经典案例分享:两种键盘扫描方法比较分析

合集下载

按键扫描处理个人总结

按键扫描处理个人总结

按键扫描处理总结一、矩阵按键扫描方法1、现在的矩阵扫描主要有两种方法:(1)行列扫描法(2)反转法。

2、行列扫描法(1)行列扫描法的基本思想:行列扫描法是将其中的一行输出为低电平,其他行输出为高电平,列设为输入,然后判断哪一列为低电平,从而确认出是哪一行哪一列有键按下。

(2)行列扫描法举例如图1所示的2*2矩阵键盘,首先:将PB1,PB2作为行,并设置为输出;PA1,PA2作为列,并设置为输入。

其次:PB1设置为低电平输出,PB2设置为高电平输出,查看此时PA1和PA2的输入状态,假设此时S1按下,则此时PB1输出低电平通过S1传到了PA1上,使得PA1输入为低电平,而PA2仍然为高电平。

说明第一行有键按下,并且是第一列有键按下然后:再将PB1设置为高电平输出,PB2设置为低电平输出,此时PA1,PA2输入都为高电平。

说明第二行上没有按键按下。

最后:至此可以判断此时的PA1与PB1上的按键被按下,即第一行第一列的S1被按下。

整个按键扫描过程结束。

3、反转法(1)反转法的基本思想:将行设为输出为低电平,列设为输入,判断此时列的输入状态;然后在将列设为输出位低电平,行设为输入,判断此时行的输入状态。

如果有键按下,则其中的列输入状态必然有其中一列为低,行的输入状态也必然有其中一行为低,记录此时的行列号即可判断出是哪一行哪一列有键按下。

(2)反转法举例:如图1所示的2*2矩阵键盘,首先:将PB1,PB2作为行,并设置为输出;PA1,PA2作为列,并设置为输入。

其次:将PB1,PB2输出为低,查看PA1,PA2输入状态,假设还是S1被按下,则此时PA1输入为低电平,PA2输入为高电平。

说明第一列有键按下。

然后:将PB1,PB2作为行,并设置为输入;PA1,PA2作为列,并设置为输出。

最后:将PA1,PA2输出为低,查看PB1,PB2输入状态,则此时PB1输入为低电平,PB2输入为高电平。

说明第一行有键按下。

实验五 键盘扫描实验 实验报告

实验五 键盘扫描实验 实验报告

键盘扫描实验实验报告一、实验目的1. 掌握线反转法键盘扫描原理。

2. 了解单片机的输入和输出过程,理解单片机的数据采集过程。

二、实验内容单片机外接4x4键盘,通过线反转法判断按下的键,并在数码管上显示按键对应的数字。

第一行从左到右分别是开关K0, K1, K2, K3,第二行从左到右分别是K4, K5, K6, K7以此类推。

当按下Kn时,在数码管上显示数字n。

三、实验原理线翻转法:先对行(R0-R3)置0,对列(R4-R7)置1。

当有键被按下时,会把按键所在的列的电位从1变0,记录下位置;然后再将行列翻转,记录下按下键的所在行,两数进行或运算,就可以得到一个唯一表示按下键的数字。

例如:假定R0-R7分别与单片机的P2.0-P2.7相连。

先把R4-R7置1,R0-R3置0(通过指令MOV P2, #0F0H实现)。

当键K5被按下时,R5电位被拉低为低电平。

此时,P2口表示的数为:1101 0000(0xD0);然后再置R4-R7为0,R0-R3为1,此时,R1电位被拉低为低电平,此时,P2口表示的数为:0000 1101(0x0D)。

将两数相与取反,得到:0010 0010。

四、实验过程1. 连接好单片机及其外围设备电路2. 编写汇编程序ORG LJMP KeyLJMP K7: CJNE R2, #82H, K8ORG 0100H MOV P0, #0F8H Init: CLR P1.3 LJMP KeyMOV P0, #0C0H K8: CJNE R2, #14H, K9 Key: MOV P2, #0F0H MOV P0, #080HMOV A, P2 LJMP KeyMOV R1, A K9: CJNE R2, #24H, K10MOV P2, #0FH MOV P0, #090HMOV A, P2 LJMP KeyORL A, R1 K10: CJNE R2, #44H, K11CPL A MOV P0, #088HMOV R2, A LJMP KeyJNZ KeyPro K11: CJNE R2, #84H, K12LJMP Key MOV P0, #083H KeyPro: CJNE R2, #11H, K1 LJMP KeyMOV P0, #0C0H K12: CJNE R2, #18H, K13LJMP Key MOV P0, #0C6H K1: CJNE R2, #21H, K2 LJMP KeyMOV P0, #0F9H K13: CJNE R2, #28H, K14LJMP Key MOV P0, #0A1H K2: CJNE R2, #41H, K3 LJMP KeyMOV P0, #0A4H K14: CJNE R2, #48H, K15LJMP Key MOV P0, #086H K3: CJNE R2, #81H, K4 LJMP KeyMOV P0, #0B0H K15: CJNE R2, #88H, K16LJMP Key MOV P0, #08EH K4: CJNE R2, #12H, K5 LJMP KeyMOV P0, #099H K16: LJMP KeyLJMP Key ENDK5: CJNE R2, #22H, K6MOV P0, #092HLJMP KeyK6: CJNE R2, #42H, K7MOV P0, #082H五、实验结果1. 当按下开关Kn时,数码管能够显示对应的数字。

实验八 键盘扫描实验

实验八  键盘扫描实验

实验八键盘扫描实验一、实验目的1. 掌握中断键盘扫描编程方法。

2. 掌握LED动态显示方法。

二、实验原理及实验内容1. 实验原理无论是单片机控制系统还是单片机测量系统,都需要一个人机对话装置,这种人机对话装置通常采用键盘和显示器。

键盘是单片机应用系统中人机对话常用的输入装置,而显示器是单片机应用系统人机对话中的常用输出装置。

键盘是由若干个按键开关组成,键的多少根据单片机应用系统的用途而定。

键盘由许多键组成,而每个键相当于一个机械开关触点,当键按下时,触点闭合,当键松开时,触点断开。

单片机接收到按键的触点信号后作相应的功能处理。

因此对于单片机系统来说键盘接口信号是输入信号。

单片机的键盘接口分为独立式和矩阵式。

独立式键盘的每个按键都有一个信号线与单片机电路相连,所有按键有一个公共地或公共正端,每个键相互独立互不影响。

如图7-7所示,当按下键1时,无论其它键是否按下,键1的信号线就由1变0;当松开键1时,无论其它键是否按下,键1的信号线就由0变1。

矩阵式键盘的按键触点接于由行、列母线构成的矩阵电路的交叉处,每当一个按键按下时通过该键将相应的行、列母线连通。

若在行、列母线中把行母线逐行置0(一种扫描方式),那么列母线就用来作信号输入线。

矩阵式键盘原理图如图7-8所示。

图7-7 独立式按键原理图图7-8 矩阵式按键原理图针对以上两大类键盘工作方式,单片机又有三种键盘扫描方式:查询方式;定时扫描方式和中断扫描方式。

查询方式是指在程序中用一段专门的扫描和读按键程序不停查询有无按键按下,确定键值。

这种方式电路简单,但需要占用单片机的机器时间。

定时扫描方式是指利用单片机内的定时器来产生定时中断,然后在定时中断的服务程序中扫描,检查有无按键按下,确定键值。

这种方式的电路也比较简单,不占用单片机的机器时间,但需要占用一个定时器,同时定时的时间不能过长,否则可能检测不到相应得按键。

中断扫描方式是指当有键按下时由相应的硬件电路产生中断信号,单片机在中断服务程序中扫描,检查有无按键按下,确定键值。

键盘扫描三种方法

键盘扫描三种方法

第一种------传统法uchar scanf(){P3=0xfe;temp=P3&0xf0;if(temp!=0xf0) //判断是否有键按下{delay(5);//给一个延时temp=P3&0xf0;if(temp!=0xf0) //再次判断是否有键按下{temp=P3;switch(temp){case 0xee:num=1;break;case 0xde:num=2;break;case 0xbe:num=3;break;case 0x7e:num=4;break;}}while(temp!=0xf0)//键起,推出程序{temp=P3&0xf0;}}P3=0xfd;temp=P3&0xf0;if(temp!=0xf0){delay(5);temp=P3&0xf0;if(temp!=0xf0){temp=P3;switch(temp){case 0xed:num=5;break;case 0xdd:num=6;break;case 0xbd:num=7;break;case 0x7d:num=8;break;}}while(temp!=0xf0){temp=P3&0xf0;}}P3=0xfb;temp=P3&0xf0;if(temp!=0xf0){delay(5);temp=P3&0xf0;if(temp!=0xf0){temp=P3;switch(temp){case 0xeb:num=9;break;case 0xdb:num=10;break;case 0xbb:num=11;break;case 0x7b:num=12;break;}}while(temp!=0xf0){temp=P3&0xf0;}}P3=0xf7;temp=P3&0xf0;if(temp!=0xf0){delay(5);temp=P3&0xf0;if(temp!=0xf0){temp=P3;switch(temp){case 0xe7:num=13;break;case 0xd7:num=14;break;case 0xb7:num=15;break;case 0x77:num=16;break;}}while(temp!=0xf0){temp=P3&0xf0;}}Return(num);}第二种——简单法uchar keyscan(void){uchar scancode,tmpcode;P3 = 0xf0; // 发全0行扫描码if ((P3&0xf0)!=0xf0) // 若有键按下{delay(5); // 延时去抖动if ((P3&0xf0)!=0xf0)// 延时后再判断一次,去除抖动影响{scancode = 0xfe;//相当于从第一行开始扫描1111 1110while((scancode&0x10)!=0) // 控制行我的理解while((P3&0xf0)!=0xf0)(原来的程序转了一个大弯)(原程序,首先进入,使其扫描全行,扫描一次退出;我的:按键复原后,才退出程序;我的程序要扫描多次,但前提是一定扫描得到{P3 = scancode; // 输出行扫描码其实P3变为了1101 1110(假设有键按下)其中因为有键按下,写入的1马上又变为0(只有当行和列都对应时,才会继续下面的运算)即:如果开始按的是1101 1011,那么P3显示的就是1111 1110列中就不会出现0if ((P3&0xf0)!=0xf0) // 本行有键按下(确定行){tmpcode = (P3&0xf0)|0x0f; //确定列return((~scancode)+(~tmpcode)); /* 返回特征字节码,为1的位即对应于行和列*/}elsescancode = (scancode<<1)|0x01; // 行扫描码左移一位,换另一行扫面}}}return(0); // 无键按下,返回值为0}第三种———先行扫描,再列扫描uchar keyscan(void){uchar tag1,tag2;tag1=0xff;tag2=0xff;P3 = 0xf0; // 发全0行扫描码if ((P3&0xf0)!=0xf0) // 若有键按下{delay(5); // 延时去抖动if ((P3&0xf0)!=0xf0) // 延时后再判断一次,去除抖动影响{tag1=P3;P3=0x0f;tag2=P3&0x0f;}}return(~(tag1|tag2)); }。

行列式键盘扫描

行列式键盘扫描

实验二 行列式键盘扫描一. 实验内容与目的1. 实验内容利用行列式键盘,当按下键盘中的一个键子时会在数码管上显示出相应的键值,要求键盘有去抖功能,数码管显示的键值能进行移位。

2,实验目的学会行列式键盘扫描的原理与方法,进一步强化对MSP430I/O 口使用方法的掌握,加强msp430C 语言编程的能力。

二. 方法与结果键盘扫描:利用P3口进行键盘扫描,如图,令P3.0~P3.3为输出端口,P3.4~P3.7为输入端口,由于P3.4~P3,7接了上拉电阻,所以当没有键子按下时P3.4~P3.7都为‘1’,当有键子按下时P3.4~P3.7就有可能发生变化。

所以键盘扫描式先让P3.0~P3.3都为‘0’,当有键子按下时P3.4~P3.7就会有一个由‘1’变为‘0’,根据哪一个变为‘0’就能判断出相应的列有键子按下,再让P3.0~p3.3逐个变为‘1’判断出哪一行有键子按下进而确定出哪一个键子按下。

11221112221122311224112251122611227112281122911221122#1122*1122A 1122B1122C1122DR2510k R2610kR2710kR2810kP_30P_31P_32P_33P_34P_35P_36P_37P3.0~p3.3为‘0’P3.4~p3.7都为‘1’P3.4~P3.7不都为‘1’ 令P3.0~p3.3逐个为‘1’ 确定列确定行当P3.4~p3.7都为‘1’确定键值数码管显示:数码管位选与段选共用P1.0~P1.3,利用锁存器74HC373分时进行段选和位选,P6.1和P6.2控制74HC373,从而使相应数码管显示相应数。

电路图如下:e 1d 2d p3c 4g 546b 73829f 10a 11112seg4O E 1Q 02D 03D 14Q 15Q 26D 27D 38Q 39G N D 10L E11Q 412D 413D 514Q 515Q 616D 617D 718Q 719V C C 2074HC373_174HC373O E 1Q 02D 03D 14Q 15Q 26D 27D 38Q 39G N D 10L E11Q 412D 413D 514Q 515Q 616D 617D 718Q 719V C C 2074HC373_274HC373R19100R20100R21100R22100R2310k R2410k P_61P_62VCCVCCGND GNDGND GND GNDGNDP_10P_11P_12P_13P_14P_15P_16P_17三. 实验程序#include<msp430.h> void KEYSCAN(); void TUBESCAN();void KEYSLOVE( unsigned int key); unsigned char const table[]={0xff,0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e}; //0~F 码值 unsigned int s1=0,s2=0,s3=0,s4=0; //s1~s4保存相应键值,进行显示 unsigned int key;void delay1(unsigned int i) {while(i--); }void main() {WDTCTL=WDTPW+WDTHOLD; P1DIR=0xff; P1SEL=0x00; P3SEL=0x00; P3DIR=0x0f;P6DIR=BIT1+BIT2; TUBESCAN(); P3OUT=0xf0; while(1)KEYSCAN();TUBESCAN();}}void KEYSCAN(){P3OUT=0xf0;if(P3IN!=0xf0){switch(P3IN){case (0xe0):P3OUT=0x01;if(P3IN==0xf1) {key=16;break;}P3OUT=0x02;if(P3IN==0xf2) {key=12;break;}P3OUT=0x04;if(P3IN==0xf4) {key=8;break;}P3OUT=0x08;if(P3IN==0xf8) {key=4;break;}case (0xd0):P3OUT=0x01;if(P3IN==0xf1) {key=15;break;}P3OUT=0x02;if(P3IN==0xf2) {key=11;break;}P3OUT=0x04;if(P3IN==0xf4) {key=7;break;}P3OUT=0x08;if(P3IN==0xf8) {key=3;break;}case (0xb0):P3OUT=0x01;if(P3IN==0xf1) {key=14;break;}P3OUT=0x02;if(P3IN==0xf2) {key=10;break;}P3OUT=0x04;if(P3IN==0xf4) {key=6;break;}P3OUT=0x08;if(P3IN==0xf8) {key=2;break;}case (0x70):P3OUT=0x01;if(P3IN==0xf1) {key=13;break;}P3OUT=0x02;if(P3IN==0xf2) {key=9;break;}P3OUT=0x04;if(P3IN==0xf4) {key=5;break;}P3OUT=0x08;if(P3IN==0xf8) {key=1;break;}}P3OUT=0xf0;KEYSLOVE(key);} //键盘扫描函数,得到相应的键值key }void KEYSLOVE( unsigned int key){delay1(200);if(P3IN!=0xf0){while(P3IN!=0xf0) TUBESCAN(); //键盘去抖,保证当手松开时读取键值if(s4==0)s4=s3;s3=s2;s2=s1;s1=key;}else{if(key==16){s1=0;s2=0;s3=0;s4=0;key=0;}}}} //将得到的键值进行处理:移位/重置void TUBESCAN(){P6OUT=0x02;P1OUT=table[s4];P6OUT=0x04;P1OUT=0x01;delay1(400);P6OUT=0x02;P1OUT=table[s3];P6OUT=0x04;P1OUT=0x02;delay1(400);P6OUT=0x02;P1OUT=table[s2];P6OUT=0x04;P1OUT=0x04;delay1(400);P6OUT=0x02;P1OUT=table[s1];P6OUT=0x04;P1OUT=0x08;delay1(400);} //数码管扫描,使数码管保持四.行列式键盘实验总结①做行列是键盘重点是键盘扫描确定键值,键盘扫描也有多种方式,要多思考确定最优方式,采用本实验中的键盘扫描方式当没有键子按下时不必执行键盘扫描的其他程序,将更多的时间给了数码管扫描,挺优的,在着手写程序之前一定要筹划如何去写,要寻求简单易行的方法,写程序规划挺重要的。

单片机矩阵键盘扫描的两种方式

单片机矩阵键盘扫描的两种方式

单片机矩阵键盘扫描的两种方式单片机矩阵键盘扫描的两种方式矩阵键盘扫描方式:第一种:逐行扫描法,就是一行一行的扫描。

实现代码如下(键盘连接P2口):#define NO_KEY 0XFF#define KEY_LO() P2 &= 0XF0#define KEY_HI() P2 |= 0X0F#define KEY_L(i) P2 &= ~(1<<i)#define KEY_RD() ((P2>>4) & 0x0f)UINT8 OnceKey(void){UINT8 line = 0;UINT8 key = NO_KEY;//key valueKEY_LO();if (KEY_RD() == 0X0F){KEY_HI();return NO_KEY;}for (line=0; line<4; line ++){KEY_HI();KEY_L(line);key = KEY_RD();switch (key){case ROW_FIRST:key = 4*line + 0;break;case ROW_SECOND:key = 4*line + 1;break;case ROW_THIRD:key = 4*line + 2;break;case ROW_FOURTH:key = 4*line +3;break;default :key = 0x0f;break;}if (key < 0x10){return key;}}return NO_KEY;}第二种,线性反转法。

就是行和列分别读出。

实现代码如下:#define CVT(i) ((i)==(~1)&0x0f)? 0: ((i)==(~2)&0x0f)? 1: ((i)==(~4)&0x0f)? 2: ((i)==(~8)&0x0f)? 3: 4;#define KEY0_3HI() P2 |= 0X0F#define KEY0_3LO() P2 &= 0XF0#define KEY4_7HI() P2 |= 0XF0#define KEY4_7LO() P2 &= 0X0F#define KEY0_3RD() (P2 & 0X0F)#define KEY4_7RF() ((P2>>4) & 0X0F)UINT8 OnceKey(void){UINT8 line = NO_KEY;UINT8 row = NO_KEY;UINT8 key;KEY0_3HI();KEY4_7LO();line = KEY0_3RD();//读入行的值if (0x0f == line){key = NO_KEY;}else{KEY0_3LO();KEY4_7HI();row = KEY4_7RD();//读入列的值if (0x0f == row){key = NO_KEY;}else{key = CVT(line)*4 + CVT(row);}}KEY0_3HI();KEY4_7HI();return key; }。

堪称一绝的按键扫描方法

堪称一绝的按键扫描方法

堪称一绝的按键扫描方法堪称一绝的“IO口扫键”法在做项目(工程)的时候,我们经常要用到比较多的按键,而且IO资源紧张,于是我们就想方设法地在别的模块中节省IO口,好不容易挤出一两个IO口,却发 现仍然不够用,实在没办法了就添加一个IC来扫键。

一个IC虽然价格不高,但对于大批量生产而且产品利润低的厂家来说,这是一笔不菲的开支!那,我们能不能想到比较好的扫键方法:用最少的IO口,扫最多的键?可以吗? 举个例:给出5个IO口,能扫多少键?有人说是2*3=6个,如图一:图一对,大部分技术参考书都这么做,我们也经常这样做:用3个IO口作行扫描,2个IO作列检测(为方便描述,我们约定:设置某一IO口输出为 “0”――称其为“扫某IO口”)。

用行线输出扫键码,列线检测是否有按键的查询方法进行扫键。

扫键流程:在行线依次输出011,101,110扫键值, 行线每输出一个扫键值,列线检测一次。

当列线检测到有按键时,结合输出的扫键值可以判断相应的按键。

但是,5个IO真的只能扫6个键吗?有人说可以扫9个,很聪明!利用行IO与地衍生3个键(要注意上拉电阻),如图二:图二扫键流程:先检测3个行IO口,对K1’,K2’,K3’进行扫键,之后如上述2*3扫键流程。

5个IO口能扫9个键,够厉害吧,足足比6个键多了1/2!动动脑,还能不能再多扫几个?就几个?一个也行!好,再想一下,硬是被逼出来了!如图三:图三不多不少,正好10个键!这种扫键方式比较少见吧!漂亮!扫键流程:设IO1输出为“0”,检测IO2…IO5,若判断有相应健按下,则可知有健;若无 键,则继续扫键:设IO2输出为“0”,检测IO3,IO4,IO5,判断有无键按下,如此类推。

这里应注意:当扫某一IO口(输出为“0”)时,不要去 检测已经扫过的IO口。

如:此时设置IO2输出为“0”,依次检测IO3,IO4,IO5,但不要去检测IO1,否则会出错(为什么,请思考)。

感觉怎么样?不错吧!让我们再看看图三,好有成就感!看着,看着……又看到了什么?快!见图四:图四真强!被您看出20个键!多了一个对称的三角形。

键盘扫描方法

键盘扫描方法

键盘扫描方法传统的键盘扫描方法如图1所示,该方法虽然被广泛应用于很多场合,但有一个不足的地方,如果按键一直没有释放,或者按键坏了,一直处于闭合状态,则程序一直处于检测按键是否释放,系统将无法运行。

只要对其稍加改进,就可以避免产生这个问题。

假设键盘接口电路采用独立式键盘接口,所有按键公共端接地,而且没有按键按下时IO口为高电平。

当按键没有按下时,IO口为高电平;当按键按下时,IO口为低电平;当按键释放时,IO口为高电平。

一个完整的按键过程是——按键未按下,按键按下,按键释放,而对应的IO口的电平变化为——高电平,低电平,高电平。

所以,可以通过判断IO口电平变化的变化顺序是否满足高电平→低电平→高电平,来判断是否有按键按下,而对于其它的电平变化顺序都是无效的。

那么该如何实现呢?在键盘扫描过程中,如果IO口为高电平,则需要判断是由于未按键,还是按键按下后释放引起的;如果IO口为低电平,则需要判断是由于未按键还是扫描之前本来就是低电平引起的。

所以我们需要引入一个全局位变量KEY_EN,来标志按键的状态, KEY_EN=0表示按键未按下;KEY_EN=1表示按键按下。

另外,我们还需引入一个全局字节变量KEY_TP来暂存键值,这是因为只有当IO口电平变化满足高电平→低电平→高电平,才表示一个按键有效,而只有在IO口为低电平的时候才能够读取到键值。

具体的键盘扫描流程如图2所示,键盘初始化KEY_EN=0。

图1 传统键盘扫描图2 改进后键盘扫描接下来我们介绍一种代码效率极高的键盘扫描方法。

键盘接口电路同样采用独立式,假设有8个按键,所有按键公共端接地,键盘扫描口为P0.7~P0.0,而且没有按键按下时为高电平,键盘扫描程序如下:unsigned char Trigger;unsigned char Continue;void delayms(unsigned char n){……}void key_scan(){unsigned char ReadData;if (P0!=0xff&&Trigger==0x00) delayms(20);ReadData = P0 ^ 0xff;Trigger = ReadDate & (ReadData ^ Continue);Continue = ReadData;}程序中的Trigger就是键值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典案例分享:两种键盘扫描方法比较分析
说到键盘扫描,相信大多数人第一反应就是行列矩阵扫描,这样我们可以用相对有限的IO口得到尽可能多的按键。

键盘扫描是单片机技术的一种基本处理方法,学校的单片机课程都会有相应章节进行阐述,只要按照课本上讲述的方法,一般都能设计出比较可靠的键盘扫描电路与程序。

课本上的键盘扫描方法(见下图接法二)不能说是尽善尽美,从易懂性、成本、程序难易程度等方面综合看应该是不错的方法,给人感觉是已经没有太多的改善空间,至少我是这幺认为的。

然而前段时间一位台湾朋友画给我的键盘扫描矩阵电路(见下图接法二),让我又一次看到到自己的思维还有许多地方被自己的所谓经验束缚着。


单纯的从硬件接法看,两种接法并没有明显区别,接法一甚至要复杂一些,但如果结合到键盘扫描的程序来看,就会发现接法一确实更好。

相关文档
最新文档