高三数学试卷(理科)
高三年级数学(理科)试卷2

高三年级数学(理科)试卷2第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}{}{}====Q P ,Q P ,b a Q a og P 则若0,,1,32A. {}0,3B. {}103,,C. {}203,,D. {}2103,,,2. 如图,若一个空间几何体的三视图中,正视图和侧视图都是直角三角形,其直角边均为1,则该几何体的体积为 A.13 B.12 C.16 D.13.“=2πθ”是“曲线()sin y x θ=+关于y 轴对称”的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.在等差数列{}()()135792354n a a a a a a ++++=中,,则此数列前10项的和10S =A.45B.60C.75D.905. 设向量()()cos ,1,2,sin a b αα=-= ,若a b ⊥ ,则tan 4πα⎛⎫- ⎪⎝⎭等于 A.13- B.13 C.3- D.36. 直线022=+-y x 经过椭圆)0(12222>>=+b a by a x 的一个焦点和一个顶点,则椭圆的离心率为 A. 55 B. 21 C. 552 D. 32 7.若实数11.e a dx x =⎰则函数()sin cos f x a x x =+的图象的一条对称轴方程为A.0x =B.34x π=-C.4π-D.54x π=- 8. 函数sin x y x =,(,0)(0,)x ππ∈- 的图象可能是下列图象中的9. 设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--01022022y x y x y x ,则11++=x y s 的取值范围是A. ⎥⎦⎤⎢⎣⎡23,1B. ⎥⎦⎤⎢⎣⎡1,21C. []2,1D. ⎥⎦⎤⎢⎣⎡2,21 10. 已知函数()cos()f x A x ωϕ=+(0,0,0)A ωϕπ>><<为奇函数,该函数的部分图象如图所示,EFG ∆是边长为2的等边三角形,则(1)f 的值为A .3-B .6-C .3D .3-第II 卷(共90分)二、填空题:(本大题共4小题,每小题4分,共16分.把正确答案填写在答题纸给定的横线上.)11. 已知点),(n m A 在直线022=-+y x 上,则nm 42+的最小值为 .12.已知F 是抛物线2y x =的焦点,M 、N 是该抛物线上的两点,3MF NF +=,则线段MN 的中点到x 轴的距离为__________.13. 圆C :022222=--++y x y x 的圆心到直线01443=++y x 的距离是_______________.14. 已知函数()f x 的定义域为[]1,5-,部分对应值如下表,()f x 的导函数()y f x '=的图像如图所示,给出关于()f x 的下列命题:①函数()2y f x x ==在时,取极小值 ②函数()[]0,1f x 在是减函数,在[]1,2是增函数,③当12a <<时,函数()y f x a =-有4个零点 ④如果当[]1,x t ∈-时,()f x 的最大值是2,那么的最小值为0,其中所有正确命题序号为_________.三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.15.(本小题满分12分)已知数列{}n a 是递增数列,且满足1016·6253=+=a ,a a a 。
【高三数学试题】高三数学试题1(理科)及参考答案

高三数学试题1(理科)一、选择题1、设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是( )A .1B .3C .4D .82、若集合{|3},{|33}xM y y P x y x ====-,则M P I =( ) A {|1}x x > B {|1}y y ≥ C {|0}y y > D {|0}x x ≥3、已知命题p :若,022=+y x 则x 、y 全为0;命题q :若a b >,则11a b <.给出下列四个命题:①p 且q ,②p 或q ,③p 的逆否命题,④ q ⌝,其中真命题的个数为( )()A 1()B 2 ()C 3 ()D 44.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).5、已知集合A ={(x ,y)|32y x --=1,x ,y ∈R},B={(x ,y)|y=ax+2,x ,y ∈R},若A ⋂B =∅,则a 的值为( )A .a =1或a =32B .a=1或a =12 C .a =2或a =3 D .以上都不对 6、若函数)(212)(为常数a k k x f xx⋅+-=在定义域上为奇函数,则的值为k ( )A . 1 B. 1- C. 1± D. 07、若函数()(2)()[1,1]()||,()f x f x f x x f x x y f x +=∈-==满足且时则函数的图象与 函数||log 3x y =的图像的交点个数是( )A .2B .3C .4D .多于4x y 0-2 2x y 0 -2 22 xy 0 -2 22 xy 0 -2 2 2A. B. C . D.8、已知函数2()24(03),f x ax ax a =++<<若1212,1,x x x x a <+=-则( )A .12()()f x f x >B .12()()f x f x <C .12()()f x f x = D .1()f x 与2()f x 的大小不能确定二、填空题9、设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1[()]2g g =__________.10.已知函数22(),1x f x x R x =∈+,则1()()f x f x += ;11、设0)1)((:;1|34:|≤---≤-a x a x q x p ,若p 是q 的充分不必要条件,则实数a 的取值范围是 .12、若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。
巴蜀中学高三数学理科试卷

一、选择题(每题5分,共50分)1. 已知函数f(x)=x^3-3x+1,则f(x)的图像大致为:A. 上升的抛物线B. 下降的抛物线C. 直线D. 垂直线2. 若a、b、c是等差数列,且a+b+c=0,则下列结论正确的是:A. a+b+c=0B. a^2+b^2+c^2=0C. a^3+b^3+c^3=0D. a^2+b^2+c^2=abc3. 已知等比数列{an}的首项为2,公比为q,且q≠1,若a1+a2+a3+a4=24,则q的值为:A. 2B. 3C. 4D. 64. 已知函数f(x)=x^3-3x^2+4x,若f(x)在区间[0,2]上存在极值,则f(x)的极值点个数为:A. 1B. 2C. 3D. 45. 已知数列{an}的通项公式为an=3^n-2^n,则数列{an}的前n项和Sn为:A. 3^n-2^nB. 3^n-2^(n-1)C. 2^n-3^nD. 2^n-3^(n-1)6. 已知函数f(x)=ln(x+1),则f(x)在区间(-1,+∞)上的单调性为:A. 单调递增B. 单调递减C. 先增后减D. 先减后增7. 已知数列{an}的通项公式为an=2n+1,则数列{an}的奇数项之和为:A. n^2+2nB. n^2+nC. n^2+2n+1D. n^2+n+18. 已知函数f(x)=x^2+2x+1,若f(x)在区间[1,2]上存在零点,则下列结论正确的是:A. f(1)=0B. f(2)=0C. f(1)≠0且f(2)≠0D. f(1)=0且f(2)=09. 已知等差数列{an}的首项为a1,公差为d,且a1+a2+a3+a4=24,则a1和d的关系为:A. a1+d=6B. a1+d=8C. a1+d=10D. a1+d=1210. 已知函数f(x)=x^3-3x^2+2x,若f(x)在区间(0,+∞)上存在极值,则f(x)的极值点个数为:A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)11. 已知函数f(x)=x^2-2x+1,若f(x)在区间[1,3]上的最大值为M,则M=______。
高三数学试卷理科及答案

一、选择题(每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x,若存在实数a,使得f(a) = 0,则a的取值范围是()。
A. a > 0B. a < 0C. a = 0D. a ≠ 02. 下列函数中,是奇函数的是()。
A. y = x^2B. y = x^3C. y = |x|D. y = x^2 + 13. 在等差数列{an}中,若a1 = 2,d = 3,则第10项an的值为()。
A. 27B. 28C. 29D. 304. 若等比数列{bn}中,b1 = 2,b3 = 8,则公比q的值为()。
A. 2B. 4C. 8D. 165. 下列命题中,正确的是()。
A. 函数y = log2(x + 1)的图像在y轴上无定义B. 函数y = e^x的图像在第一象限内单调递减C. 函数y = sin(x)的周期为πD. 函数y = tan(x)的图像在y轴上无定义6. 已知直线l的方程为2x - y + 3 = 0,点P(1, 2)到直线l的距离为()。
A. 1B. 2C. 3D. 47. 在直角坐标系中,点A(1, 2),B(3, 4),C(5, 6)构成三角形ABC,则三角形ABC的面积S为()。
A. 2B. 3C. 4D. 58. 已知函数f(x) = ax^2 + bx + c,若f(1) = 2,f(2) = 4,则f(3)的值为()。
A. 6B. 8C. 10D. 129. 在等差数列{an}中,若a1 = 3,d = 2,则前n项和Sn的表达式为()。
A. Sn = n^2 + 2nB. Sn = n^2 + 3nC. Sn = n^2 + 4nD. Sn = n^2 + 5n10. 已知等比数列{bn}中,b1 = 3,b3 = 27,则前n项和Tn的表达式为()。
A. Tn = 3^nB. Tn = 3^(n+1)C. Tn = 3^(n-1)D. Tn = 3^(n-2)二、填空题(每小题5分,共25分)11. 若函数y = ax^2 + bx + c的图像开口向上,则a的取值范围是__________。
高三理科数学试卷(含答案)

理科数学试卷参考答案及评分标准本试卷分第Ⅰ卷和第Ⅱ卷两部分,共11页,满分150分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上,并将准考证号条形码粘贴在答题卡上指定位置.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集I 是实数集R , 3{|2}{|0}1x M x x N x x -=>=≤-与都是I 的子集(如图所示), 则阴影部分所表示的集合为A .{}2x x <B .{}21x x -≤<C .{}12x x <≤D .{}22x x -≤≤2.下列函数中既不是奇函数,又不是偶函数的是A .2xy = B . (lg y x =C . 22xxy -=+ D . 1lg1y x =+ 3.若曲线x x x f -=4)(在点P 处的切线平行于直线03=-y x ,则点P 的坐标为A .(1,0)B .(1,5)C .(1,-3)D .(-1,2)4.在ABC ∆中,a b 、分别是角A B 、所对的边,条件“a b <”是使 “cos cos A B >”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.422142x x dx -⎛⎫-++= ⎪⎝⎭⎰ A .16 B .18 C .20 D .226. 已知函数),6cos()6sin()(ππ++=x x x f 则下列判断正确的是A .)(x f 的最小正周期为2π,其图象的一条对称轴为12π=xB .)(x f 的最小正周期为2π,其图象的一条对称轴为6π=xC .)(x f 的最小正周期为π,其图象的一条对称轴为12π=xD .)(x f 的最小正周期为π,其图象的一条对称轴为6π=x7. 一空间几何体的三视图如图所示,则该几何体的表面积为 A.2π+ B.42π+ C.6π+ D.62π+ 8. 若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则()()2222a b -+-的最小值为AB .5C.D .109. 设b c 、表示两条直线,αβ、表示两个平面,下列命题中真命题是A .若c ∥α,c ⊥β,则αβ⊥B .若b α⊂,b ∥c ,则c ∥αC .若b α⊂,c ∥α,则b ∥cD .若c ∥α,αβ⊥,则c β⊥10.已知数列{}n x 满足3n n x x +=,21||()n n n x x x n N *++=-∈,若11x =,2 (1,0)x a a a =≤≠,则数列{}n x 的前2010项的和2010S 为A .669B .670C .1338D .134011. 在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====其中若10,≤≤≤+=μλμλ且,C 点所有可能的位置区域用阴影表示正确的是俯视图正视图侧视图(第7题图)A .B .C .D .12.已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A B 、两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围是A . ()1,+∞B .()1,2C.(1,1+D.(2,1+第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 对任意非零实数a b 、,若a b ⊗的运算原理如图所示,则()221log 82-⎛⎫⊗= ⎪⎝⎭___1___.14.在ABC ∆中,已知41AB AC ==,,ABCS AB AC ∆=⋅则的值为 ±2 .15. 设n S 表示等差数列{}n a 的前n 项和,且918S =,240n S =,若()4309n a n -=>,则n = 15 .16. 已知两个不相等的实数a b 、满足以下关系式:204a sin a cos πθθ⋅+⋅-=,204b sin b cos πθθ⋅+⋅-=,则连接A ()2a ,a 、 B ()2b ,b 两点的直线与圆心在原点的单位圆的位置关系是 相交 . 三、解答题:本大题共6个小题,共74分. 17.(本小题满分12分)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 解:(Ⅰ)∵2()sin cos f x x x x =+)12sin cos cos 212x x x =⋅++(第13题图)1sin 2cos 2222x x =++ ……………3分sin 23x π⎛⎫=++ ⎪⎝⎭ ……………5分 ∴ 函数()f x 的最小正周期22T ππ==. ……………6分 (Ⅱ)∵ 62x ππ-≤≤,40233x ππ≤+≤∴sin 213x π⎛⎫≤+≤ ⎪⎝⎭, ……………9分 ∴0sin 213x π⎛⎫≤++≤= ⎪⎝⎭, ∴ ()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值为22,最小值为0.……………12分 18.(本小题满分12分)已知等腰直角三角形RBC ,其中∠RBC =90º, 2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . (Ⅰ)求证:BC ⊥PB ;(Ⅱ)求二面角P CD A --的余弦值. 解:(Ⅰ)∵点D A 、分别是RB 、RC 的中点,∴ BC AD BC AD 21//=且. …… 2分∴ ∠090=∠=∠=RBC RAD PAD . ∴ AD PA ⊥又PA ⊥AB ,DA AB A =∴ ABCD PA 面⊥ ∴BC PA ⊥ ∵ A AB PA AB BC =⊥ ,,∴ BC ⊥平面PAB . …… 4分 ∵ ⊂PB 平面PAB ,∴ PB BC ⊥. …… 6分 (Ⅱ)法一:取RD 的中点F ,连结AF 、PF .PCADBR(第18题图)∵ 1==AD RA ,∴ RC AF ⊥.又由(Ⅰ)知ABCD PA 面⊥, 而⊂RC 平面ABCD ,∴ RC PA ⊥. ………………… 8分 ∵ ,A PA AF= ∴ ⊥RC 平面PAF .∴ ∠AFP 是二面角P CD A --的平面角. ………………10分 在Rt △RAD 中, 22212122=+==AD RA RD AF , 在Rt △PAF 中, 2622=+=AF PA PF , ∴ 332622cos ===∠PF AF AFP . ………………11分 ∴ 二面角P CD A --的平面角的余弦值是33. ………………12分 (Ⅱ)法二:建立如图所示的空间直角坐标系xyz A -. 则D (-1,0,0),C (-2,1,0),P (0,0,1).∴=(-1,1,0), =(1,0,1), ……8分 设平面PCD 的法向量为),,(z y x n =,则n DC x y n DP x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩……10分 令1=x ,得1,1-==z y , ∴ )1,1,1(-=n.FR ADBCP (第18题图)R(第18题图)显然,是平面ACD 的一个法向量=(,0,01-).∴ cos<n ,33131=⨯=. ∴ 二面角P CD A --的余弦值是33. ………………12分 19.(本小题满分12分)已知数列{}n a 的首项15a =,前n 项和为n S ,且125n n S S n +=++()n N *∈.(Ⅰ)设1n n b a =+,求数列{}n b 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S . 解:(Ⅰ)由125n n S S n +=++()n N *∈得 ()1215n n S S n -=+-+(,2)n N n *∈≥两式相减得 121n n a a +=+ ……………………………… 3分 ∴ ()1121n n a a ++=+即 n n b b 21=+(,2)n N n*∈≥ …………………………………… 4分 又1165111122=+=++=-=a S S S a ∴ 12122=+=a b ,6111=+=a b∴ 122b b = …………………………………… 6分 ∴ 数列{}n b 是首项为6,公比为2的等比数列 ∴ n n n b 23261⋅=⋅=- ………………………………… 8分(Ⅱ)法一由(Ⅰ)知321nn a =⋅- ……………………………… 9分 ∴ 12n n S a a a =++⋅⋅⋅+2323232nn =⨯+⨯+⋅⋅⋅+⋅- ……………………………10分()221321n n -=⨯--1626326n n n n +=⋅--=⋅--. ……………………… 12分(Ⅱ)法二由已知125n n S S n +=++()n N *∈ ① 设()()112n n S c n d S cn d ++++=++ 整理得 12n n S S cn d c +=++- ②对照① 、②,得 1,6c d == ……………………………………8分 即①等价于 ()()11626n n S n S n ++++=++∴ 数列{}6n S n ++是等比数列,首项为11161612S a ++=++=,公比为2q = ∴ 11612232n n n S n -+++=⋅=⋅∴ 1326n n S n +=⋅--. …………………………………… 12分20.(本小题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知3=AB 米,2=AD 米.(I )要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内? (II )当DN 的长度是多少时,矩形花坛AMPN 的面积最小?并求出最小值. 解:(I )设DN 的长为x (0x >)米,则2AN x =+米∵AMDC ANDN =,∴()32x AM x+=, ……………………2分∴ ()232AMPN x S AN AM x+=⋅=由32>AMPN S 得()23232x x+> ,(第20题图)又0x >,得 2320120x x -+>,解得:2063x x <<> 或 即DN 长的取值范围是2(0)(6)3∞ ,,+ ……………………7分(II )矩形花坛AMPN 的面积为()22323121212312x x x y x xx x+++===++1224≥= ……………………10分 当且仅当1232x x ,x==即时矩形花坛AMPN 的面积取得最小值24. 故,DN 的长度是2米时,矩形AMPN 的面积最小,最小值为24平方米.…12分 21.(本小题满分12分)已知函数22()ln ()f x x a x ax a R =-+∈.(Ⅰ)当1a =时,证明函数()f x 只有一个零点;(Ⅱ)若函数()f x 在区间()1,+∞上是减函数,求实数a 的取值范围. 解:(Ⅰ)当1a =时,2()ln f x x x x =-+,其定义域是(0,)+∞∴ 2121()21x x f x x x x --'∴=-+=- …………2分令()0f x '=,即2210x x x ---=,解得12x =-或1x =. 0x >Q ,∴ 12x ∴=-舍去. 当01x <<时,()0f x '>;当1x >时,()0f x '<.∴ 函数()f x 在区间()01,上单调递增,在区间()1,+∞上单调递减 ∴ 当x =1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=. 当1x ≠时,()(1)f x f <,即()0f x <.∴ 函数()f x 只有一个零点. ……………………6分(Ⅱ)显然函数22()ln f x x a x ax =-+的定义域为(0,)+∞∴ 222121(21)(1)()2a x ax ax ax f x a x a x x x-++-+-'=-+== ………7分① 当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ② 当0a >时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即1x a≥ 此时()f x 的单调递减区间为1,a ⎡⎫+∞⎪⎢⎣⎭.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.………10分③ 当0a <时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即12x a≥- 此时()f x 的单调递减区间为12,a ⎡⎫-+∞⎪⎢⎣⎭, ∴1120a a ⎧-≤⎪⎨⎪<⎩得12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 法二:①当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ②当0a ≠时,要使函数()f x 在区间()1,+∞上是减函数,只需()0f x '≤在区间()1,+∞上恒成立,0x > ∴只要22210a x ax --≥恒成立,2214210aa a a ⎧≤⎪∴⎨⎪--≥⎩解得1a ≥或12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 22.(本小题满分14分)已知椭圆C 中心在原点、焦点在x 轴上,椭圆C 上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标. 解:(Ⅰ)设椭圆的长半轴为a ,半焦距为c ,则31a c a c +=⎧⎨-=⎩ 解得 21a c =⎧⎨=⎩∴ 椭圆C 的标准方程为 22143x y +=. ………………… 4分(Ⅱ)由方程组22143x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k xk m x m +++-= 由题意:△()()()22284344120km km=-+->整理得:22340k m +-> ① ……7分 设()()1122,,M x y N x y 、,则122834kmx x k+=-+, 212241234m x x k -=+………………… 8分 由已知,AM AN ⊥ , 且椭圆的右顶点为A (2,0) ∴()()1212220x x y y --+=………………… 10分即 ()()()2212121240kx x km x x m++-+++=也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++ 整理得: 2271640m mk k ++= 解得: 2m k =- 或 27km =-,均满足① ……………………… 12分 当2m k =-时,直线l 的方程为 2y kx k =-,过定点(2,0),舍去当27k m =-时,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7,故,直线l 过定点,且定点的坐标为2(,0)7.……………………… 14分。
学科网高三数学理科试卷

一、选择题(每题5分,共50分)1. 下列函数中,在实数域内单调递增的是()A. y = -x^2B. y = 2x - 3C. y = x^3D. y = -2x + 52. 已知函数f(x) = x^2 - 4x + 4,则f(x)的对称轴方程为()A. x = 2B. x = -2C. y = 2D. y = -23. 在等差数列{an}中,若a1 = 3,d = 2,则a10的值为()A. 19B. 21C. 23D. 254. 若复数z满足|z - 1| = 2,则复数z的取值范围对应的图形是()A. 圆B. 矩形C. 正方形D. 菱形5. 已知向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的夹角θ的余弦值为()A. 1/5B. 2/5C. 3/5D. 4/56. 若等比数列{an}中,a1 = 2,公比q = 3,则数列的前5项和S5为()A. 62B. 66C. 72D. 787. 已知函数y = ax^2 + bx + c的图像开口向上,且顶点坐标为(-1, 2),则a、b、c的取值分别为()A. a > 0, b < 0, c = 2B. a > 0, b > 0, c = 2C. a < 0, b < 0, c = 2D. a < 0, b > 0, c = 28. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a = 3,b = 4,c = 5,则角A的余弦值为()A. 3/5B. 4/5C. 5/5D. 5/49. 已知函数f(x) = log2(x + 1),则f(x)的定义域为()A. (-1, +∞)B. [-1, +∞)C. (-∞, -1]D. (-∞, +∞)10. 若不等式x^2 - 2x - 3 < 0的解集为A,则不等式x^2 - 2x - 3 > 0的解集为()A. AB. -AC. A的补集D. -A的补集二、填空题(每题5分,共50分)11. 若函数f(x) = 2x^3 - 3x^2 + 4x - 1在x = 1处取得极值,则该极值为______。
全国甲卷2023高考理科数学试卷

全国甲卷2023高考理科数学试卷全国甲卷2023高考理科数学试卷(含答案)新高考数学各知识点所占比如下:一、分数占比1、集合5分2、三大函数5分3、立体几何初步12分+5分4、平面几何初步5分+12分5、算法初步5分6、统计5分7、概率5分+12分8、三角函数恒等变换5分+5分+12分9、平面向量5分10、解三角形5分+12分11、数列5分+12分12、不等式5分+12分13、常用逻辑用语5分14、圆锥曲线与方程5分+12分15、空间向量与立体几何5分+12分16、导数及应用5分+12分17、推理与证明12分18、数系扩充与复数的引入5分19、计数原理5分20、坐标系与参数方程10分二、题型1、选择+填空(8题单选+4题多选+4题填空)16道,每道5分,共80分。
占总分的大半。
送分题、基础题较多,以书上性质、公式的运用为主。
2、集合、复数:默认送分题。
平面向量:能建系尽量建系做。
计数原理:以二次项定理与分配问题居多。
统计与概率:可能会在读题上挖坑。
其他:命题、各章基本概念、计算(不等式或者比大小)3、中高档题会以几何或函数为主,可能会考新定义题。
几何:解三角形、立体几何、解析几何。
函数:函数(指对幂、正余切)的性质(单调奇偶对称周期)与图像(识别和变换)、简单求导、构造函数(常见于指对数比大小)。
4、新定义题:近年来高考的趋势,题干给出一个新的定义(高中课本里没学过的),然后让你利用其解题。
难度一般都不会太大,只要严格按照题干描述一步一步做就行。
高考数学为什么这么重要?数学是最好得分的科目,同时数学又是高考成败的关键。
多少学子因为数学成绩而走向不同的大学。
从某种意义上讲,高一高二的基础很重要,高一高二有没有“弄懂”将在很大程度上影响高三复习的进度,如果基础打得牢,高三可以向更高的层次冲一把,如果自认为基础有些薄弱,也不是完全没办法,一轮复习将在很大程度上弥补以前的弱势。
首先建议看看自己来年参加的考试的试卷题型分布,在复习方面,进入高三,哪些知识点只属于识记和基础理解层次,哪些知识点属于重难点。
2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浦东新区2010学年度第一学期期末质量抽测高三数学试卷(理科) 2011.1题 号 一二三总 分 141-1815-19 20 21 22 23 得 分注意:1. 答卷前,考生务必在试卷上指定位置将学校、班级、姓名、考号填写清楚. 2. 本试卷共有23道试题,满分150分,考试时间120分钟.一、填空题(本大题共有14题,满分56分)只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.函数xx y --=21的定义域为__________________. 2.函数)1(log 3-=x y 的反函数是__________________.3.若五个数3,2,1,0,a 的平均数为1,则这五个数的方差等于__________________. 4.方程0cos sin sin cos =xx x x 的解为__________________.5.若“条件α:2x ≤4≤”是“条件β:31m x m -≤≤-”的充分条件,则m 的取值范围是__________________.6.从一个底面半径和高都是R 的圆柱中,挖去一个以圆柱的上底为底,下底面的中心为顶点的圆锥,得到一个如图(1)所示的几何体,那么这个几何体的体积是_________________. 7.在等差数列}{n a 中,18,0654321=++=++a a a a a a ,则数列}{n a 的通项公式为__________________.8.在ABC ∆中,60,4,13=∠==ACB BC AB ,则AC 的长等于__________________. 9.已知]32,6[ππα∈,则αsin 的取值范围是__________________.10.执行如图(2)所示的程序框图,若输入0=x ,则输出y 的值为__________________.11.已知方程)(04)4(2R a ai x i x ∈=++++有实数根b ,则复数=+bi a __________________.得分评卷人图(1)图(2)12.世博期间,5人去某地铁站参加志愿者活动,该地铁站有4个出口,要求每个出口都要有志愿者服务,不同安排方法有__________________种(用数值表示).13.设定义*N 上的函数⎪⎩⎪⎨⎧=)()2()()(为偶数为奇数n n f n nn f ,)2()3()2()1(nn f f f f a ++++= ,那么=-+n n a a 1__________________.14.在某条件下的汽车测试中,驾驶员在一次加满油后的连续行驶过程中从汽车仪表盘得到如下信息:注:油耗=加满油后已行驶距离加满油后已用油量,可继续行驶距离=当前油耗汽车剩余油量,平均油耗指定时间内的行驶距离指定时间内的用油量=.从上述信息可以推断在10∶00—11∶00这1小时内________ (填上所有正确判断的序号) .① 向前行驶的里程为80公里; ② 向前行驶的里程不足80公里; ③ 平均油耗超过9.6升/100公里; ④ 平均油耗恰为9.6升/100公里; ⑤ 平均车速超过80公里/小时.二、选择题(本大题共有4题,满分16分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 4分,否则一律得零分.15.若函数)sin()(ϕ+=x x f 是偶函数,则ϕ可取的一个值为 ( )A .πϕ-=B .2πϕ-=C .4πϕ-=D .8πϕ-=16.关于数列{a n }有以下命题,其中错误的命题为 ( )A .若2≥n 且n n n a a a 211=+-+,则}{n a 是等差数列B .设数列}{n a 的前n 项和为n S ,且n n a S +=12,则数列}{n a 的通项1)1(--=n n aC .若2≥n 且211n n n a a a =-+,则}{n a 是等比数列D .若}{n a 是等比数列,且k n m N k n m 2,=+∈*,,,则2k n m a a a =17.一颗骰子连续掷两次,朝上的点数依次为a 、b ,使复数)4)((ai b bi a -+为实数的概率是 ( )A .31 B .41 C .61D .121 18.点O 在ABC ∆所在平面内,给出下列关系式:(1)0=++OC OB OA ;(2)OA OC OC OB OB OA ⋅=⋅=⋅;(3)0=⎫⎛-⋅=⎫⎛-⋅BA BC OB AB AC OA ; (4)0)()(=⋅+=⋅+BC OC OB AB OB OA .则点O 依次为ABC ∆的 ( )A .内心、外心、重心、垂心B .重心、外心、内心、垂心C .重心、垂心、内心、外心D .外心、内心、垂心、重心三、解答题(本大题共有5题,满分78分)解答下列各题必须写出必要的步骤.19.(本小题满分14分,第1小题满分6分,第2小题满分8分)已知向量),(),,(a a n a a m x x =-=,其中0>a 且1≠a ,(1)当x 为何值时,n m ⊥;(2)解关于x的不等式m <.20.(本小题满分14分,第1小题满分6分,第2小题满分8分)野营活动中,学生在平地上用三根斜杆搭建一个正三棱锥形的三脚支架ABC P -(如图3)进行野炊训练. 已知cm PC 130=,A 、B 两点间距离为cm 350.(1)求斜杆PC 与地面ABC 所成角的大小(用反三角函数值表示);(2)将炊事锅看作一个点Q ,用吊绳PQ 将炊事锅吊起烧水(锅的大小忽略不计),若使炊事锅Q 到地面ABC 及各条斜杆的距离都不小于30cm ,试问吊绳PQ 长的取值范围.21.(本小题满分16分,第1小题满分6分,第2小题满分10分)已知]2,1[,3)(∈-+=x xbx x f (1) 2=b 时,求)(x f 的值域;(2) 2≥b 时,)(x f 的最大值为M ,最小值为m ,且满足:4≥-m M ,求b 的取值范围.图(3)22.(本小题满分16分,第1小题满分4分,第2小题满分5分,第3小题满分7分)(1)若对于任意的*∈N n ,总有1)1(2++=++n Bn A n n n 成立,求常数B A ,的值;(2)在数列}{n a 中,211=a ,)1(221+++=-n n n a a n n (2≥n ,*∈N n ),求通项n a ;(3)在(2)题的条件下,设2)1(21+++=n n a n n b ,从数列}{n b 中依次取出第1k 项,第2k 项,…第n k 项,按原来的顺序组成新的数列}{n c ,其中n k n b c =,其中m k =1,*+∈=-N r k k n n 1.试问是否存在正整数r m ,使S c c c n n =++++∞→)(lim 21 且131614<<S 成立?若存在,求正整数r m ,的值;不存在,说明理由.23.(本题满分18分,第1小题满分6分,第2小题满分6分,第3小题满分6分)已知函数)(x f ,如果存在给定的实数对(b a ,),使得b x a f x a f =-⋅+)()(恒成立,则称)(x f 为“S-函数”.(1)判断函数xx f x x f 3)(,)(21==是否是“S-函数”;(2)若x x f tan )(3=是一个“S-函数”,求出所有满足条件的有序实数对),(b a ; (3)若定义域为R 的函数)(x f 是“S-函数”,且存在满足条件的有序实数对)1,0(和)4,1(,当]1,0[∈x 时,)(x f 的值域为]2,1[,求当]2012,2012[-∈x 时函数)(x f 的值域.浦东新区2010学年度第一学期期末质量抽测高三数学试卷(理科) 2011.1题 号 一二三总 分 141-1815-19 20 21 22 23 得 分注意:1. 答卷前,考生务必在试卷上指定位置将学校、班级、姓名、考号填写清楚. 2. 本试卷共有23道试题,满分150分,考试时间120分钟.一、填空题(本大题共有14题,满分56分)只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.函数xx y --=21的定义域为_____),2()2,1[+∞ _____. 2.函数)1(log 3-=x y 的反函数是__13+=xy (R x ∈)___.3.若五个数3,2,1,0,a 的平均数为1,则这五个数的方差等于______2_______. 4.方程0cos sin sin cos =xx x x 的解为_____)(,42Z k k x ∈+=ππ______. 5.若“条件α:2x ≤4≤”是“条件β:31m x m -≤≤-”的充分条件,则m 的取值范围是____]4,(--∞_____.6.从一个底面半径和高都是R 的圆柱中,挖去一个以圆柱的上底为底,下底面的中心为顶点的圆锥,得到一个如图(1)所示的几何体,那么这个几何体的体积是____332R π____. 7.在等差数列}{n a 中,18,0654321=++=++a a a a a a ,则数列}{n a 的通项公式为____42-=n a n _____.8.在ABC ∆中,60,4,13=∠==ACB BC AB ,则AC 的长等于____1或3 ____. 9.已知]32,6[ππα∈,则αsin 的取值范围是____]1,21[______. 10.执行如图(2)所示的程序框图,若输入0=x ,则输出y 的值为______23-________. 得分评卷人图(1)图(2)11.已知方程)(04)4(2R a ai x i x ∈=++++有实数根b ,则复数=+bi a ____i 22-____. 12.世博期间,5人去某地铁站参加志愿者活动,该地铁站有4个出口,要求每个出口都要有志愿者服务,不同安排方法有____240______种(用数值表示).13.设定义*N 上的函数⎪⎩⎪⎨⎧=)()2()()(为偶数为奇数n n f n nn f ,)2()3()2()1(nn f f f f a ++++= ,那么=-+n n a a 1____n4_____.14.在某条件下的汽车测试中,驾驶员在一次加满油后的连续行驶过程中从汽车仪表盘得到如下信息:注:油耗=加满油后已行驶距离加满油后已用油量,可继续行驶距离=当前油耗汽车剩余油量,平均油耗指定时间内的行驶距离指定时间内的用油量=.从上述信息可以推断在10∶00—11∶00这1小时内__②③__ (填上所有正确判断的序号) .①行使了80公里; ②行使不足80公里;③平均油耗超过9.6升/100公里; ④平均油耗恰为9.6升/100公里; ⑤平均车速超过80公里/小时. 解题过程:实际用油为7.38.行驶距离为875.761006.938.7=⨯<,所以①错误,②正确. 设L 为已用油量,△L 为一个小时内的用油量,S 为已行驶距离,△S 为一个小时内已行的距离⎪⎩⎪⎨⎧=∆+∆+=6.95.9SS LL S L得S S V V ∆+=∆+6.96.9, S S V S ∆+=∆+6.96.95.9,S S V ∆+=∆6.91.0,6.96.91.0>+∆=∆∆SSS V . 所以③正确,④错误.⑤由②知错误.二、选择题(本大题共有4题,满分16分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 4分,否则一律得零分.15.若函数)sin()(ϕ+=x x f 是偶函数,则ϕ可取的一个值为 ( B )A .πϕ-=B .2πϕ-=C .4πϕ-=D .8πϕ-=16.关于数列{a n }有以下命题,其中错误的命题为 ( C )A .若2≥n 且n n n a a a 211=+-+,则}{n a 是等差数列B .设数列}{n a 的前n 项和为n S ,且n n a S +=12,则数列}{n a 的通项1)1(--=n n aC .若2≥n 且211n n n a a a =-+,则}{n a 是等比数列D .若}{n a 是等比数列,且k n m N k n m 2,=+∈*,,,则2k n m a a a =17.一颗骰子连续掷两次,朝上的点数依次为a 、b ,使复数)4)((ai b bi a -+为实数的概率是 ( D )A .31 B .41 C .61D .121 18.点O 在ABC ∆所在平面内,给出下列关系式:(1)=++;(2)OA OC OC OB OB OA ⋅=⋅=⋅;(3)0=⎫⎛-⋅=⎫⎛-⋅BA BC OB AB AC OA ; (4)0)()(=⋅+=⋅+.则点O 依次为ABC ∆的 ( C )A .内心、外心、重心、垂心B .重心、外心、内心、垂心C .重心、垂心、内心、外心D .外心、内心、垂心、重心三、解答题(本大题共有5题,满分78分)解答下列各题必须写出必要的步骤.19.(本小题满分14分,第1小题满分6分,第2小题满分8分)已知向量),(),,(a a n a a m x x =-=,其中0>a 且1≠a ,(1)当x 为何值时,n m ⊥; (2)解关于x的不等式-<+解:(1)因为0,=⋅⊥n m n m 所以,…………………………………………………………2分得022=-a ax,即22a a x =.……………………………………………………4分所以22=x ,即1=x ,∴当1=x 时,n m ⊥.………………………………6分(2-<+,∴22)()(n m n m -<+,0<⋅∴.所以022<-a a x,即22a a x<.…………………………………………………10分 当10<<a 时,1>x ,当1>a 时,1>x . 综上,当10<<a 时,不等式的解集为),1(+∞;当1>a 时,不等式的解集为)1,(-∞.……………………………………14分20.(本小题满分14分,第1小题满分6分,第2小题满分8分)野营活动中,学生在平地上用三根斜杆搭建一个正三棱锥形的三脚支架ABC P -(如图3)进行野炊训练. 已知cm PC 130=,A 、B 两点间距离为cm 350.(1)求斜杆PC 与地面ABC 所成角的大小(用反三角函数值表示);(2)将炊事锅看作一个点Q ,用吊绳PQ 将炊事锅吊起烧水(锅的大小忽略不计),若使炊事锅Q 到地面ABC 及各条斜杆的距离都不小于30cm ,试问吊绳PQ 长的取值范围. 解:(1)设P 点在平面ABC 上的射影为点O ,连接CO ,50=CO ,……………3分在Rt △POC 中,135cos =∠PCO ,所以135arccos =∠PCO .…5分即PC 与底面ABC 所成角的大小为135arccos .……6分(2)在Rt △POC 中,解得120=PO ,作PC QD ⊥交PC 于D 点,由30≥QD ,得7813530sin =≥∠=QPD QD PQ .……11分 又9030120=-≤PQ ,………………………………13分 故吊绳长度的取值范围为]90,78[.……………………14分21.(本小题满分16分,第1小题满分6分,第2小题满分10分)已知]2,1[,3)(∈-+=x xbx x f (1) 2=b 时,求)(x f 的值域;(2) 2≥b 时,)(x f 的最大值为M ,最小值为m ,且满足:4≥-m M ,求b 的取值范围. 解:(1)当b=2时,]2,1[,32)(∈-+=x xx x f . 因为)(x f 在]2,1[上单调递减,在]2,2[上单调递增, ……………………2分所以)(x f 的最小值为322)2(-=f .…………………………………………4分 又因为0)2()1(==f f ,……………………………………………………………5分 所以)(x f 的值域为]0,322[-.…………………………………………………6分(2)(ⅰ)当42<≤b 时,因为)(x f 在],1[b 上单调递减,在]2,[b 上单调递增.所以M=.32)(,2)}2(),1(max {-==-=b b f m b f f412≥+-=-b b m M ,得4)1(2≥-b .即9≥b ,与42<≤b 矛盾.…………………………………………………11分 (ⅱ)4≥b 时,)(x f 在[1,2]上单调递减.M=b-2,12-=b m ,M - m =412≥-b,即10≥b .………………………16分22.(本小题满分16分,第1小题满分4分,第2小题满分5分,第3小题满分7分)(1)若对于任意的*∈N n ,总有1)1(2++=++n Bn A n n n 成立,求常数B A ,的值;(2)在数列}{n a 中,211=a ,)1(221+++=-n n n a a n n (2≥n ,*∈N n ),求通项n a ;(3)在(2)题的条件下,设2)1(21+++=n n a n n b ,从数列}{n b 中依次取出第1k 项,第2k 项,…第n k 项,按原来的顺序组成新的数列}{n c ,其中n k n b c =,其中m k =1,*+∈=-N r k k n n 1.试问是否存在正整数r m ,使S c c c n n =++++∞→)(lim 21 且131614<<S 成立?若存在,求正整数r m ,的值;不存在,说明理由. 解:(1)由题设得2)1(+=++n Bn n A 即2)(+=++n A n B A 恒成立,所以⇒⎩⎨⎧==+21A B A 2=A ,1-=B .…………………………………4分(2)由题设)1(221+++=-n n n a a n n (2≥n )又112)1(2+-=++n n n n n 得,)1(2221111n a n a n a n n n +=+=++--,且1211=+a ,即}11{++n a n 是首项为1,公比为2的等比数列,………………………………8分所以1211-=++n n n a . 即1121+-=-n a n n 为所求.………………………………9分 (3)假设存在正整数r m ,满足题设,由(2)知1121+-=-n a n n显然n n n a n n b 212)1(21=+++=,又n k n b c =得r k k k k n n n n n n b b c c 21)21(111===-+++,m k b c 2111==即}{nc 是以m 21为首项,r21为公比的等比数列.………………11分 于是)(lim 21n n c c c S +++=+∞→ rm mrm --=-=22121121,………………………12分 由131614<<S 得4612213<-<-r m m ,*∈N r m ,,所以1422=--r m m 或15,…………………………………………14分 当1422=--r m m 时,3,4==r m ; 当1522=--rm m 时,4,4==r m ;综上,存在正整数r m ,满足题设,3,4==r m 或4,4==r m .……………16分23.(本题满分18分,第1小题满分6分,第2小题满分6分,第3小题满分6分)已知函数)(x f ,如果存在给定的实数对(b a ,),使得b x a f x a f =-⋅+)()(恒成立,则称)(x f 为“S-函数”.(1)判断函数xx f x x f 3)(,)(21==是否是“S-函数”;(2)若x x f tan )(3=是一个“S-函数”,求出所有满足条件的有序实数对),(b a ; (3)若定义域为R 的函数)(x f 是“S-函数”,且存在满足条件的有序实数对)1,0(和)4,1(,当]1,0[∈x 时,)(x f 的值域为]2,1[,求当]2012,2012[-∈x 时函数)(x f 的值域. 解:(1)若x x f =)(1是“S-函数”,则存在常数),(b a ,使得 (a +x )(a-x )=b.即x 2=a 2-b 时,对x ∈R 恒成立.而x 2=a 2-b 最多有两个解,矛盾,因此x x f =)(1不是“S-函数”.……………………………………………………3分若xx f 3)(2=是“S-函数”,则存在常数a ,b 使得a x a xa 2333=⋅-+,即存在常数对(a , 32a )满足.因此x x f 3)(2=是“S-函数”………………………………………………………6分 (2)x x f tan )(3=是一个“S-函数”,设有序实数对(a , b )满足:则tan(a -x )tan(a +x )=b 恒成立. 当a =Z k k ∈+,2ππ时,t an (a -x )t an (a +x )= -cot 2(x ),不是常数.……………………7分因此Z k k a ∈+≠,2ππ,Z m m x ∈+≠,2ππ,则有b xa xa x a x a x a x a =--=⋅-+⨯⋅+-2222tan tan 1tan tan tan tan 1tan tan tan tan 1tan tan . 即0)(tan tan )1tan (222=-+-⋅b a x a b 恒成立. ……………………………9分即⇒⎩⎨⎧==⇒⎪⎩⎪⎨⎧=-=-⋅11tan 0tan 01tan 222b a b a a b Z k b k a ∈⎪⎩⎪⎨⎧=±=,14ππ,当Z m m x ∈+=,2ππ,4ππ±=k a 时,t an (a -x )t an (a +x )=cot 2(a )=1.因此满足x x f tan )(3=是一个“S-函数”的常数(a , b )=Z k k ∈±),1,4(ππ.…12分 (3) 函数)(x f 是“S-函数”,且存在满足条件的有序实数对)1,0(和)4,1(, 于是,4)1()1(,1)()(=-⋅+=-⋅x f x f x f x f即]1,0[2]2,1[,4)2()(4)1()1(∈-∈=-⇔=-⋅+x x x f x f x f x f 时,, ]4,2[)2(4)(∈-=x f x f ,]4,1[)(]2,0[∈∈∴x f x 时,.……………………14分)(4)2()2(4)()(1)(4)1()1(1)()(x f x f x f x f x f x f x f x f x f x f =+⇒⎪⎪⎩⎪⎪⎨⎧+=-=-⇒⎩⎨⎧=-⋅+=-⋅.………16分 ].2,2[)(,]2012,2010[],2,2[)(,]22,2[],2,16[)(,]6,4[],16,4[)(]4,2[201220102226∈∈∈+∈∈∈∈∈+x f x x f k k x x f x x f x k k 时时依次类推可知时时,因此]2,1[)(]2012,0[2012∈∈x f x 时,, …………………………………………17分].1,2[)(]2,1[)(],2012,0[,)(1)(,]0,2012[20122012-∈⇒∈-∈--=-∈x f x f x x f x f x 时 综上可知当]2012,2012[-∈x 时函数)(x f 的值域为]2[22012-2012,.……………18分谢谢大家。