按键扫描方法

按键扫描方法
按键扫描方法

说到键盘扫描,相信大多数人第一反应就是行列矩阵扫描,这样我们可以用相对有限的IO口得到尽可能多的按键。键盘扫描是单片机技术的一种基本处理方法,学校的单片机课程都会有相应章节进行阐述,只要按照课本上讲述的方法,一般都能设计出比较可靠的键盘扫描电路与程序。

课本上的键盘扫描方法(见下图接法二)不能说是尽善尽美,从易懂性、成本、程序难易程度等方面综合看应该是不错的方法,给人感觉是已经没有太多的改善空间,至少我是这么认为的。

然而前段时间一位台湾朋友画给我的键盘扫描矩阵电路(见下图接法二),让我又一次看到到自己的思维还有许多地方被自己的所谓“经验”束缚着。

单纯的从硬件接法看,两种接法并没有明显区别,接法一甚至要复杂一些,但如果结合到键盘扫描的程序来看,就会发现接法一确实更好。

两种接法我都没有把上拉电阻包含进来,来让我们看一下两种接法到底有什么不同:

接法二:

我们熟悉的传统扫键处理电路,假定键盘行列IO口标号分别为H1/H2/H3和V1/V2/V3,扫键流程通常如下。

2.1. H1设置为输出,H2/H3和V1/V2/V3设置为输入

2.2. H1分别输出1和0,读V1/V2/V3状态,如果Vy状态与H1一致,则认为H1与Vy交叉位置的键按下

2.3. H2设置为输出,H1/H3和V1/V2/V3设置为输入

2.4. H2分别输出1和0,读V1/V2/V3状态,如果Vy状态与H2一致,则认为H2与Vy交叉位置的键按下

2.5. H3设置为输出,H1/H2和V1/V2/V3设置为输入

2.6. H3分别输出1和0,读V1/V2/V3状态,如果Vy状态与H3一致,则认为H3与Vy交叉位置的键按下

接法一:

新扫键处理电路,假定键盘行列IO口标号分别为H1/H2/H3和V1/V2/V3,扫键流程通常如下。

1.1. H1/H2/H3和V1/V2/V3都设置为输入

1.2. 读H1/H2/H3和V1/V2/V3状态,如果Hx和Vy读到的状态均为0,则认为Hx与Vy交叉位置的键按下

从上面流程可以看出接法一的程序代码要简单不少,既能减少扫键的代码量,又能加快扫键处理的时间,站在软件的角度看确实要比接法二要好。后来我反思了一下为什么我们教材上的传统处理方法没有采用接法一,虽然接法一软件上要简单一些,但硬件布局要复杂,传统的按键只有两条接线,接法一需要三条接线,所以用传统的按键是无法实现的,但现在许多电子产品的按键都用导电橡胶或锅仔片来实现,所以接法一变得可行。

注:这两种电路对于同时按键达到3个的情况都有可能形成错误的按键逻辑。

单片机矩阵键盘扫描程序

#include #include #define uint unsigned int #define uchar unsigned char sbit E=P2^7; //1602使能引脚 sbit RW=P2^6; //1602读写引脚 sbit RS=P2^5; //1602数据/命令选择引脚 uint keyflag ; //键盘正在读取标志位,如果Keyflag为1 ,表示正在读取键盘,停止其他功能; char x,y,m,n,c; //Keyflag为0,读取键盘结束,恢复其他功能 char flag1=0; //频率范围10~1000Hz uchar Hrate = 0; //一个周期内高点平占据时间 uchar Lrate = 0; //一个周期内低电平占据时间 uint FREQ0; //定时器T0的计数变量// uint FREQ1; //定时器T1的计数变量// sbit P2_1=P2^0; //设置P2.1,作为信号输出口// uint disbuf[3]; uint figure=0; int sum2=0; int sum1=0; int flag=0; uint count=0; uint max=0; uint disbuf_temp=0; /******************************************************************** * 名称: 1602显示延时函数delay() * 功能: 延时,延时时间大概为5US。

* 输出: 无 ***********************************************************************/ void delay() { _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); } /******************************************************************** * 名称: bit Busy(void) * 功能: 这个是一个读状态函数,读出函数是否处在忙状态 * 输入: 输入的命令值 * 输出: 无 ***********************************************************************/ bit Busy(void) { bit busy_flag = 0; RS = 0; RW = 1; E = 1; delay(); busy_flag = (bit)(P0 & 0x80); E = 0; return busy_flag; } /******************************************************************** * 名称: wcmd(uchar del) * 功能: 1602命令函数 * 输入: 输入的命令值 * 输出: 无 ***********************************************************************/ void wcmd(uchar del) { while(Busy()); RS = 0; RW = 0; E = 0; delay(); P0 = del; delay(); E = 1;

实验报告七-键盘扫描及显示实验

信息工程学院实验报告 课程名称:微机原理与接口技术 实验项目名称:键盘扫描及显示实验 实验时间: 班级: 姓名: 学号: 一、实 验 目 的 1. 掌握 8254 的工作方式及应用编程。 2. 掌握 8254 典型应用电路的接法。 二、实 验 设 备 了解键盘扫描及数码显示的基本原理,熟悉 8255 的编程。 三、实 验 原 理 将 8255 单元与键盘及数码管显示单元连接,编写实验程序,扫描键盘输入,并将扫描结果送数码管显示。键盘采用 4×4 键盘,每个数码管显示值可为 0~F 共 16 个数。实验具体内容如下:将键盘进行编号,记作 0~F ,当按下其中一个按键时,将该按键对应的编号在一个数码管上显示出来,当再按下一个按键时,便将这个按键的编号在下一个数码管上显示出来,数码管上可以显示最近 6 次按下的按键编号。 键盘及数码管显示单元电路图如图 7-1 和 7-2 所示。8255 键盘及显示实验参考接线图如图 7-3 所示。 图 7-1 键盘及数码管显示单元 4×4 键盘矩阵电路图 成 绩: 指导老师(签名):

图 7-2 键盘及数码管显示单元 6 组数码管电路图 图 7-3 8255 键盘扫描及数码管显示实验线路图 四、实验内容与步骤 1. 实验接线图如图 7-3 所示,按图连接实验线路图。

图 7-4 8255 键盘扫描及数码管显示实验实物连接图 2.运行 Tdpit 集成操作软件,根据实验内容,编写实验程序,编译、链接。 图 7-5 8255 键盘扫描及数码管显示实验程序编辑界面 3. 运行程序,按下按键,观察数码管的显示,验证程序功能。 五、实验结果及分析: 1. 运行程序,按下按键,观察数码管的显示。

非编码键盘的扫描程序设计

摘要 ------------------------------------------------------------------------------------------------------- 1 1设计方案 ------------------------------------------------------------------------------------------------ 2 1.1设计任务 ---------------------------------------------------------------------------------------- 2 1.2设计方案 ---------------------------------------------------------------------------------------- 2 2系统硬件设计------------------------------------------------------------------------------------------ 3 2.1最小应用系统 ------------------------------------------------------------------------------------ 3 2.28155扩展电路---------------------------------------------------------------------------------- 4 2.3矩阵键盘接口电路 ---------------------------------------------------------------------------- 6 2.4LCD1602接口电路----------------------------------------------------------------------------- 6 2.5主电路设计 --------------------------------------------------------------------------------------- 8 3系统软件设计------------------------------------------------------------------------------------------ 8 3.1主程序设计 --------------------------------------------------------------------------------------- 9 3.2延时程序设计----------------------------------------------------------------------------------- 9 3.3键盘扫描子程序设计 ------------------------------------------------------------------------ 10 3.4显示子程序设计------------------------------------------------------------------------------- 11 4 系统调试与结果 ---------------------------------------------------------------------------------- 13 4.1调试内容与问题解决----------------------------------------------------------------------- 13 4.2运行结果与分析 ----------------------------------------------------------------------------- 13 小结 ------------------------------------------------------------------------------------------------------- 15 参考文献 ------------------------------------------------------------------------------------------------ 16 附录 ------------------------------------------------------------------------------------------------------- 17

矩阵键盘的工作原理和扫描确认方式

9.3.1 矩阵键盘的工作原理和扫描确认方式 来源:《AVR单片机嵌入式系统原理与应用实践》M16华东师范大学电子系马潮 当键盘中按键数量较多时,为了减少对I/O 口的占用,通常将按键排列成矩阵形式,也称为行列键盘,这是一种常见的连接方式。矩阵式键盘接口见图9-7 所示,它由行线和列线组成,按键位于行、列的交叉点上。当键被按下时,其交点的行线和列线接通,相应的行线或列线上的电平发生变化,MCU 通过检测行或列线上的电平变化可以确定哪个按键被按下。 图9-7 为一个 4 x 3 的行列结构,可以构成12 个键的键盘。如果使用 4 x 4 的行列结构,就能组成一个16 键的键盘。很明显,在按键数量多的场合,矩阵键盘与独立式按键键盘相比可以节省很多的I/O 口线。 矩阵键盘不仅在连接上比单独式按键复杂,它的按键识别方法也比单独式按键复杂。在矩阵键盘的软件接口程序中,常使用的按键识别方法有行扫描法和线反转法。这两种方法的基本思路是采用循环查循的方法,反复查询按键的状态,因此会大量占用MCU 的时间,所以较好的方式也是采用状态机的方法来设计,尽量减少键盘查询过程对MCU 的占用时间。 下面以图9-7 为例,介绍采用行扫描法对矩阵键盘进行判别的思路。图9-7 中,PD0、PD1、PD2 为3 根列线,作为键盘的输入口(工作于输入方式)。PD3、PD4、PD5、PD6 为4根行线,工作于输出方式,由MCU(扫描)控制其输出的电平值。行扫描法也称为逐行扫描查询法,其按键识别的过程如下。 √将全部行线PD3-PD6 置低电平输出,然后读PD0-PD2 三根输入列线中有无低电平出现。只要有低电平出现,则说明有键按下(实际编程时,还要考虑按键的消抖)。如读到的都是高电平,则表示无键按下。 √在确认有键按下后,需要进入确定具体哪一个键闭合的过程。其思路是:依

长短按键流程图

Viso void myTask1_task(void *pdata) { u8 t; #if OS_CRITICAL_METHOD==3 OS_CPU_SR cpu_sr=0; #endif pdata=pdata; while(1) {

t=KEY_LScan(0); if(t==0x01)//短按下KEY1 { LED_Show(0, 1); BEEP_Show(1); delay_ms(10); BEEP_Show(0); } else if(t==0x02)//短按下KEY2 { LED_Show(1, 1); BEEP_Show(1); delay_ms(10); BEEP_Show(0); } else if(t==0x03)//短按下KEY3 { LED_Show(2, 1); BEEP_Show(1); delay_ms(10);

BEEP_Show(0); } else if(t==0x04)//短按下KEY4 { LED_Show(3, 1); BEEP_Show(1); delay_ms(10); BEEP_Show(0); } else if(t==0x11)//长按下KEY1 { LED_Show(0, 0); BEEP_Show(1); delay_ms(10); BEEP_Show(0); } else if(t==0x12)//长按下KEY2 { LED_Show(1, 0); BEEP_Show(1);

delay_ms(10); BEEP_Show(0); } else if(t==0x13)//长按下KEY3 { LED_Show(2, 0); BEEP_Show(1); delay_ms(10); BEEP_Show(0); } else if(t==0x14)//长按下KEY4 { LED_Show(3, 0); BEEP_Show(1); delay_ms(10); BEEP_Show(0); } delay_ms(10); } }

4×4矩阵键盘数码管显示 最简便易懂的键盘扫描方法

/////4×4矩阵键盘按键为1-16,按键显示0-9、a-f; ////////////////// #include #define uchar unsigned char uchar key=0; uchar code table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83, 0xc6,0xa1,0x86,0x8e,0xc0}; void show(uchar key) { P0=table[key];//显示数值 } void Scan_key()//扫描键盘 { uchar m; P1=0xff;//数码管全亮 P2=0x0f;//P2口赋初值低位1高位0 m=P2; switch (m) { case 0x0e: { P2=0xf0;

m=P2; switch (m) { case 0xe0:{key=0;show(key);break;} case 0xd0:{key=1;show(key);break;} case 0xb0:{key=2;show(key);break;} case 0x70:{key=3;show(key);break;} default:break; } break; } case 0x0d: { P2=0xf0; m=P2; switch (m) { case 0xe0:{key=4;show(key);break;} case 0xd0:{key=5;show(key);break;} case 0xb0:{key=6;show(key);break;} case 0x70:{key=7;show(key);break;} default:break; } break; } case 0x0b: { P2=0xf0; m=P2; switch (m) { case 0xe0:{key=8;show(key);break;} case 0xd0:{key=9;show(key);break;} case 0xb0:{key=10;show(key);break;} case 0x70:{key=11;show(key);break;} default:break; } break; } case 0x07: { P2=0xf0; m=P2; switch (m)

单片机流程图

单片机总流程图

主函数程序 #include #include #define uchar unsigned char #define uint unsigned int #define OSC_FREQ 12000000 #define __10ms (65536 - OSC_FREQ/(12000000/9970)) #define COM8255 XBYTE[0XFFF3] #define PA8255 XBYTE[0XFFF0] #define PB8255 XBYTE[0XFFF1] #define PC8255 XBYTE[0XFFF2] uchar code tab[]={0xFC,0x60,0xDA,0xF2,0x66,0xB6,0xBE,0xE0,0xFE,0xF6}; uchar code dis_HELLO[]={0x89,0x86,0xc7,0xc7}; uchar code dis_op51[]={0xc0,0x8c,0x92,0xf9}; uchar code dis_code[]={0xcf,0xa4,0xcf,0xa4}; uchar ucCnt_10ms=99; uchar i=0; uchar J=0; uchar n=0; uchar led1; uchar led2; sbit P2_4=P2^4; sbit P3_7=P3^7; sbit P1_0=P1^0; sbit P1_1=P1^1; sbit P1_2=P1^2; void Disp_op51 (); void Disp_HELLO(); void Set_Init_Xint(); void Set_Init_Timer(); void Disp_t(); void DelayX1ms(uint count); void Disp_8255(); void main() { for(;;) { Set_Init_Xint(); Set_Init_Timer(); Disp_8255(); //ucCnt_10ms =99; //ucLed1 = 6; //ucLed2 = 8;

实验四 键盘扫描及显示设计实验报告

实验四键盘扫描及显示设计实验报告 一、实验要求 1. 复习行列矩阵式键盘的工作原理及编程方法。 2. 复习七段数码管的显示原理。 3. 复习单片机控制数码管显示的方法。 二、实验设备 1.PC 机一台 2.TD-NMC+教学实验系统 三、实验目的 1. 进一步熟悉单片机仿真实验软件 Keil C51 调试硬件的方法。 2. 了解行列矩阵式键盘扫描与数码管显示的基本原理。 3. 熟悉获取行列矩阵式键盘按键值的算法。 4. 掌握数码管显示的编码方法。 5. 掌握数码管动态显示的编程方法。 四、实验内容 根据TD-NMC+实验平台的单元电路,构建一个硬件系统,并编写实验程序实现如下功能: 1.扫描键盘输入,并将扫描结果送数码管显示。 2.键盘采用 4×4 键盘,每个数码管显示值可为 0~F 共 16 个数。 实验具体内容如下: 将键盘进行编号,记作 0~F,当按下其中一个按键时,将该按键对应的编号在一个数码 管上显示出来,当再按下一个按键时,便将这个按键的编号在下一个数码管上显示出来,数 码管上可以显示最近 4 次按下的按键编号。 五、实验单元电路及连线 矩阵键盘及数码管显示单元

图1 键盘及数码管单元电路 实验连线 图2实验连线图 六、实验说明 1. 由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。因而在闭合及断开的瞬间均伴随有一连串的抖动。抖动时间的长短由按键的机械特性决定,一般为 5~10ms。这是一个很重要的时间参数,在很多场合都要用到。 键抖动会引起一次按键被误读多次。为了确保 CPU 对键的一次闭合仅做一次处理,必须去除键抖动。在键闭合稳定时,读取键的状态,并且必须判别;在键释放稳定后,再作处理。按

键盘扫描码

键盘上的每一个键都有两个唯一的数值进行标志。为什么要用两个数值而不是一个数值呢?这是因为一个键可以被按下,也可以被释放。当一个键按下时,它们产生一个唯一的数值,当一个键被释放时,它也会产生一个唯一的数值,我们把这些数值都保存在一张表里面,到时候通过查表就可以知道是哪一个键被敲击,并且可以知道是它是被按下还是被释放了。这些数值在系统中被称为键盘扫描码 2扫描码大全 扫描码键 0x011b ESC 0x3b00 F1 0x3c00 F2 0x3d00 F3 0x3e00 F4 0x3f00 F5 0x4000 F6 0x4100 F7 0x4200 F8 0x4300 F9 0x4400 F10 主键盘区: 0x2960 ~ 0x0231 1 0x0332 2 0x0433 3 0x0534 4 0x0635 5 0x0736 6 0x0837 7 0x0938 8 0x0a39 9 0x0b30 0 0x0c2d - 0x0d3d = 0x2b5c \ 0x0e08 退格键 0x0f09 Tab 0x1071 q 0x1177 w 0x1265 e 0x1372 r 0x1474 t 0x1579 y

0x1769 i 0x186f o 0x1970 p 0x1a5b [ 0x1b5d ] 0x1e61 a 0x1f73 s 0x2064 d 0x2166 f 0x2267 g 0x2368 h 0x246a j 0x256b k 0x266c l 0x273b ; 0x2827 ' 0x1c0d 回车 0x2c7a z 0x2d78 x 0x2e63 c 0x2f76 v 0x3062 b 0x316e n 0x326d m 0x332c , 0x342e . 0x352f / 0x3920 空格键 0xe05b 左Win 0xe05c 右Win 0xe05d Menu 右边数字键盘: 0x5200 Insert 0x4700 Home 0x4900 Page UP 0x5300 Delete 0x4f00 End 0x5100 PageDown 0x4800 上箭头 0x4b00 左箭头 0x5000 下箭头 0x4d00 右箭头 0x352f /

经典的矩阵键盘扫描程序

键盘是单片机常用输入设备,在按键数量较多时,为了节省I/O口等单片机资源,一般采取扫描的方式来识别到底是哪一个键被按下。即通过确定被按下的键处在哪一行哪一列来确定该键的位置,获取键值以启动相应的功能程序。 4*4矩阵键盘的结构如图1(实物参考见万用板矩阵键盘制作技巧)。在本例中,矩阵键盘的四列依次接到单片机的P1.0~P1.3,四行依次接到单片机的P1.4~P1.7;同时,将列线上拉,通过10K电阻接电源。 查找哪个按键被按下的方法为:一个一个地查找。 先第一行输出0,检查列线是否非全高; 否则第二行输出0,检查列线是否非全高; 否则第三行输出0,检查列线是否非全高; 如果某行输出0时,查到列线非全高,则该行有按键按下; 根据第几行线输出0与第几列线读入为0,即可判断在具体什么位置的按键按下。 下面是具体程序:

void Check_Key(void) { unsigned char row,col,tmp1,tmp2; tmp1 = 0x10; //tmp1用来设置P1口的输出,取反后使 P1.4~P1.7中有一个为0 for(row=0;row<4;row++) // 行检测 { P1 = 0x0f; // 先将p1.4~P1.7置高 P1 =~tmp1; // 使P1.4~p1.7中有一个为0 tmp1*=2; // tmp1左移一位 if ((P1 & 0x0f) < 0x0f) // 检测P1.0~P1.3中是否有一位为0,只要有,则说明此行有键按下,进入列检测 { tmp2 = 0x01; // tmp2用于检测出哪一列为0 for(col =0;col<4;col++) // 列检测 { if((P1 & tmp2)==0x00) // 该列如果为低电平则可以判定为该列 { key_val =key_Map[ row*4 +col ]; // 获取键值,识别按键;key_Map为按键的定义表 return; // 退出循环 } tmp2*=2; // tmp2左移一位 } } } } //结束 这是一种比较经典的矩阵键盘识别方法,实现起来较为简单,程序短小精炼。

键盘扫描显示实验原理及分析报告

键盘扫描显示实验原理及分析报告 一、实验目的-------------------------------------------------------------1 二、实验要求-------------------------------------------------------------1 三、实验器材-------------------------------------------------------------1 四、实验电路-------------------------------------------------------------2 五、实验说明-------------------------------------------------------------2 六、实验框图-------------------------------------------------------------2 七、实验程序-------------------------------------------------------------3 八、键盘及LED显示电路---------------------------------------------14 九、心得体会------------------------------------------------------------- 15 十、参考文献--------------------------------------------------------------15

键盘按键的各种编码对照表(全)

键盘按键的各种编码对照表 本附录中的各表列举了键盘按键扫描码和其ASCII码之间的对照关系,表中数据都是十六进制形式。 在用中断16H的0号功能时,当按下任意一个键或组合键时,寄存器AH和AL分别保存着该按键的扫描码和ASCII码。 表1、ASCII码的编码方案 高位 000001010011100101110111低位 0000NUL DEL SP0@P`p 0001SOH DC1!1A Q a q 0010STX DC2“2B R b r 0011ETX DC3#3C S c s 0100EOT DC4$4D T d t 0101ENQ NAK%5E U e u 0110ACK SYN&6F V f v 0111BEL ETB‘7G W g w 1000BS CAN(8H X h x 1001HT EM)9I Y i y 1010LF SUB*:J Z j z 1011VT ESC+;K[k{ 1100FF FSN^n~ 1111SI US/?O_o Del 表2、字母和空格按键的编码表 单 键SHIFT CTRL ALT 按 键 扫描码ASCII码扫描码ASCII码扫描码ASCII码扫描码ASCII码 a and A1E611E411E011E00 b and B3062304230023000 c an d C2E632E432E032E00 d and D2064204420042000 e and E1265124512051200 f and F2166214621062100 g and G2267224722072200 h and H2368234823082300 i and I1769174917091700

51单片机矩阵键盘扫描程序

/*----------------------------------------------- 名称:矩阵键盘依次输入控制使用行列逐级扫描 论坛:https://www.360docs.net/doc/468323620.html, 编写:shifang 日期:2009.5 修改:无 内容:如计算器输入数据形式相同从右至左使用行列扫描方法 ------------------------------------------------*/ #include //包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义 #define DataPort P0 //定义数据端口程序中遇到DataPort 则用P0 替换 #define KeyPort P1 sbit LATCH1=P2^2;//定义锁存使能端口段锁存 sbit LATCH2=P2^3;// 位锁存 unsigned char code dofly_DuanMa[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f, 0x77,0x7c,0x39,0x5e,0x79,0x71};// 显示段码值0~F unsigned char code dofly_WeiMa[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//分别对应相应的数码管点亮,即位码 unsigned char TempData[8]; //存储显示值的全局变量 void DelayUs2x(unsigned char t);//us级延时函数声明 void DelayMs(unsigned char t); //ms级延时 void Display(unsigned char FirstBit,unsigned char Num);//数码管显示函数 unsigned char KeyScan(void);//键盘扫描 unsigned char KeyPro(void); void Init_Timer0(void);//定时器初始化 /*------------------------------------------------ 主函数 ------------------------------------------------*/ void main (void) { unsigned char num,i,j; unsigned char temp[8]; Init_Timer0(); while (1) //主循环 { num=KeyPro();

键盘扫描原理及应用键盘

本资源为网上搜集而来,如果该程序涉及或侵害到您的版权请立即写信通知我

键盘扫描 键盘是由按键构成,是单片机系统里最常用的输入设备。我们可以通过键盘输入数据或命令来实现简单的人-机通信。 1.按键及键抖动 按键是一种常开型按钮开关。平时,按键的两个触点处于断开状态,按下按键时两个触点才闭合(短路)。如图1-1所示,平常状态下,当按键K未被按下时,按键断开,PA0输入口的电平为高电平;当按键K被按下时,按键闭合,PA0输入口的电平为低电平。 图1-1 按键电路 图1-2 按键抖动 一般的按键所用开关都是机械弹性开关,由于机械触点的弹性作用,按键开

关在闭合时不会马上稳定地连接,在断开进也不会马上完全的断开,在闭合和断开的瞬间均有一连串的抖动。按键按下的电压信号波形图如图1-2所示,从图中可以看出按键按下和松开的时候都存在着抖动。抖动时间的长短因按键的机械特性不同而有所不同,一般为5ms~10ms。 如果不处理键抖动,则有可能引起一次按键被误读成多次,所以为了确保能够正确地读到按键,必须去除键抖动,确保在按键的稳定闭合和稳定断开的时候来判断按键状态,判断后再做处理。按键在去抖动,可用硬件或软件两种方法消除。由于使用硬件方法消除键抖动,一般会给系统的成本带来提高,所以通常情况下都是使用软件方法去除键抖动。 常用的去除键抖动的软件方法有很多种,但是都离不开基本的原则:就是要么避开抖动的时候检测按键或是在抖动的时候检测到的按键不做处理。这里说明一下常用的两种方法: 第一种方法是检测到按键闭合电平后先执行一个延时程序,做一个12ms~24ms的延时,让前抖动消失后再一次检测按键的状态,如果仍是闭合状态的电平,则认为真的有按键按下;若不是闭合状态电平,则认为没有键按下。若是要判断按键松开的话,也是要在检测到按键释放电平之后再给出12ms~24ms的延时,等后抖动消失后再一次检测按键的状态,如果仍为断开状态电平,则确认按键松开。这种方法的优点是程序比较简单,缺点是由于延时一般采用跑空指令延时,造成程序执行效率低。 第二种方法是每隔一个时间周期检测一次按键,比如每5ms扫描一次按键,要连续几次都扫描到同一按键才确认这个按键被按下。一般确认按键的扫描次数由实际情况决定,扫描次数的累积时间一般为50ms~60ms。比如,以5ms为基本时间单位去扫描按键的话,前后要连续扫描到同一个按键11次而达到50ms 来确认这个按键。按键松开的检测方法也是一样要连续多次检测到按键状态为断开电平才能确认按键松开。这种方法的优点是程序执行效率高,不用刻意加延时指令,而且这种方法的判断按键抗干扰能力要更好;缺点是程序结构较复杂。 在以下的介绍中,我们将使用第二种方法来去除键抖动。 2.键盘结构及工作原理 键盘一般有独立式和行列式(矩阵式)两种。当然还有其它的结构,比如交互式结构等等,不过其它的结构比较少用,在这里就不介绍了。在中颖的单片机中,有些单片机的LCD驱动引脚的SEGMENT口可以共享按键扫描口,当选择为按键扫描口时,可以使用这些口来扫描按键,所以在外部电路可以连接LCD和按键矩阵,采用分时扫描进行处理,下面也将介绍这个特殊应用的方法和注意的地方。 独立式键盘结构

按键扫描方法

说到键盘扫描,相信大多数人第一反应就是行列矩阵扫描,这样我们可以用相对有限的IO口得到尽可能多的按键。键盘扫描是单片机技术的一种基本处理方法,学校的单片机课程都会有相应章节进行阐述,只要按照课本上讲述的方法,一般都能设计出比较可靠的键盘扫描电路与程序。 课本上的键盘扫描方法(见下图接法二)不能说是尽善尽美,从易懂性、成本、程序难易程度等方面综合看应该是不错的方法,给人感觉是已经没有太多的改善空间,至少我是这么认为的。 然而前段时间一位台湾朋友画给我的键盘扫描矩阵电路(见下图接法二),让我又一次看到到自己的思维还有许多地方被自己的所谓“经验”束缚着。 单纯的从硬件接法看,两种接法并没有明显区别,接法一甚至要复杂一些,但如果结合到键盘扫描的程序来看,就会发现接法一确实更好。 两种接法我都没有把上拉电阻包含进来,来让我们看一下两种接法到底有什么不同: 接法二: 我们熟悉的传统扫键处理电路,假定键盘行列IO口标号分别为H1/H2/H3和V1/V2/V3,扫键流程通常如下。 2.1. H1设置为输出,H2/H3和V1/V2/V3设置为输入 2.2. H1分别输出1和0,读V1/V2/V3状态,如果Vy状态与H1一致,则认为H1与Vy交叉位置的键按下 2.3. H2设置为输出,H1/H3和V1/V2/V3设置为输入 2.4. H2分别输出1和0,读V1/V2/V3状态,如果Vy状态与H2一致,则认为H2与Vy交叉位置的键按下 2.5. H3设置为输出,H1/H2和V1/V2/V3设置为输入 2.6. H3分别输出1和0,读V1/V2/V3状态,如果Vy状态与H3一致,则认为H3与Vy交叉位置的键按下

单片机4X4键盘扫描和显示课程设计

二、设计内容 1、本设计利用各种器件设计,并利用原理图将8255单元与键盘及数码管显示单元连接,扫描键盘输入,最后将扫描结果送入数码管显示。键盘采用4*4键盘,每个数码管可以显示0-F共16个数。将键盘编号,记作0-F,当没按下其中一个键时,将该按键对应的编号在一个数码管上显示出来,当在按下一个 键时,便将这个按键的编号在下一个数码管上显示,数码管上 可以显示最近6次按下的按键编号。 设计并实现一4×4键盘的接口,并在两个数码管上显示键盘所在的行与列。 三、问题分析及方案的提出 4×4键盘的每个按键均和单片机的P1口的两条相连。若没有按键按下时,单片机P1口读得的引脚电平为“1”;若某一按键被按下,则该键所对应的端口线变为地电平。单片机定时对P1口进行程序查询,即可发现键盘上是否有按键按下以及哪个按键被按下。 实现4×4键盘的接口需要用到单片机并编写相应的程序来识别键盘的十六个按键中哪个按键被按下。因为此题目还要求将被按下的按键显示出来,因此可以用两个数码管来分别显示被按下的按键的行与列

表示任意一个十六进制数)分别表示键盘的第二行、第三行、第四行;0xXE、0xXD、0xXB、0xX7(X表示任意一个十六进制数)则分别表示键盘的第一列、第二列、第三列和第四列。例如0xD7是键盘的第二行第四列的按键 对于数码管的连接,采用了共阳极的接法,其下拉电阻应保证芯片不会因为电流过大而烧坏。 五、电路设计及功能说明 4×4键盘的十六个按键分成四行四列分别于P1端口的八条I/O 数据线相连;两个七段数码管分别与单片机的P0口和P2口的低七 位I/O数据线相连。数码管采用共阳极的接法,所以需要下拉电阻 来分流。结合软件程序,即可实现4×4键盘的接口及显示的设计。 当按下键盘其中的一个按键时,数码管上会显示出该按键在4×4键 盘上的行值和列值。所以实现了数码管显示按键位置的功能 四、设计思路及原因 对于4×4键盘,共有十六个按键。如果每个按键与单片机的一个引脚相连,就会占用16个引脚,这样会使的单片机的接口不够用(即使够用,也是对单片机端口的极大浪费)。因此我们应该行列式的接法。行列式非编码键盘是一种把所有按键排列成行列矩阵的键盘。在这种键若没有按键按下时,单片机从P1口读得的引脚电平为“1”;若某一按键被按下,则该键所对应的端口线变为地电平。因此0xEX(X表示任意4×4键盘的第一行中的某个按键被按下,相应的0xDX、0xBX、0x7X(X 二、实验内容

矩阵键盘扫描汇编程序

4*4矩阵键盘扫描汇编程序(基于51单片机) // 程序名称:4-4keyscan.asm ;// 程序用途:4*4矩阵键盘扫描检测 ;// 功能描述:扫描键盘,确定按键值。程序不支持双键同时按下, ;// 如果发生双键同时按下时,程序将只识别其中先扫描的按键;// 程序入口:void ;// 程序出口:KEYNAME,包含按键信息、按键有效信息、当前按键状态;//================================================================== ==== PROC KEYCHK KEYNAME DATA 40H ;按键名称存储单元 ;(b7-b5纪录按键状态,b4位为有效位, ;b3-b0纪录按键) KEYRTIME DATA 43H ;重复按键时间间隔 SIGNAL DATA 50H ;提示信号时间存储单元 KEY EQU P3 ;键盘接口(必须完整I/O口) KEYPL EQU P0.6 ;指示灯接口 RTIME EQU 30 ;重复按键输入等待时间 KEYCHK: ;//=============按键检测程序========================================= ==== MOV KEY,#0FH ;送扫描信号 MOV A,KEY ;读按键状态 CJNE A,#0FH,NEXT1 ;ACC<=0FH ; CLR C ;Acc等于0FH,则CY为0,无须置0 NEXT1: ; SETB C ;Acc不等于0FH,则ACC必小于0 FH, ;CY为1,无须置1 MOV A,KEYNAME ANL KEYNAME,#1FH ;按键名称屏蔽高三位 RRC A ;ACC带CY右移一位,纪录当前按键状态 ANL A,#0E0H ;屏蔽低五位

数码管显示和键盘扫描实验资料

实验三LED数码管动态显示及4 X4 键盘控制实验 一、实验目的 1.巩固多位数码管动态显示方法。 2.掌握行扫描法矩阵式按键的处理方法。 3.熟练应用AT89S52学习板实验装置,进一步掌握keil C51的使用方法。二、实验内容 使用AT89S52学习板上的4位LED数码管和4 X 4矩阵键盘阵列做多位数码管动态显示及行扫描法键盘处理功能实验。用P0口做数据输出,利用P1做锁存器74HC573的锁存允许控制,编写程序使4位LED数码管按照动态显示方式显示一定的数字;按照行扫描法编写程序对4 X 4矩阵键盘阵列进行定期扫描,计算键值并在数码管上显示。 三、实验系统组成及工作原理 1.4位LED数码管和4 X 4矩阵键盘阵列电路原理图

2.多位数码管动态显示方式 a b c d e f g dp com a b c d e f g dp com a b c d e f g dp com a b c d e f g dp com D0 IO(2) IO(1) 说明4位共阴极LED动态显示3456数字的工作过程 首先由I/O口(1)送出数字3的段选码4FH即数据01001111到4个LED共同的段选线上, 接着由I/O口(2)送出位选码××××0111到位选线上,其中数据的高4位为无效的×,唯有送入左边第一个LED的COM端D3为低电平“0”,因此只有该LED的发光管因阳极接受到高电平“1”的g、d、c、b、a段有电流流过而被点亮,

也就是显示出数字3,而其余3个LED因其COM端均为高电平“1”而无法点亮;显示一定时间后, 再由I/O口(1)送出数字4的段选码66H即01100110到段选线上,接着由I/O 口(2)送出点亮左边第二个LED的位选码××××1011到位选线上,此时只有该LED的发光管因阳极接受到高电平“1”的g、f、c、b段有电流流过因而被点亮,也就是显示出数字4,而其余3位LED不亮; 如此再依次送出第三个LED、第四个LED的段选与位选的扫描代码,就能一一分别点亮各个LED,使4个LED从左至右依次显示3、4、5、6。 3.4 X 4 矩阵式按键扫描处理程序 行扫描法又称逐行零扫描查询法,即逐行输出行扫描信号“0”,使各行依次为低电平,然后分别读入列数据,检查此(低电平)行中是否有键按下。如果读得某列线为低电平,则表示此(低电平)行线与此列线的交叉处有键按下,再对该键进行译码计算出键值,然后转入该键的功能子程序入口地址;如果没有任何一根列线为低电平,则说明此(低电平)行没有键按下。接着进行下一行的“0”行扫描与列读入,直到8行全部查完为止,若无键按下则返回。 有时为了快速判断键盘中是否有键按下,也可先将全部行线同时置为低电平,然后检测列线的电平状态,若所有列线均为高电平,则说明键盘中无键按下,立即返回;若要有一列的电平为低,则表示键盘中有键被控下,然后再如上那样进行逐行扫描。 四、实验设备和仪器 PC机一台 AT89S52单片机学习板、下载线一套 五、实验步骤 1.按时实验要求编写源程序(实验前写)进行软件模拟调试。 2.软件调试好,连接硬件电路。

相关文档
最新文档