网络爬虫技术论文
【设计】毕业设计网络爬虫

【关键字】设计毕业设计网络爬虫篇一:网络爬虫的设计与实现毕业设计(论文)说明书学院软件学院专业软件工程年级姓名张凤龙指导教师陈锦言XX年3月 6 日毕业设计(论文)任务书题目:网络爬虫设计与实现学生姓名张凤龙学院名称软件学院专业软件工程学号指导教师陈锦言职称讲师一、原始依据(包括设计或论文的工作基础、研究条件、应用环境、工作目的等。
)互联网是一个庞大的非结构化的数据库,将数据有效的检索并组织呈现出来有着巨大的应用前景。
搜索引擎作为一个辅助人们检索信息的工具成为用户访问万维网的入口和指南。
但是,这些通用性搜索引擎也存在着一定的局限性。
不同领域、不同背景的用户往往具有不同的检索目的和需求,通用搜索引擎所返回的结果包含大量用户不关心的网页。
所以需要一个能基于主题搜索的满足特定需求的网络爬虫。
为了解决上述问题,参照成功的网络爬虫模式,对网络爬虫进行研究,从而能够为网络爬虫实现更深入的主题相关性,提供满足特定搜索需求的网络爬虫。
二、参考文献[1]Winter.中文搜索引擎技术解密:网络蜘蛛[M].北京:人民邮电出版社,XX年.[2]Sergey等.The Anatomy of a Large-Scale Hypertextual Web Search Engine [M].北京:清华大学出版社,1998年.[3]Wisenut.WiseNut Search Engine white paper [M].北京:中国电力出版社,XX年.[4]Gary R.Wright W.Richard Stevens.TCP-IP协议详解卷3:TCP事务协议,HTTP,NNTP 和UNIX域协议[M].北京:机械工业出版社,XX 年1月. [5]罗刚王振东.自己动手写网络爬虫[M].北京:清华大学出版社,XX年10月.[6]李晓明,闫宏飞,王继民.搜索引擎:原理、技术与系统——华夏英才基金学术文库[M].北京:科学出版社,XX年04月.三、设计(研究)内容和要求(包括设计或研究内容、主要指标与技术参数,并根据课题性质对学生提出具体要求。
网络爬虫技术3篇

网络爬虫技术第一篇:网络爬虫技术介绍网络爬虫技术是从网络上自动获取信息的一种技术,也叫做网页抓取或者网络蜘蛛。
它是一个自动地通过互联网采集网络数据的程序。
网络爬虫技术是搜索引擎的关键技术之一。
搜索引擎的底层就是一系列爬虫,通过爬虫从万维网上收集信息,然后通过算法对这些信息进行分析、处理、归类、排序等操作,最后呈现给用户。
网络爬虫技术的原理是模拟客户端向服务器发起请求,从而获取网络信息,并根据特定的规则,抓取需要的内容,保存到自己的数据库中。
网络爬虫技术的应用非常广泛,可以用于搜索引擎、数据挖掘、价格比较、信息监控等领域。
其中,搜索引擎应用最为广泛。
搜索引擎需要在短时间内从互联网上获取大量的网页,并对这些网页进行处理,将其中的信息提取出来,进行组织、处理、归纳、分析、挖掘,最终返回给用户。
为了避免网络爬虫造成的网站负荷和数据安全问题,很多网站会通过技术手段来限制网络爬虫的访问。
一些常用的限制手段包括:robots.txt文件、访问频率限制、验证码验证,以及反爬虫策略,如IP封锁、JS反爬虫等。
网络爬虫技术不仅有着广泛的应用范围,而且也有着复杂的技术要求。
爬虫涉及到的技术领域非常广泛,包括但不限于:Java开发、Python编程、分布式计算、数据库管理、网络安全等。
同时,最为关键的是对抓取的数据进行分析,得出有效的信息,这需要掌握一定的数据分析技能。
网络爬虫技术的出现,使得人们可以更加方便地获取互联网上的信息,提高了互联网信息的利用价值。
然而,随着人们对网络爬虫技术的使用,也引发了一系列的争议,包括隐私问题、版权问题、以及对于商业利用的限制问题。
总之,网络爬虫技术是互联网信息采集处理与利用的关键技术。
随着人们对它的需求日益增加,未来网络爬虫技术将会得到进一步的发展和应用。
第二篇:网络爬虫技术的发展与挑战网络爬虫技术自20世纪90年代发展以来,一直在不断地发展和创新。
一方面,随着互联网的快速发展和互联网用户行为方式的不断演进,网络爬虫的使用也不断发展出各种新的应用形态;另一方面,各种阻挡网络爬虫的技术和策略也不断更新,对爬虫技术提出了新的挑战。
网络爬虫技术探究毕业论文

毕业论文题目网络爬虫技术探究英文题目Web Spiders Technology Explore信息科学与技术学院学士学位论文毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:信息科学与技术学院学士学位论文学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日信息科学与技术学院学士学位论文导师签名:日期:年月日信息科学与技术学院学士学位论文注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
基于Python的网络爬虫技术研究

基于Python的网络爬虫技术研究随着互联网的快速发展,网络爬虫技术成为了信息获取和数据分析的重要工具。
而Python作为一种简洁、灵活且易于学习的编程语言,被广泛应用于网络爬虫的开发和研究。
本文将探讨基于Python的网络爬虫技术的原理、应用和发展趋势。
一、概述网络爬虫是一种自动化程序,能够模拟人类在互联网上的浏览行为,获取网页内容并进行进一步的处理。
基于Python的网络爬虫技术主要利用Python的强大的文本处理能力和丰富的第三方库,实现对网页的抓取、解析和数据提取。
二、原理1. URL请求和响应网络爬虫首先通过URL发送请求获取网页内容,然后根据网页的响应状态码判断是否获取成功。
Python的requests库和urllib库是常用的URL请求库,能够方便地发送HTTP请求并接收响应。
2. 网页解析获取网页内容后,网络爬虫需要对网页进行解析以提取所需的信息。
Python的Beautiful Soup库和XPath是常用的网页解析技术,能够快速、高效地提取目标数据。
3. 数据存储网络爬虫获取到的数据需要进行存储和管理。
Python的sqlite3模块和MySQLdb模块提供了方便的数据库操作功能,可以将数据存储在本地数据库中。
此外,还可以使用Python的pandas库将数据保存为CSV 或Excel文件。
三、应用基于Python的网络爬虫技术在各个领域有广泛的应用。
1. 数据采集网络爬虫可以帮助我们自动化地从互联网上获取大量的数据。
比如,在电商行业,利用网络爬虫可以获取商品信息、评论数据等,用于市场分析和竞争情报;在金融行业,可以获取股票、财经新闻等数据,用于量化交易和投资决策。
2. 舆情分析网络爬虫可以从社交媒体平台、新闻网站等获取用户的评论和观点,用于进行舆情分析。
比如,在政府部门中,可以通过分析网民的意见和情绪,了解公众对政策的反应;在企业中,可以通过分析用户的评价和意见,改进产品和服务。
网络爬虫 毕业论文

网络爬虫毕业论文网络爬虫:数据挖掘的利器随着互联网的迅猛发展,我们进入了一个信息爆炸的时代。
海量的数据涌入我们的生活,如何从这些数据中获取有用的信息成为了一个重要的问题。
在这个背景下,网络爬虫应运而生,成为了数据挖掘的利器。
一、网络爬虫的定义和原理网络爬虫,顾名思义,就是像蜘蛛一样在网络上爬行,自动地从网页中提取信息。
它的工作原理可以简单地概括为以下几个步骤:首先,爬虫会从一个起始网页开始,通过解析网页中的链接找到其他网页;然后,它会递归地访问这些链接,进一步抓取网页;最后,爬虫会将抓取到的网页进行处理,提取出所需的信息。
二、网络爬虫的应用领域网络爬虫在各个领域都有广泛的应用。
在搜索引擎领域,爬虫是搜索引擎的核心组成部分,它通过抓取网页并建立索引,为用户提供准确、全面的搜索结果。
在电子商务领域,爬虫可以用来抓取商品信息,帮助企业了解市场动态和竞争对手的情况。
在金融领域,爬虫可以用来抓取股票、基金等金融数据,为投资者提供决策依据。
此外,爬虫还可以应用于舆情监测、航空订票、房产信息等领域。
三、网络爬虫的技术挑战尽管网络爬虫在各个领域都有广泛的应用,但是它也面临着一些技术挑战。
首先,网络爬虫需要解决网页的反爬虫机制,如验证码、IP封锁等,以确保能够正常抓取数据。
其次,网络爬虫还需要处理大规模数据的存储和处理问题,以确保抓取的数据能够高效地被利用。
此外,网络爬虫还需要解决网页结构的变化和网页内容的多样性等问题,以确保能够准确地提取所需信息。
四、网络爬虫的伦理问题随着网络爬虫的应用越来越广泛,一些伦理问题也逐渐浮现出来。
首先,网络爬虫可能会侵犯个人隐私,特别是在抓取个人信息时需要注意保护用户的隐私权。
其次,网络爬虫可能会对网站的正常运行造成影响,如过于频繁地访问网站可能会导致网站崩溃。
因此,在使用网络爬虫时,需要遵守相关的法律法规和伦理规范,确保合法、合理地使用爬虫工具。
五、网络爬虫的未来发展随着人工智能和大数据技术的不断发展,网络爬虫在未来还将有更广阔的应用前景。
网络爬虫技术论文

网络爬虫技术浅析在当今社会,越来越多的人使用互联网看视频,听音乐,查资料等等,使得网络上的数据越来越多。
人们想从海量的数据中获取到自己想要的知识,靠人力浏览很难实现查找到需要的东西,除非运气相当好。
这个时候搜索引擎就出现了,搜索引擎可以通过关键字,查找网页并显示在用户面前,用户可以得到有用的信息。
在搜索引擎中非常关键的数据来源来自一种很神奇的技术:网络爬虫技术,它构成了搜索引擎的基础部分。
网络爬虫的基本概念网络爬虫是一个自动提取网页的程序,它为搜索引擎从万维网上下载网页,是引擎的重要组成。
传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件。
网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动的抓取万维网信息的程序或者脚本。
另外一些不常使用的名字还有蚂蚁,自动索引,模拟程序或者蠕虫。
一、网络爬虫的历史1994年的1月份,第一个既可搜索又可浏览的分类目录EINetGalaxy上线了。
它之后才出现了雅虎,直至我们现在熟知的Google、百度。
但是他们都不是第一个吃搜索引擎这个螃蟹的人。
从搜索FTP上的文件开始,搜索引擎的原型就出现了,那时还未有万维网,当时人们先用手工后用蜘蛛程序搜索网页,但随着互联网的不断壮大,怎样能够搜集到的网页数量更多、时间更短成为了当时的难点和重点,成为人们研究的重点。
1994年7月20日发布的Lycos网站第一个将“蜘蛛”程序接入到其索引程序中。
引入“蜘蛛”后给其带来的最大优势就在于其远胜于其它搜索引擎的数据量。
自此之后几乎所有占据主导地位的搜索引擎中,都靠“蜘蛛”来搜集网页信息。
通用网络爬虫和聚焦网络爬虫的工作原理网络爬虫是搜索引擎的重要组成部分,它是一个自动提取网页的程序,为搜索引擎从网上下载网页.传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件。
基于网络爬虫技术的网络新闻分析论文

毕业设计(论文)任务书第1页第2页第3页基于网络爬虫技术的网络新闻分析摘要自从大数据的概念被提出后,互联网数据成为了越来越多的科研单位进行数据挖掘的对象。
网络新闻数据占据了互联网数据的半壁江山,相比传统媒体,其具有传播迅速、曝光时间短、含有网民舆论等相关特征,其蕴含的价值也愈来愈大。
利用相关网络爬虫技术与算法,实现网络媒体新闻数据自动化采集与结构化存储,并利用中文分词算法和中文相似度分析算法进行一些归纳整理,得出相关的新闻发展趋势,体现网络新闻数据的挖掘价值。
如果商业公司能选取其中与自身相关的新闻进行分析,则可以得到许多意想不到的收获,例如是否有幕后黑手故意抹黑、竞争对手情况如何。
第一时间掌握与其相关的网络新闻负面效应,动用公关力量,及时修正错误,平息负面新闻,这对当今的企业来说价值是巨大的。
关键词:网络爬虫;网络新闻;数据挖掘Netnews Analysis Based On Web Spider TechnologyAbstractSince the concept of the big data is put forword, data on the Internet became more and more scientific research units for the object of data mining. Netnews data occupies half of Internet data, compared with traditional media, it has spread rapidly, short exposure time and contains the related characteristics of public opinion.The related web spider technology and algorithm, to realize the Netnews automatic data collection and structured storage, and summarizes some finishing, draw related news development, reflect the value of Netnews data mining, is the main purpose of this paper.If a business can choose news which related to their own and to do some professional analysis, they can get many unexpected gains, for example, if there is someone behind deliberately smear, or a competitors. First to master relevant negative effects of Netnews, the use of public power, timely and correct mistakes, to calm the negative news, which is the value of today’s enterprise is enormous.Key words: web spider; Netnews; data mining运行截图:目录1 绪论 (1)1.1 论文研究背景与意义 (1)1.2 论文研究内容 (2)2 系统需求分析 (4)2.1 系统需求概述 (4)2.2 系统需求分析 (4)2.2.1 系统功能要求 (4)2.2.2 系统IPO图 (5)2.2 系统非功能性需求分析 (6)3系统概要设计 (7)3.1 设计约束 (7)3.1.1需求约束 (7)3.1.2设计策略 (7)3.1.3 技术实现 (8)3.3 模块结构 (8)3.3.1 模块结构图 (8)3.3.2 系统层次图 (10)3.3.3 面向对象设计UML图 (10)4 系统详细设计 (13)4.1 系统模块设计 (13)4.1.1 数据采集模块 (13)4.1.2中文分词模块 (18)4.1.3相似度匹配模块 (22)4.1.4数据展示模块 (25)4.2系统异常处理 (29)4.2.1爬虫异常总体概况 (29)4.2.2爬虫访问网页被拒绝 (29)5 软件测试 (32)5.1 白盒测试 (32)5.1.1 爬虫系统测试结果 (32)5.1.2 中文分词系统测试结果 (33)5.1.3 中文文章相似度匹配系统测试结果 (34)5.1.4 相似新闻趋势展示系统测试结果 (36)5.2黑盒测试 (37)5.2.1 爬虫系统测试结果 (37)5.2.2 中文文章相似度匹配系统测试结果 (38)5.2.3 相似新闻趋势展示系统测试结果 (38)6 结论 (40)参考文献 (42)致谢 (43)外文资料 (44)中文翻译 (48)1 绪论1.1论文研究背景与意义时至2016年,互联网大爆炸催生出了一系列新生的网络产物,如微博、微信、网络新闻等,这些产物逐渐演化成了互联网时代的新兴媒体,以全新的方式承载了舆情与舆论。
毕业论文-基于Python的网络爬虫设计

毕业论文-基于Python的网络爬虫设计基于Python的网络爬虫设计一、引言网络爬虫是一种自动化的网页访问工具,可以按照预设的规则和目标从互联网上抓取数据。
Python作为一种功能强大的编程语言,因其易学易用和丰富的库支持,成为了网络爬虫设计的理想选择。
本文将探讨基于Python的网络爬虫设计,包括其基本原理、设计思路和实现方法。
二、网络爬虫的基本原理网络爬虫的基本原理是模拟浏览器对网页的访问行为。
它通过发送HTTP请求获取网页内容,然后解析这些内容并提取所需的数据。
爬虫在访问网页时需要遵守一定的规则,如避免重复访问、遵守Robots协议等。
三、基于Python的网络爬虫设计在Python中,有许多库可以用于网络爬虫的设计,如BeautifulSoup、Scrapy和Requests等。
以下是一个简单的基于Python的爬虫设计示例:1.安装所需的库:使用pip安装Requests和BeautifulSoup库。
2.发送HTTP请求:使用Requests库发送HTTP请求,获取网页内容。
3.解析网页内容:使用BeautifulSoup库解析网页内容,提取所需的数据。
4.数据存储:将提取到的数据存储到数据库或文件中,以供后续分析和利用。
四、案例分析:爬取某电商网站商品信息本案例将演示如何爬取某电商网站商品信息。
首先,我们需要确定爬取的目标网站和所需的数据信息。
然后,使用Requests 库发送HTTP请求,获取网页内容。
接着,使用BeautifulSoup 库解析网页内容,提取商品信息。
最后,将商品信息存储到数据库或文件中。
五、总结与展望基于Python的网络爬虫设计可以为我们的数据获取和分析提供便利。
然而,在设计和实现爬虫时需要注意遵守规则和避免滥用,尊重网站所有者的权益。
未来,随着互联网技术的发展和数据价值的提升,网络爬虫技术将会有更多的应用场景和发展空间。
我们可以期待更多的技术和工具的出现,以帮助我们更高效地进行网络爬虫的设计和实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网络爬虫技术浅析在当今社会,越来越多的人使用互联网看视频,听音乐,查资料等等,使得网络上的数据越来越多。
人们想从海量的数据中获取到自己想要的知识,靠人力浏览很难实现查找到需要的东西,除非运气相当好。
这个时候搜索引擎就出现了,搜索引擎可以通过关键字,查找网页并显示在用户面前,用户可以得到有用的信息。
在搜索引擎中非常关键的数据来源来自一种很神奇的技术:网络爬虫技术,它构成了搜索引擎的基础部分。
网络爬虫的基本概念网络爬虫是一个自动提取网页的程序,它为搜索引擎从万维网上下载网页,是引擎的重要组成。
传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件。
网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动的抓取万维网信息的程序或者脚本。
另外一些不常使用的名字还有蚂蚁,自动索引,模拟程序或者蠕虫。
一、网络爬虫的历史1994年的1月份,第一个既可搜索又可浏览的分类目录EINetGalaxy上线了。
它之后才出现了雅虎,直至我们现在熟知的Google、百度。
但是他们都不是第一个吃搜索引擎这个螃蟹的人。
从搜索FTP上的文件开始,搜索引擎的原型就出现了,那时还未有万维网,当时人们先用手工后用蜘蛛程序搜索网页,但随着互联网的不断壮大,怎样能够搜集到的网页数量更多、时间更短成为了当时的难点和重点,成为人们研究的重点。
1994年7月20日发布的Lycos网站第一个将“蜘蛛”程序接入到其索引程序中。
引入“蜘蛛”后给其带来的最大优势就在于其远胜于其它搜索引擎的数据量。
自此之后几乎所有占据主导地位的搜索引擎中,都靠“蜘蛛”来搜集网页信息。
通用网络爬虫和聚焦网络爬虫的工作原理网络爬虫是搜索引擎的重要组成部分,它是一个自动提取网页的程序,为搜索引擎从网上下载网页.传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件。
与传统爬虫相比,聚焦爬虫的工作流程则较为复杂,需要根据一定的网页分析算法过滤与主题无关的链接,保留有用的链接并将其放入等待抓取的URL队列。
然后,它将根据一定的搜索策略从队列中选择下一步要抓取的网页URL,并重复上述过程,直到达到系统的某一条件时停止。
另外,所有被爬虫抓取的网页将会被系统存起来,进行一定的分析、过滤,并建立索引,为了方便之后的查询和检索网页搜索策略目前网络上面主流网页搜索策略有三种,即:深度优先,广度优先,最佳优先。
A)深度优先,即从起始网页开始,选择一个URL,进入,分析这个网页中的URL,选择一个再进入。
如此一个链接一个链接地深入追踪下去,处理完一条路线之后再处理下一条路线。
该算法的缺点:该类爬虫设计时较为简单。
然而深度优先型网络爬虫存在一个问题:门户网站提供的链接往往最具价值,PageRank也很高,而每深入一层,网页价值和PageRank都会相应地有所下降。
这暗示了重要网页通常距离种子较近,而过度深入抓取到的网页却价值很低。
B)广度优先,即从起始网页开始,抓取其中所有链接的网页,然后从中选择一个,继续抓取该网页中的所有链接页面。
该算法的优点,在于其设计和实现相对简单,且这种策略的基本思想是:与种子在一定距离内的网页重要度较高,符合实际。
在聚焦爬虫的应用中,广度优先策略可以与网页过滤技术结合,即先用广度优先抓取一些网页,再将其中与主题无关的过滤掉。
但这种方法的缺点是随着抓取网页的增多,算法的效率会变低。
C)最佳优先策略,即按照某种网页分析算法预测候选URL与目标网页的相似度,或主题的相关性,并选取其中评价最好的一个或几个URL进行进一步的爬取。
这种策略的缺陷是可能会有很多相关网页被忽略,但相对的,这种策略可以将无关网页数量降低30%—90%。
网页分析方法网页分析算法可以归纳为基于网络拓扑、基于网页内容和基于用户访问行为三种类型。
网络拓扑的分析算法基于网页拓补,即通过已知的网页或数据,对其有间接关系的网页或网站做出评价的算法,这种算法广泛应用于实时搜索,其中又包括:网页粒度分析算法、网站粒度分析算法、网页块粒度分析算法三种。
1.网页粒度分析法PageRank和HITS算法是最常见的链接分析算法,两者都是通过对网页间链接度的递归和规范化计算,得到每个网页的重要度评价。
PageRank算法虽然考虑了用户访问行为的随机性和Sink网页的存在,但忽略了绝大多数用户访问时带有目的性,即网页和链接与查询主题的相关性。
针对这个问题,HITS算法提出了两个关键的概念:权威型网页(authority)和中心型网页(hub)。
2.网站粒度分析法网站粒度的资源发现和管理策略也比网页粒度的更简单有效。
网站粒度的爬虫抓取的关键之处在于站点的划分和站点等级(SiteRank)的计算。
SiteRank的计算方法与PageRank类似,但是需要对网站之间的链接作一定程度抽象,并在一定的模型下计算链接的权重。
网站划分情况分为按域名划分和按IP地址划分两种。
讨论了在分布式情况下,通过对同一个域名下不同主机、服务器的IP地址进行站点划分,构造站点图,利用类似PageRank的方法评价SiteRank。
同时,根据不同文件在各个站点上的分布情况,构造文档图,结合SiteRank分布式计算得到DocRank。
文献[18]证明,利用分布式的SiteRank计算,不仅大大降低了单机站点的算法代价,而且克服了单独站点对整个网络覆盖率有限的缺点。
附带的一个优点是,常见PageRank 造假难以对SiteRank进行欺骗。
3.网页块粒度分析法在一个页面中,往往含有多个指向其他页面的链接,这些链接中只有一部分是指向主题相关网页的,或根据网页的链接锚文本表明其具有较高重要性。
但是,在PageRank和HITS算法中,没有对这些链接作区分,因此常常给网页分析带来广告等噪声链接的干扰。
在网页块级别(Block?level)进行链接分析的算法的基本思想是通过VIPS网页分割算法将网页分为不同的网页块(page block),然后对这些网页块建立page?to?block和block?to?page的链接矩阵,?分别记为Z 和X。
于是,在page?to?page图上的网页块级别的PageRank为?W?p=X×Z;?在block?to?block图上的BlockRank为?W?b=Z×X。
已经有人实现了块级别的PageRank和HITS算法,并通过实验证明,效率和准确率都比传统的对应算法要好。
网页分析算法基于文本的网页分析算法1) 纯文本分类与聚类算法很大程度上借用了文本检索的技术。
文本分析算法可以快速有效的对网页进行分类和聚类,但是由于忽略了网页间和网页内部的结构信息,很少单独使用。
2) 超文本分类和聚类算法根据网页链接网页的相关类型对网页进行分类,依靠相关联的网页推测该网页的类型。
网络爬虫的效率单线程的爬虫由于页面的分析和下载不能同时而效率较低,因此出现了多线程爬虫。
有一个例子可以帮助理解多线程的意义:现在很多下载软件都支持多线程同步下载,即将下载内容分成几部分同步下载,速度比单线程要快上很多。
爬虫采用线程进行循环,但这存在一定弊端:一旦发生网络阻塞,整个线程就一直处于等待状态而导致死亡。
一般采取线程监控的方法来解决,即存在一个主线程和一个监控线程,监控线程每隔一段时间去访问一次主线程并与其分享的变量,一旦发现超时,就认为网络阻塞,这时终止主线程并重新启动,由此避免了网络阻塞导致线程一直等待的问题。
网页更新对于搜索引擎而言,评价网络爬虫效率的一个重要标准是爬虫的开销。
爬虫开销 = 重复抓取的老页面数 / 发掘的新页面数即是说,爬虫应当尽量发掘新页面而减少重复页面的爬取,而决定对某个网页的更新频率涉及到时间更新控制。
一般做法是将这次抓取到的页面上的数据与上一次相比较,如果进行连续五次这样的比较都没有变化,则将以后爬取该网页的时间扩大为原来的2倍;如果进行连续五次这样的比较都有变化,则将以后爬取该网页的时间缩短为原来的1/2。
另外,爬虫在更新网页内容时,不需要将网页重新抓取一遍,只需对网页的一些属性加以判断(如日期),并与上次结果相比即可,如果相同则无需更新。
实时搜索设想当用户查询一个热门话题,而爬虫还未抓取相关网页,这时就不能在用PageRank来评价网页重要性了。
PageRank的计算对象是已经抓取下来的网页,即,在计算PageRank过程中不会有新页面加入,这种方法被称为“离线”(off-line)的计算方法。
这种方法适合于对结果的排序,但不适用于爬虫的调度(即动态决定URL的抓取顺序),因而诞生了一种OPIC (On-line Page Importance Computation)的新型算法策略。
OPIC的基本思想是:每个页面有一个初始cash,在抓取过程中,通过前向链接将cash平均分给该网页指向的所有页面(分配过程一次完成),而爬虫在爬取过程中只需优先抓取cash较多的页面。
网络爬虫的未来发展趋势随着马上迈入web3.0时代,网页的形式越来越多样化,各种音频,各种广告,各种无用的信息无时无刻的干扰着网络爬虫的搜索精度。
这也使得我们的搜索策略必须得适应多变的网络时代。
我们的搜索策略重点应该放到从各种网页中抓取最有用的信息,最有效,最及时的信息。
参考文献*基本资料来自于网络/zh-cn/%E6%90%9C%E7%B4%A2%E5%BC%95%E6%93%8E/zh-cn/Robots.txt/doc/2821645.html[1] Junghoo Cho. Hector Garcia-Molina (2003). Effective page refresh policies for Web crawlers. ACM Transactions on Database Systems (TODS). Pages: 390 - 426./view/19137.htm?fromId=284853。