶点为(-2b a ,244ac b a -),对称轴x=-2ba ;(3)当a >0时,当x=-2b a 时,函数有最小值244ac b a -;当a <0时,当x x=-2ba 时,函数有最大值244ac b a -3.图象的平移:将二次函数y=ax 2 (a ≠0)的图象进行平移,可得到y=ax 2+c ,y=a(x -h)2,y=a(x -h)2+k 的图象.⑴ 将y=ax 2的图象向上(c >0)或向下(c< 0)平移|c|个单位,即可得到y=ax 2+c 的图象.其顶点是(0,c )形状、对称轴、开口方向与抛物线y=ax 2相同. ⑵ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,即可得到y=a(x -h)2的图象.其顶点是(h ,0),对称轴是直线x=h ,形状、开口方向与抛物线 y=ax 2相同.⑶ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x -h)2 +k 的图象,其顶点是(h ,k ),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同. 4.小知识点总结: (1)、a 的符号:a 的符号由抛物线的开口方向决定.抛物线开口向上,则a >0;物线开口向下,则a <0.(2)b 的符号由对称轴决定,若对称轴是y 轴,则b=0;若抛物线的顶点在y 轴左侧,顶点的横坐标-2ba <0即2ba >0,则a 、b 为同号;若抛物线的顶点在y 轴右侧,顶点的横坐标-2ba >0,即2b a <0.则a 、b 异号.简称“左同有异”.(3)c 的符号:c 的符号由抛物线与y 轴的交点位置确定.若抛物线交y 轴于正半,则c >0,抛物线交y 轴于负半轴.则c <0;若抛物线过原点,则c=0.(4)△的符号:△的符号由抛物线与x 轴的交点个数决定.若抛物线与x 轴只有一个交点,则△=0;有两个交点,则△>0.没有交点,则△<0 .(5)a+b+c 与a -b+c 的符号:a+b+c 是抛物线c bx ax y ++=2(a ≠0)上的点(1,a+b+c )的纵坐标,a -b+c 是抛物线c bx ax y ++=2(a ≠0)上的点(-1,a -b +c )的纵坐标.根据点的位置,可确定它们的符号.二.题型(一)考查二次函数定义1、下列函数中,不是二次函数的是( )A .y=2x 2+2xB .y=-x 2 +x 3 +1C .y=-x 2 +x3 +1 D .y=3-x(2-x)2、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数 3、当____m =时,函数()2221m m y m m x--=+是关于x 的二次函数4、当____m =时,函数()2564m m y m x -+=-+3x 是关于x 的二次函数(二)配方1、通过配方把函数y =-12 x 2-2x -1表示为y____________,它的图象的顶点坐标是__________.2、若将二次函数 y=x 2-2x+3配方为y=(x —h )2+k 的形式_______________(三)已知解析式确定开口方向.顶点坐标和对称轴及性质 1、函数y=-12(x -2)2+5的顶点坐标为( )A .(2,5)B .(-2,5).C .(2,-5)D .(-2,5) 2、函数2283y x x =+-的对称轴为( )A 、y =-2B 、y =-2C 、x =2D 、x =-23、已知 y =(a -3)x 2+2x -l 是二次函数;当a______时,它的图象是开口向上的抛物线,抛物线与y 轴的交点坐标是________.4、抛物线y=-34 x 2 的开口,在对称轴左边,y 随x 的____________而增大.5、抛物线942++=x x y 的对称轴是 .6、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .(四)二次函数的最值1、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.2、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.3、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. 4、函数x x y +-=22有最____值,最值为_______;5.已知二次函数y=x 2-2ax+2a+3,当a= 时,该函数y 的最小值为0. 6.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.二次函数专题一:二次函数的图象与性质考点1.二次函数图象的对称轴和顶点坐标例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限考点3.二次函数的平移例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 专题练习一1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移 2个单位长度后,所得图象的函数表达式是________.文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号) 5.函数Y=X 2+2X-3(-2≦X ≦2)的最大值和最小值分别是_______. 6.已知二次函数y=-x 2+bx-8的最大值为8,则b 的值为_______. 7、已知函数y=21x 2-x-12,当函数y 随x 的增大而减小时,x 的取值范围是_______ 专题二:二次函数表达式的确定考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标. 专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )图22- 1- 012 y x13x = ABCD图1菜园墙A.y=2a (x-1)B.y=2a (1-x )C.y=a (1-x 2)D.y=a (1-x )2 专题三:二次函数与一元二次方程的关系考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.练习:已知抛物线y=12x 2+x-52. (1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.考点3.抛物线的交点个数与一元二次方程的根的情况例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k的取值范围是________. 2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .图2图13.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4.不论x 为何值,函数y=ax 2+bx+c(a ≠0)的值恒大于0的条件是( ) A.a>0,△>0; B.a>0, △<0; C.a<0, △<0; D.a<0, △<05. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题: (1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围. 专题四 二次函数的应用例4 某产品每件成本10元,试销阶段每件产品的销售价x (元)•与产品的日销售量y (件)之间的关系如下表:x(元) 15 20 30…y (件) 25 20 10…若日销售量y 是销售价x (1)求出日销售量y (件)与销售价x (元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元?练习:1、如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是【 】A .1<x<5-B .x>5C .x<1-且x>5D .1<x -或x>5x y33 2 2 1 14 1- 1- 2-O 图3x y3-2、教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为21(4)312y x =--+,由此可知铅球推出的距离是m 。
3、某一型号飞机着陆后滑行的距离y (单位:m )与滑行时间x (单位:s )之间的函数关系式是y=60x ﹣1.5x 2,该型号飞机着陆后滑行 m 才能停下来.4、如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx .小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需 秒.5、若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x ,面积为s ,则s 与x 的函数关系式为: ()21s x x x 02>=-+,利用函数的图象或通过配方均可求得该函数的最大值.5、如图有一座抛物线形拱桥,桥下面在正常水位是AB 宽20m ,水位上升3m 就达到警戒线CD ,这是水面宽度为10m 。
(1)在如图的坐标系中求抛物线的解析式。
(2)若洪水到来时,水位以每小时0.2m 的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?6、某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元. 设每件玩具的销售单价上涨..了x 元时(x .为正整数....),月销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围. (2)每件玩具的售价..定为多少元时,月销售利润恰为2520元? (3)每件玩具的售价..定为多少元时可使月销售利润最大?最大的月利润是多少?7、已知抛物线y =ax 2+bx +c 经过A(-1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形?若存在,直接写出所有符合条件的点M 的坐标; 若不存在,请说明理由.8、如图,抛物线2y x bx c =+-经过直线3y x =-与坐标轴的两个 交点A 、B ,此抛物线与x 轴的另一个交点为C ,抛物线顶点为D. (1)求此抛物线的解析式; (2)点P 为抛物线上的一个动点,求使APC S ∆:ACD S ∆=5 :4的点P 的坐标9、某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价-成本价),①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?参考公式:抛物线:y=ax2+bx+c(a≠0)的顶点坐标为2b4ac b2a4a⎛⎫--⎪⎪⎝⎭,-。