统计学第六版贾俊平 无水印
统计学第六版贾俊平第13章

人均GDP等时间序列
时间序列的分类
时间序列
平稳序列
非平稳序列
有趋势序列 复合型序列
时间序列的分类
1.平稳序列(stationary series) 基本上不存在趋势的序列,各观察值基本上在某个固定的 水平上波动或虽有波动,但并不存在某种规律,而其波动可 以看成是随机的. 2.非平稳序列 (non-stationary series) 包含趋势、季节性或周期性的序列,分为有趋势的序列, 或有趋势、季节性和周期性的复合型序列.
Y0
1634
2005年和2006年的人均GDP的预测为
Yˆ2005 2004年数值 (1 年平均增长率) 10561 (114.26%) 12067.0(元)
Yˆ2006 2004年数值 (1 年平均增长率)2
10561 (114.26%)2 13787.8(元)
图13-8 啤酒销售量的年度折叠时间序列图
13.3.2 选择预测方法
确定时间序列的成分,即确定时间序列的类型后,则可选择 适当的预测方法.时间序列预测是按过去一段时间的变动规律 来估计今后的变动,也就是根据过去一段时间的变动规律对今 后作预测.
由于不含趋势和季节成分的时间序列, 即平稳时间序列只 包随机成分, 则通过平滑就可以消除随机波动. 因而, 这类预测 方法称为平滑预测法. 对于只含趋势成分的时间序列,可以采用 趋势预测法. 而对于既有趋势又有季节成分的时间序列,则采用 季节性预测法.
第13章 时间序列分析和预测
13.1 时间序列及其分解 13.2 时间序列的描述性分析 13.3 时间序列预测的程序 13.4 平稳序列的预测 13.5 趋势型序列的预测 13.6 复合型序列的分解预测
统计学完整(贾俊平)人大课件ppt课件

agriculture (农业) anthropology (人类学) auditing (审计学)
crystallography (晶体学)
demography (人口统计学)
dentistry (牙医学)
ecology (生态学)
econometrics (经济计量学)
education (教育学)
geology (地质学)
historical research (历史研究) human genetics (人类遗传学)
1 - 11
经济、管理类 基础课程
统计学
应用统计的领域(续)
hydrology (水文学)
Industry (工业)
linguistics (语言学)
literature (文学)
2. 数据整理:例如,分组
3. 数据展示:例如, 图和表
4. 数据分析:例如,回归分析
1 -7
经济、管理类 基础课程
统计学
Statistics的定义 (不列颠百科全书)
Statistics: the science of collecting, analyzing, presenting, and interpreting data.
经济、管理类 基础课程
统计学
统计学
1 -1
作者:中国人民大学统计系
贾俊平
经济、管理类 基础课程
统计学
第一章 绪 论
1 -2
经济、管理类 基础课程
统计学
第一章 绪论
第一节 统计与统计学 第二节 统计学的分科 第三节 统计学与其他学科的关系 第四节 统计学的产生与发展
1 -3
经济、管理类 基础课程
统计学第六版第13章 时间序列分析和预测

1. 趋势(trend)
2. 季节性(seasonality)
3. 周期性(cyclity)
4. 随机性(random)
13 - 9
统计学
STATISTICS (第五版)
250
含有不同成分的时间序列
3000 2500 2000 1500
平 稳
200 150 100 50 0
统计学
STATISTICS (第五版)
增长率分析中应注意的问题
(例题分析)
【例】 假定有两个生产条件基本相同的企业, 各年的利润额及有关的速度值如下表
甲、乙两个企业的有关资料
年 份 甲企业
利润额(万元) 增长率(%)
乙企业
利润额(万元) 增长率(%)
上年 本年
13 - 21
500 600
— 20
60 84
13 - 22
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第五版)
13.3 时间序列预测的程序
13.3.1 确定时间序列的成分 13.3.2 选择预测方法 13.3.3 预测方法的评估
13 - 23
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第五版)
确定时间序列的成分
时间序列数据
否
是否存在趋 势
是
是否存在季 节
是否存在季 节
否
平滑法预测
简单平均法 移动平均法 指数平滑法 13 - 31
是
季节性预测法
季节多元回归模型 季节自回归模型 时间序列分解
是
否
统计学第六版贾俊平第5章ppt课件

精品教材
统计学
概率的性质和运算法则
5 - 13
精品教材
互斥事件及其概率
统计学 (mutually exclusive events)
在试验中,两个事件有一个发生时,另一个 就不能发生,则称事件A与事件B是互斥事件 ,(没有公共样本点)
A B
5 - 14
互斥事件的文氏图(Venn diagram)
掷一颗骰子,观察其出现的点数
从一副52张扑克牌中抽取一张,并观察其结果 (纸牌的数字或花色)
2. 试验的特点
可以在相同的条件下重复进行
每次试验的可能结果可能不止一个,但试验的 所有可能结果在试验之前是确切知道的
在试验结束之前,不能确定该次试验的确切结 果
5 -6
精品教材
统计学
事件
(event)
1. 事件:试验的每一个可能结果(任何样本 点集合)
掷一颗骰子出现的点数为3 用大写字母A,B,C,…表示
2. 随机事件(random event):每次试验可能 出现也可能不出现的事件
掷一颗骰子可能出现的点数
5 -7
精品教材
统计学
事件
(event)
1. 简单事件(simple event) :不能被分解成其他 事件组合的基本事件
此,抛掷两枚硬币,恰好有一枚出现正面的概率 等于H1T2或T1H2发生的概率,也就是两种事件 中每个事件发生的概率之和
5 - 18
精品教材
统计学
互斥事件的加法规则
(addition law)
加法规则
1. 若两个事件A与B互斥,则事件A发生或事 件B发生的概率等于这两个事件各自的概 率之和,即
P(A∪B) =P(A)+P(B)
2024版统计学完整(贾俊平)人大课件ppt课件

统计学完整(贾俊平)人大课件ppt课件•引言•数据收集与整理•描述性统计分析目录•概率论基础•推断性统计分析•方差分析与回归分析•时间序列分析与预测•统计决策与风险管理目录•总结与展望01引言统计学是一门研究如何收集、整理、分析和解释数据的科学。
统计学的定义统计学的历史统计学的分支统计学的发展经历了古典统计学、近代统计学和现代统计学三个阶段。
统计学可以分为描述统计学和推断统计学两大分支。
030201统计学概述社会科学医学与健康工程与技术商业与经济统计学应用领域01020304在社会科学领域,统计学被广泛应用于调查研究、民意测验、市场分析等方面。
在医学和健康领域,统计学被用于临床试验、流行病学研究、健康风险评估等方面。
在工程和技术领域,统计学被用于质量控制、可靠性分析、信号处理等方面。
在商业和经济领域,统计学被用于市场分析、财务分析、经济预测等方面。
通过学习,学生应掌握统计学的基本概念和方法,包括数据收集、整理、描述和分析等方面的内容。
掌握统计学基本概念和方法具备数据处理和分析能力了解统计学的应用领域培养批判性思维学生应具备独立处理和分析数据的能力,能够运用适当的统计方法进行数据分析和解释。
学生应了解统计学的应用领域,能够运用所学知识解决实际问题。
学生应培养批判性思维,能够对统计结果进行合理的解释和评估。
学习目标与要求02数据收集与整理数据来源及类型数据来源包括原始数据和二手数据,原始数据是通过直接调查、实验或观察获得的数据;二手数据则是已经经过他人收集、整理和处理过的数据。
数据类型包括定性数据和定量数据,定性数据是描述性的、非数值的,如文字、图像等;定量数据则是可以用数值表示的,如年龄、收入等。
此外,还可以根据数据的测量尺度将其分为名义型数据、顺序型数据、间隔型数据和比率型数据。
调查法实验法观察法大数据收集数据收集方法通过问卷、访谈、电话调查等方式收集数据,可以获取大量的、详细的信息。
直接观察研究对象的行为、状态等,记录相关数据,适用于无法控制或干预的情况。
2024版统计学贾俊平人大PPT课件

课件•引言•统计数据的收集与整理•统计描述目•概率论基础•统计推断录•统计指数与因素分析•相关与回归分析•统计决策目•统计学的应用与发展录引言统计学概述统计学的定义统计学的发展历史统计学的分支领域1 2 3统计学在决策中的应用统计学在科学研究中的应用统计学在社会生活中的应用统计学的重要性统计学的研究对象01020304数据的收集数据的整理数据的分析数据的解释统计数据的收集与整理原始数据二手数据定性数据定量数据时序数据030201数据的收集方法观察法调查法实验法数据的整理与显示数据整理数据显示通过图表、图像等方式将数据呈现出来,以便于直观理解和分析。
常见的数据显示方式包括表格、条形图、折线图、饼图等。
统计描述集中趋势的描述算术平均数适用于数值型数据,反映数据的平均水平。
中位数适用于顺序数据,反映数据的中等水平。
众数适用于分类数据,反映数据的多数水平。
离散程度的描述四分位数间距极差上四分位数与下四分位数之差,反映中间50%数据的离散程度。
方差与标准差分布形态的描述偏态峰态统计图表的应用适用于分类数据,表示各类别的频数或频率。
适用于时间序列数据,表示事物随时间的变化趋势。
适用于分类数据,表示各类别在总体中的占比。
适用于两个数值型变量,表示它们之间的相关关系。
条形图折线图饼图散点图概率论基础随机事件与概率随机试验与样本空间随机试验是具有某些基本特点的试验,其所有可能结果构成的集合称为样本空间。
随机事件随机试验的某个(些)样本点构成的集合称为随机事件。
概率的定义概率是描述随机事件发生的可能性大小的数值,常用P(A)表示。
概率的性质与运算法则概率的性质01概率的加法公式02概率的乘法公式03事件的独立性如果事件A 与事件B 相互独立,则P(A∩B)=P(A)P(B)。
条件概率在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作P(A|B)。
多个事件的独立性如果事件A1,A2,...,An 相互独立,则对于任意k 个事件Ai1,Ai2,...,Aik(1≤i1<i2<...<ik≤n),都有P(Ai1∩Ai2∩...∩Aik)=P(Ai1)P(Ai2)...P(Aik)。
统计学第六版贾俊平第6章

统计学
第六版
2)分布
(图示)
选择容量为n 的 不同容量样本的抽样分布
n=1 n=4 n=10
总体
简单随机样本
计算样本方差S2
计算卡方值
n=20
2 = (n-1)S2/σ2
计算出所有的
2
2值
6 - 31
统计学
第六版
6.3 样本统计量的抽样分布
(两个总体参数推断时)
一. 两个样本均值之差的抽样分布 二. 两个样本比例之差的抽样分布 三. 两个样本方差比的抽样分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 17
x
X
统计学
第六版
中心极限定理
(central limit theorem)
X
的分 布趋 于正 态分 布的 过程
6 - 18
统计学
第六版
抽样分布与总体分布的关系
总体分布
(一个总体参数推断时)
一. 样本均值的抽样分布 二. 样本比例的抽样分布 三. 抽样方差的抽样分布
6-9
统计学
第六版
样本均值的抽样分布
6 - 10
统计学
第六版
样本均值的抽样分布
1. 容量相同的所有可能样本的样本均值的概 率分布
2. 一种理论概率分布 3. 进行推断总体总体均值的理论基础
6 - 11
3. 两个样本方差比的抽样分布,服从分子自由度 为(n1-1),分母自由度为(n2-1) F分布,即
S12 ~ F ( n1 1, n 2 1) 2 S1
统计学(第六版)贾俊平-课后习题答案

第一章导论1.1.1(1)数值型变量。
(2)分类变量。
(3)离散型变量。
(4)顺序变量。
(5)分类变量。
1.2(1)总体是该市所有职工家庭的集合;样本是抽中的2000个职工家庭的集合。
(2)参数是该市所有职工家庭的年人均收入;统计量是抽中的2000个职工家庭的年人均收入。
1.3(1)总体是所有IT从业者的集合。
(2)数值型变量。
(3)分类变量。
(4)截面数据。
1.4(1)总体是所有在网上购物的消费者的集合。
(2)分类变量。
(3)参数是所有在网上购物者的月平均花费。
(4)参数(5)推断统计方法。
第二章数据的搜集1.什么是二手资料?使用二手资料需要注意些什么?与研究内容有关的原始信息已经存在,是由别人调查和实验得来的,并会被我们利用的资料称为“二手资料”。
使用二手资料时需要注意:资料的原始搜集人、搜集资料的目的、搜集资料的途径、搜集资料的时间,要注意数据的定义、含义、计算口径和计算方法,避免错用、误用、滥用。
在引用二手资料时,要注明数据来源。
2.比较概率抽样和非概率抽样的特点,举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
概率抽样是指抽样时按一定概率以随机原则抽取样本。
每个单位被抽中的概率已知或可以计算,当用样本对总体目标量进行估计时,要考虑到每个单位样本被抽中的概率,概率抽样的技术含量和成本都比较高。
如果调查的目的在于掌握和研究总体的数量特征,得到总体参数的置信区间,就使用概率抽样。
非概率抽样是指抽取样本时不是依据随机原则,而是根据研究目的对数据的要求,采用某种方式从总体中抽出部分单位对其实施调查。
非概率抽样操作简单、实效快、成本低,而且对于抽样中的专业技术要求不是很高。
它适合探索性的研究,调查结果用于发现问题,为更深入的数量分析提供准备。
非概率抽样也适合市场调查中的概念测试。
3.调查中搜集数据的方法主要有自填式、面方式、电话式,除此之外,还有那些搜集数据的方法?实验式、观察式等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
率各为1/2;投掷一枚骰子出现1~6点的频率 各为1/6 3. 农作物的产量与施肥量之间存在相关关系
统计方法
统计方法
描述统计
推断统计
参数估计
假设检验
描述统计
(descriptive statistics)
1. 内容
¥
? 搜集数据
50
? 整理数据
? 展示数据
25? 描述性分析2. 目的0? 描述数据特征
什么是统计学 ?
? 收集、分析、表述和解释数据的科学
1. 数据搜集:取得数据 2. 数据分析:分析数据 3. 数据表述:图表展示数据 4. 数据解释:结果的说明
statistics 的定义 (不列颠百科全书)
statistics : the science of collecting, analyzing, presenting, and interpreting data.
election forecasting and projection (选举预测和策划 )
engineering (工程)
epidemiology (流行病学 )
finance (金融)
fisheries research (水产渔业研究 )
gambling (赌博)
genetics (遗传学)
geography (地理学)
? 找出数据的基本规律
Q1 Q2 Q3 Q4
x = 30 s2 = 105
推断统计
(inferential statistics)
1. 内容
总体
? 参数估计
? 假设检验
2. 目的
? 对总体特征作出
推断
样
本
描述统计与推断统计的关系
概率论
(包括分布理论、大数定律 和中心极限定理等)
反映客观 现象的数
management science (管理科学 )
marketing (市场营销学 )
medical diagnosis (医学诊断 )
meteorology (气象学 )
military science (军事科学 )
nuclear material safeguards (核材料安全管理 )
ophthalmology (眼科学 )
(拉普拉斯)
?Thomas Robert Malthus (马尔萨斯) (1766-1834)
Thomas Robert Malthus
(马尔萨斯 )
Leonhard Euler (欧拉 )
历史上著名的统计学家
?Friedrich Gauss (高斯) (1777-1855) ?Johann Gregor Mendel (孟德尔) (1822-1884) ?Karl Pearson (皮尔森) (1857-1936) ?Ronald Aylmer Fisher (费歇) (1890-1962), ?Jerzy Neyman (1894-1981) ?Egon Sharpe Pearson (皮尔森) (1895-1980) ?William Feller (费勒)(1906-1970).
anthropology (人类学 )
archaeology (考古学)
auditing (审计学)
crystallography (晶体学)
demography (人口统计学 )
dentistry (牙医学)
ecology (生态学 )
econometrics (经济计量学 )
education (教育学 )
pharmaceutics (制药学)
physics (物理学 )
political science (政治学)
psychology (心理学)
psychophysics (心理物理学 )
quality control (质量控制 )
religious studies (宗教研究 )
sociology (社会学)
据
样本数据
描述统计
(统计数据的搜集、整
总体数据 理、显示和分析等)
推断统计
(利用样本信息和概率 论对总体的数量特征进
行估计和检验等)
总体内在的 数量规律性
统计的应用领域
经济学
医学
管理学
统计学 工程学
社会学
…
统计的应用领域
actuarial work (精算)
agriculture (农业)
animal science (动物学 )
Copyright 1994-2000 Encyclopaedia Britannica, Inc.
(不列颠百科全书)
统计研究的过程
收集数据 (取得数据 )
实际问题
解释数据 (结果说明 )
整理数据
(处理数据 )
分析数据
(研究数据 )
统计规律
(一些例子)
1. 正常条件下新生婴儿的性别比为107:100 2. 投掷一枚均匀的硬币,出现正面和反面的频
统计学
第 1 章 导论
1.1 什么是统计学? 1.2 统计数据的类型 1.3 统计中的几个基本概念
学习目标
1. 理解统计学的含义 2. 理解统计数据与统计学的关系 3. 了解统计学的应用领域 4. 了解数据的类型 5. 理解统计中的几个基本概念
1.1 什么是统计学?
一. 统计学与统计规律 二. 统计的应用领域 三. 历史上著名的统计学家
survey sampling (调查抽样 )
taxonomy (分类学)
weather modification (气象改善 )
历史上著名的统计学家
?Jacob Bernoulli (伯努利)(1654-1705)
?Edmond Halley (哈雷) (1656-1742)
?De Moivre (棣美佛) (1667-1754)
?Thomas Bayes (贝叶斯) (1702-1761)
?Leonhard Euler (欧拉) (1707-1783)
?Pierre Simon Laplace (拉普拉斯) (1749-1827) Pierre Simon Laplace
?Adrien Marie Legendre (勒让德) (1752-1833)
geology (地质学 )
historical research (历史研究 ) human genetics (人类遗传学 )
统计的应用领域
hydrology (水文学 )
Industry (工业)
linguistics (语言学)
literature (文学)
manpower planning (劳动力计划 )