半导体制造工艺流程-大全
半导体八大工艺顺序

半导体八大工艺顺序半导体制造是一个复杂的过程,需要经过八个主要的工艺步骤才能完成。
这些工艺步骤包括晶圆清洗、沉积、光刻、蚀刻、清洗、离子注入、退火和测试。
下面将对这些工艺步骤进行详细介绍。
1. 晶圆清洗晶圆清洗是制造半导体的第一步,目的是去除晶圆表面的杂质和污染物,以确保后续工艺的顺利进行。
晶圆清洗通常使用化学物质和超声波来实现。
首先将晶圆浸泡在去离子水中,然后使用化学物质和超声波来去除表面污染物。
2. 沉积沉积是将材料沉积在晶圆表面的过程。
这个过程通常使用化学气相沉积(CVD)或物理气相沉积(PVD)来实现。
在CVD中,化学反应会产生气体,然后将其放置在晶圆上,在高温下发生反应并形成所需的材料层。
在PVD中,原子或分子会通过真空管道传输到晶圆表面,然后在晶圆表面生成所需的材料层。
3. 光刻光刻是将图案转移到晶圆表面的过程。
这个过程通常使用光刻胶和掩模来实现。
首先,在晶圆表面涂上一层光刻胶,然后将掩模放置在光刻胶上,并使用紫外线照射掩模。
这会使光刻胶在掩模的开口处固化,形成所需的图案。
4. 蚀刻蚀刻是将材料从晶圆表面移除的过程。
这个过程通常使用干法或湿法蚀刻来实现。
在干法蚀刻中,使用等离子体或化学反应来去除不需要的材料层。
在湿法蚀刻中,使用化学物质来溶解不需要的材料层。
5. 清洗清洗是去除蚀刻残留物和其他污染物的过程。
这个过程通常使用酸、碱和有机溶剂来实现。
首先将晶圆浸泡在酸、碱或有机溶剂中,然后用去离子水冲洗干净。
6. 离子注入离子注入是将离子注入晶圆表面的过程。
这个过程通常用于形成掺杂层和修饰材料的电学性质。
在离子注入过程中,使用加速器将离子加速到非常高的速度,然后将它们注入晶圆表面。
7. 退火退火是在高温下加热晶圆以改善其电学性质的过程。
在退火过程中,晶圆被放置在高温炉中,并暴露于高温下一段时间。
这会使掺杂层扩散并形成所需的电学性质。
8. 测试测试是检查芯片是否正常运行的过程。
这个过程通常使用测试设备来实现。
半导体生产工艺流程

半导体生产工艺流程1.原材料准备:半导体生产的原材料主要包括硅、氮化镓、砷化镓、硒化镉等。
首先需要对原材料进行加工和准备,以确保其质量和纯度。
2.原料制备:原材料通过熔炼、混合等工艺制备成为用于生产半导体的原料。
3.单晶生长:利用单晶生长技术,在高温下将原料转化为单晶硅或其他单晶半导体材料。
这一步骤是半导体生产的核心步骤,决定了半导体器件的质量和性能。
4.切割:将生长的单晶材料切割成片,通常为几毫米到几十毫米的薄片。
这些切割片将用于制造半导体器件。
5.清洗:将切割后的半导体片进行清洗,以去除表面的杂质和污染物。
6.晶圆制备:将清洗后的半导体片进行研磨和打磨,使其表面光滑均匀,并进行化学处理,以增强半导体片的表面特性。
7.掺杂和扩散:将半导体片通过高温处理,将掺杂剂引入其表面,使其在特定区域具有特定的电子特性。
8.晶圆涂覆:在半导体片表面涂覆保护层,以防止金属和氧气等杂质的侵入。
9.制造半导体器件:在半导体片上通过光刻、蒸发等工艺制造半导体器件的结构和元件。
这些器件可能包括晶体管、二极管、集成电路等。
10.清洗和测试:对制造完成的半导体器件进行清洗和测试,以验证其质量和性能。
11.封装和封装测试:将半导体器件封装在塑料或陶瓷封装中,并进行封装测试,以确保器件的可靠性和稳定性。
12.探针测试:将封装好的器件进行探针测试,以验证其电性能和功耗等指标。
13.成品测试和筛选:对探针测试合格的器件进行成品测试和筛选,以确保其质量符合要求。
14.包装和成品测试:将成品封装好,并进行最终的成品测试和筛选,以确保其质量和性能。
15.成品存储和交付:将符合要求的成品进行分类、存储和交付,以供后续使用或销售。
以上是半导体生产工艺流程的主要步骤,其中涉及多种专业技术和设备的应用。
这些步骤的顺序和细节可能会因不同的半导体产品而有所不同,但总体流程是大致相似的。
半导体生产工艺的不断改进和创新,是推动半导体产业发展和技术进步的重要驱动力量。
半导体的生产工艺流程

半导体的生产工艺流程1.晶圆制备:晶圆制备是半导体生产的第一步,通常从硅片开始。
首先,取一块纯度高达99.9999%的单晶硅,然后经过脱氧、精炼、单晶生长和棒状晶圆切割等步骤,制备出硅片。
这些步骤的目的是获得高纯度、无杂质的单晶硅片。
2.晶圆加工:晶圆加工是将硅片加工成具有特定电子器件的过程。
首先,通过化学机械抛光(CMP)去除硅片上的表面缺陷。
然后,利用光刻技术将特定图案投射到硅片上,并使用光刻胶保护未被刻蚀的区域。
接下来,使用等离子刻蚀技术去除未被保护的硅片区域。
这些步骤的目的是在硅片上形成特定的电子器件结构。
3.器件制造:器件制造是将晶圆上的电子器件形成完整的制造流程。
首先,通过高温扩散或离子注入方法向硅片中掺杂特定的杂质,以形成PN结。
然后,使用化学气相沉积技术在硅片表面沉积氧化层,形成绝缘层。
接下来,使用物理气相沉积技术沉积金属薄膜,形成电压、电流等电子元件。
这些步骤的目的是在硅片上形成具有特定功能的电子器件。
4.封装测试:封装测试是将器件封装成实际可使用的电子产品。
首先,将器件倒装到封装盒中,并连接到封装基板上。
然后,通过线缆或焊接技术将封装基板连接到主板或其他电路板上。
接下来,进行电极焊接、塑料封装封装,形成具有特定外形尺寸和保护功能的半导体芯片。
最后,对封装好的半导体芯片进行功能性测试和质量检查,以确保其性能和可靠性。
总结起来,半导体的生产工艺流程包括晶圆制备、晶圆加工、器件制造和封装测试几个主要步骤。
这些步骤的有机组合使得我们能够生产出高性能、高效能的半导体器件,广泛应用于电子产品和信息技术领域。
半导体制造工艺流程大全

半导体制造工艺流程大全首先是晶圆切割。
晶圆是通过单晶片生长得到的,为了制造半导体器件,需要将晶圆划分成小块。
切割过程通常使用钻孔或锯片进行,切割后需要将晶圆边缘进行光刻处理。
接下来是晶圆清洗。
切割后的晶圆上会附着一些杂质和残留物,需要通过化学溶液进行清洗,以确保表面的纯净度。
然后是研磨抛光。
为了使晶圆表面更加平整和光滑,需要进行研磨和抛光处理。
通过旋转研磨盘和特殊磨料进行处理,可以去除晶圆表面的不平整和杂质。
接下来是掩膜光刻。
在晶圆上制作电路图案,需要使用掩膜光刻技术。
将铬掩膜覆盖在晶圆表面,通过紫外光和化学反应来形成图案。
掩膜光刻是制造半导体器件中最为关键的步骤之一然后是化学气相沉积。
掩膜光刻后需要进行一层绝缘层的沉积,以保护电路。
接下来是扩散。
为了控制晶体电阻,需要在晶圆表面扩散一层掺杂物。
将晶圆放入炉内,在高温下进行热扩散,使掺杂物渗入到晶圆表面。
然后是离子注入。
离子注入是制造器件的关键步骤之一,通过注入高能粒子改变晶圆表面的材料特性。
注入的离子种类和剂量会对晶圆的电学性质产生重要影响。
接下来是金属薄膜制备。
为了制造金属电极和连线,需要在晶圆表面蒸镀一层金属薄膜。
这层金属薄膜主要用于电子连接和传导。
最后是封装测试。
将制造好的晶圆进行封装,以保护器件免受环境和机械损坏。
通过测试和筛选,可以保证器件的质量和性能。
总结以上所述,半导体制造工艺流程包括晶圆切割、晶圆清洗、研磨抛光、掩膜光刻、化学气相沉积、扩散、离子注入、金属薄膜制备等多个关键步骤。
这些步骤不仅要求高度精确和耐心,而且需要高科技设备和专业技能的支持。
半导体制造工艺的不断改进和创新将推动半导体技术的进一步发展和应用。
半导体制造工艺流程

半导体制造工艺流程半导体制造工艺是半导体芯片制造的基础流程,也是一项复杂且精细的工艺。
下面是一份大致的半导体制造工艺流程,仅供参考。
1. 半导体材料的准备:半导体材料通常是硅,需要经过精细的提纯过程,将杂质降低到一定程度,以确保半导体器件的性能。
还需要进行晶体生长、切割和抛光等工艺,以制备出适用于制造芯片的晶片。
2. 晶片清洗和处理:经过前面的准备步骤后,晶片需要进行清洗,以去除表面的杂质和污染物。
清洗包括化学溶液浸泡和超声波清洗等步骤。
之后,通过化学气相沉积等工艺,在晶片上形成氧化层或氮化层,以保护晶片表面。
3. 光刻和光刻胶涂布:在晶片表面涂布一层光刻胶,然后通过光刻机将设计好的芯片图案投射在胶涂层上,形成光刻胶图案。
光刻胶图案将成为制作芯片电路的模板。
4. 蚀刻:将光刻胶图案转移到晶片上,通过干式或湿式蚀刻工艺,将未被光刻胶保护的部分材料去除,形成电路图案。
蚀刻可以通过化学溶液或高能离子束等方式进行。
5. 激光刻蚀:对于一些特殊材料或细微的电路结构,可以使用激光刻蚀来实现更高精度的图案形成。
激光刻蚀可以通过激光束对材料进行精确的去除。
6. 金属薄膜沉积:在晶片表面沉积金属薄膜,以形成电路中的金属导线和连接器。
金属薄膜通常是铝、铜等材料,通过物理气相沉积或化学气相沉积等工艺进行。
7. 金属薄膜刻蚀和清洗:对金属薄膜进行蚀刻和清洗,以去除多余的金属,留下需要的导线和连接器。
8. 测量和测试:对制造好的芯片进行电学性能的测试和测量,以确保其符合设计要求。
9. 封装和封装测试:将芯片封装在外部环境中,通常采用芯片封装材料进行密封,然后进行封装测试,以验证封装后芯片的性能和可靠性。
10. 最终测试:对封装好的芯片进行最终的功能和性能测试,以确保其满足市场需求和客户要求。
以上是半导体制造的基本流程,其中每个步骤都需要高度的精确性和专业技术。
半导体制造工艺的不断改进和创新,是推动半导体技术不断进步和发展的重要驱动力。
半导体制造流程及生产工艺流程

半导体制造流程及生产工艺流程半导体是一种电子材料,具有可变电阻和电子传导性的特性,是现代电子器件的基础。
半导体的制造流程分为两个主要阶段:前端工艺(制造芯片)和后端工艺(封装)。
前端工艺负责在硅片上制造原始的电子元件,而后端工艺则将芯片封装为最终的电子器件。
下面是半导体制造流程及封装的主要工艺流程:前端工艺(制造芯片):1.晶片设计:半导体芯片的设计人员根据特定应用的需求,在计算机辅助设计(CAD)软件中进行晶片设计,包括电路结构、布局和路线规划。
2.掩膜制作:根据芯片设计,使用光刻技术将电路结构图转化为光刻掩膜。
掩膜通过特殊化学处理制作成玻璃或石英板。
3.芯片切割:将晶圆切割成单个的芯片,通常使用钻孔机或锯片切割。
4.清洗和化学机械抛光(CMP):芯片表面进行化学清洗,以去除表面杂质和污染物。
然后使用CMP技术平整芯片表面,以消除切割痕迹。
5.纳米技术:在芯片表面制造纳米结构,如纳米线或纳米点。
6.沉积:通过化学气相沉积或物理气相沉积,将不同材料层沉积在芯片表面,如金属、绝缘体或半导体层。
7.重复沉积和刻蚀:通过多次沉积和刻蚀的循环,制造多层电路元件。
8.清洗和干燥:在制造过程的各个阶段,对芯片进行清洗和干燥处理,以去除残留的化学物质。
9.磊晶:通过化学气相沉积,制造晶圆上的单晶层,通常为外延层。
10.接触制作:通过光刻和金属沉积技术,在芯片表面创建电阻或连接电路。
11.温度处理:在高温下对芯片进行退火和焙烧,以改善电子器件的性能。
12.筛选和测试:对芯片进行电学和物理测试,以确认是否符合规格。
后端工艺(封装):1.芯片粘接:将芯片粘接在支架上,通常使用导电粘合剂。
2.导线焊接:使用焊锡或焊金线将芯片上的引脚和触点连接到封装支架上的焊盘。
3.封装材料:将芯片用封装材料进行保护和隔离。
常见的封装材料有塑料、陶瓷和金属。
4.引脚连接:在封装中添加引脚,以便在电子设备中连接芯片。
5.印刷和测量:在封装上印刷标识和芯片参数,然后测量并确认封装后的器件性能。
半导体制造工艺流程大全

掺杂
扩散
将杂质元素扩散到晶圆表面一定深度,以改变材料的电学性 质。
离子注入
将杂质离子注入到晶圆表面一定深度,以改变材料的电学性 质。
03 半导体制造设备与材料
制造设备
01
ห้องสมุดไป่ตู้
02
03
04
清洗设备
用于清洗硅片表面的杂质和尘 埃,确保硅片的清洁度。
热处理设备
用于对硅片进行高温处理,实 现晶体结构的重排和掺杂元素
面临的挑战与问题
制程良率
01
随着芯片尺寸不断缩小,制程良率成为一大挑战,需要不断提
高制造工艺的精度和稳定性。
材料限制
02
目前用于半导体制造的材料有限,寻找新的、适合未来发展的
材料是关键。
环保与能源消耗
03
半导体制造过程中需要大量的能源和水资源,同时产生的废料
和污染也需得到妥善处理和控制。
THANKS FOR WATCHING
半导体制造的重要性
半导体制造是现代电子工业的基础, 涉及到众多高科技领域的发展。
半导体制造技术的不断进步,推动了 电子产品的微型化、高性能化和智能 化。
02 半导体制造工艺流程
晶圆制备
原材料选择
根据制造需求选择合适 的单晶硅原材料,确保
其纯度和晶体结构。
切割
研磨
抛光
将单晶硅锭切割成一定 直径的圆形硅片,即晶
圆。
对晶圆表面进行研磨, 以去除表面损伤和杂质。
通过抛光技术使晶圆表 面光滑,达到原子级水
平。
薄膜沉积
物理沉积
通过物理方法将气体中的元素沉积到晶圆表面, 形成薄膜。
化学沉积
通过化学反应将气体中的元素沉积到晶圆表面, 形成薄膜。
请简述半导体器件工艺的十大流程

请简述半导体器件工艺的十大流程半导体器件工艺是制造半导体器件的工艺流程,是半导体工程领域的重要组成部分。
半导体器件工艺流程包括十大流程,分别是晶圆生长、晶圆切割、清洁和清洗、化学氧化、物理氧化、光刻、蚀刻、沉积、离子注入和退火。
下面将详细介绍这十大流程。
首先是晶圆生长。
晶圆生长是制备半导体材料的第一步,也是半导体器件制造的基础。
它是利用化学气相沉积技术在单晶衬底上生长出高质量的半导体材料晶体。
晶圆生长的材料通常是硅、砷化镓等半导体材料。
其次是晶圆切割。
晶圆切割是将生长好的半导体晶体切割成一定大小的薄片,这些薄片被称为晶片。
晶圆切割的精度和质量直接影响到后续工艺的成功与否。
接着是清洁和清洗。
这一步是为了去除晶片表面的杂质和污染物,保证后续工艺的顺利进行。
清洁和清洗通常采用多种化学试剂和超声波清洗等方法。
然后是化学氧化和物理氧化。
化学氧化和物理氧化是为了在晶片表面形成一层氧化物膜,以保护晶片表面并提供绝缘层,以便后续形成电路结构。
接下来是光刻。
光刻是一种非常重要的半导体器件制造工艺,它通过选择性照射光源和光刻胶的方式,在晶片表面形成所需的图案。
这是制造半导体器件电路结构的关键步骤。
然后是蚀刻。
蚀刻是利用化学或物理方法去除光刻胶未被照射的部分,从而形成所需的图案。
蚀刻的精度和准确度对电路的性能和稳定性有着很大的影响。
接着是沉积。
沉积是将金属、氧化物等材料以化学气相沉积或物理气相沉积的方式沉积在晶片表面,形成电路结构所需的电极、导线和绝缘层等材料。
然后是离子注入。
离子注入是将掺杂剂以离子束的方式注入晶片内部,改变晶片的电学性能,以形成所需的电子器件。
最后是退火。
退火是通过加热晶片,以改变晶体结构和去除注入后的损伤,提高器件的性能和稳定性。
以上就是半导体器件工艺的十大流程。
这些流程相互关联,缺一不可,任何一步出现问题都会影响整个器件的性能和稳定性。
因此,在实际生产中,需要严格控制每一个环节,不断优化工艺流程,不断提高制造技术水平,以满足市场需求和技术发展的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
衬底制备 一次氧化 隐埋层光刻 隐埋层扩散
外延淀积
基区光刻
再氧化
隔离扩散
隔离光刻
基区扩散 再分布及氧化 发射区光刻 背面掺金
热氧化 发射区扩散
铝合金
反刻铝
铝淀积
接触孔光刻 再分布及氧化
淀积钝化层 压焊块光刻
中测
横向晶体管刨面图
B
C E
P+
P N
P
P+
P
PNP
纵向晶体管刨面图
CBE P
N
NPN
N+ C
CMOS集成电路工艺 --以P阱硅栅CMOS为例
8。光Ⅴ---多晶硅光刻,形成多晶硅栅及 多晶硅电阻
多晶硅
P-
N-Si
CMOS集成电路工艺 --以P阱硅栅CMOS为例 9。光ⅤI---P+区光刻,P+区注入。形成PMOS
管的源、漏区及P+保护环。
B+
P-
N-Si
CMOS集成电路工艺 --以P阱硅栅CMOS为例
第一次光刻—N+埋层扩散孔
1。减小集电极串联电阻 2。减小寄生PNP管的影响
要求: 1。 杂质固浓度大
SiO2
2。高温时在Si中的扩散系数小,
以减小上推
N+-BL
3。 与衬底晶格匹配好,以减小应力
P-SUB
涂胶—烘烤---掩膜(曝光)---显影---坚膜—蚀刻—清洗 —去膜--清洗—N+扩散(P)
B+
P-
N-Si
光刻胶
CMOS集成电路工艺 --以P阱硅栅CMOS为例 6。光III---N管场区光刻,刻出N管场区注入孔;
N管场区注入。
P-
N-Si
CMOS集成电路工艺 --以P阱硅栅CMOS为例
7。光Ⅳ---p管场区光刻,p管场区注入, 调节PMOS管的开启电压,生长多晶硅。
B+
P-
N-Si
第五次光刻—引线接触孔
P P+
N+-BL
P
N-epi P+ N-epi
N+
N+-BL
P-SUB
SiO2 P+
去SiO2—氧化--涂胶—烘烤---掩膜(曝光)---显影---坚膜 —蚀刻—清洗—去膜—清洗
第六次光刻—金属化内连线:反刻铝
AL
P
P
P+
N-epiP+N-epi
N+ P+SiO2
N+-BL
N+-BL
P-SUB
去SiO2—氧化--涂胶—烘烤---掩膜(曝光)---显影---坚膜 —蚀刻—清洗—去膜—清洗—蒸铝
CMOS工艺集成电路
ห้องสมุดไป่ตู้
CMOS集成电路工艺 --以P阱硅栅CMOS为例 1。光刻I---阱区光刻,刻出阱区注入孔
SiO2
N-Si
N-Si
CMOS集成电路工艺 --以P阱硅栅CMOS为例 2。阱区注入及推进,形成阱区
HCl:H2O2:H2O
=1:1:5
溶液槽
除去表面颗粒
除去重金属粒 子
DI清洗
去离子水
溶液槽
除去清洗溶剂
光学显影 光学显影是在感光胶上经过曝光和显影的程序,
把光罩上的图形转换到感光胶下面的薄膜层 或硅晶上。光学显影主要包含了感光胶涂布、 烘烤、光罩对准、 曝光和显影等程序。
关键技术参数:最小可分辨图形尺寸Lmin(nm) 聚焦深度DOF
圓晶是制作矽半導體IC所用之矽晶片,狀似圓 形,故稱晶圓。材料是「矽」, IC (Integrated Circuit)厂用的矽晶片即 為矽晶體,因為整片的矽晶片是單一完整的晶 體,故又稱為單晶體。但在整體固態晶體內, 眾多小晶體的方向不相,則為复晶體(或多晶 體)。生成單晶體或多晶體与晶體生長時的溫 度,速率与雜質都有關系。
三、IC构装制程
IC構裝製程(Packaging):利用塑膠或陶 瓷包裝晶粒與配線以成積體電路
目的:是為了製造出所生產的電路的保護層, 避免電路受到機械性刮傷或是高溫破壞。
半导体制造工艺分类
MOS型
双极型
PMOS型 NMOS型 CMOS型 饱和型
非饱和型
BiMOS TTL I2L ECL/CML
後段(Back End) 构装(Packaging)、 测试制程(Initial Test and Final Test)
一、晶圆处理制程
晶圆处理制程之主要工作为在矽晶圆上制作电路与 电子元件(如电晶体、电容体、逻辑闸等),为上 述各制程中所需技术最复杂且资金投入最多的过程 , 以微处理器(Microprocessor)为例,其所需处理 步骤可达数百道,而其所需加工机台先进且昂贵, 动辄数千万一台,其所需制造环境为为一温度、湿 度与 含尘(Particle)均需控制的无尘室(CleanRoom),虽然详细的处理程序是随著产品种类与所 使用的技术有关;不过其基本处理步骤通常是晶圆 先经过适 当的清洗(Cleaning)之後,接著进行氧 化(Oxidation)及沈积,最後进行微影、蚀刻及离 子植入等反覆步骤,以完成晶圆上电路的加工与制 作。
P-SUB
集成电路中电阻2
发射区扩散电阻
SiO2
R
P+ N+
N-epi N+-BL
P-SUB
R P+
集成电路中电阻3
基区沟道电阻
SiO2 P+
R
N+
P N-epi
N+-BL
P-SUB
R P+
集成电路中电阻4
外延层电阻
SiO2
R
N+
R
P+
P
P+
N-epi
P-SUB
集成电路中电阻5
MOS中多晶硅电阻
第四次光刻—N+发射区扩散孔
集电极和N型电阻的接触孔,以及外延层的反偏孔。 Al—N-Si 欧姆接触:ND≥1019cm-3,
P P+
N+-BL
N+
P+ NP-epi
P+
N+-BL
P-SUB
SiO2
去SiO2—氧化--涂胶—烘烤---掩膜(曝光)---显影---坚膜 —蚀刻—清洗—去膜—清洗—扩散
半导体制造工艺分类
一 双极型IC的基本制造工艺: A 在元器件间要做电隔离区(PN结隔离、全
介质隔离及PN结介质混合隔离) ECL(不掺金) (非饱和型) 、TTL/DTL
(饱和型) 、STTL (饱和型) B 在元器件间 自然隔离
I2L(饱和型)
半导体制造工艺分类
二 MOSIC的基本制造工艺: 根据栅工艺分类
A 铝栅工艺 B 硅 栅工艺 其他分类 1 、(根据沟道) PMOS、NMOS、CMOS 2 、(根据负载元件)E/R、E/E、E/D
半导体制造工艺分类
三 Bi-CMOS工艺: A 以CMOS工艺为基础 P阱 N阱
B 以双极型工艺为基础
双极型集成电路和MOS集成电路优缺点
双极型集成电路 中等速度、驱动能力强、模拟精度高、功耗比 较大 CMOS集成电路
10。光Ⅶ---N管场区光刻,N管场区注入, 形成NMOS的源、漏区及N+保护环。
As 光刻胶
P-
N-Si
CMOS集成电路工艺 --以P阱硅栅CMOS为例
11。长PSG(磷硅玻璃)。
N+ N+ P-
P+
N-Si
PSG P+
CMOS集成电路工艺 --以P阱硅栅CMOS为例
12。光刻Ⅷ---引线孔光刻。
B
E p+
N P
PNP
NPN晶体管刨面图
SiO2
B
N+ E
P P+
N-epi N+-BL
AL C
P+
P-SUB
1.衬底选择
P型Si ρ 10Ω.cm 111晶向,偏离2O~5O
晶圆(晶片) 晶圆(晶片)的生产由砂即(二氧化硅)开始, 经由电弧炉的提炼还原成 冶炼级的硅,再经由 盐酸氯化,产生三氯化硅,经蒸馏纯化后,透 过慢速分 解过程,制成棒状或粒状的「多晶 硅」。一般晶圆制造厂,将多晶硅融解 后,再 利用硅晶种慢慢拉出单晶硅晶棒。一支85公分 长,重76.6公斤的 8寸 硅晶棒,约需 2天半 时间长成。经研磨、抛光、切片后,即成半导 体之原料 晶圆片
曝光方式:紫外线、X射线、电子束、极紫外
蝕刻技術(ETCHING TECHNOLOGY)
蝕刻技術(Etching Technology)是將材料使用化學反 應物理撞擊作用而移除的技術。可以分為:
濕蝕刻(wet etching):濕蝕刻所使用的是化學溶液, 在經過化學反應之後達到蝕刻的目的.
乾蝕刻(dry etching):乾蝕刻則是利用一种電漿蝕 刻(plasma etching)。電漿蝕刻中蝕刻的作用, 可能是電漿中离子撞擊晶片表面所產生的物理作用, 或者是電漿中活性自由基(Radical)与晶片表面原 子間的化學反應,甚至也可能是以上兩者的复合作 用。
一般清洗技术
工艺
清洁源
剥离光刻胶 氧等离子体
容器
清洁效果
平板反应器 刻蚀胶
去聚合物
H2SO4:H2O=6:1
去自然氧化层 HF:H2O<1:50
旋转甩干
氮气
溶液槽 溶液槽 甩干机
除去有机物 产生无氧表面 无任何残留物
RCA1#(碱性) RCA2#(酸性)
NH4OH:H2O2:H2O= 溶液槽
1:1:1.5
P-