力的合成和分解
力的合成和分解

二、力的合成与分解。
(一)力的合成、合力与分力1. 合力与分力:如果一个力作用在物体上,产生的效果,与另外几个力同时作用于这个物体上产生的效果相同,原来的一个力就是另外几个力的合力。
另外几个力叫分力。
合力是几个力的等效力,是互换的,不是共存的。
2、共点力:几个力的作用点相同,或几个力的作用线相交于一个点,这样的力叫共点力。
3、力的合成:求几个共点力的合力的过程叫力的合成。
力的合成就是在保证效果相同的前提下,进行力的替代,也就是对力进行化简,使力的作用效果明朗化。
现阶段只对共点(共面)力进行合成。
4. 平行四边形定则(由平行四边形定则推出三角形定则):两个共点力的合力与分力满足关系是:以分力为邻边做平行四边形,以共点顶向另一顶点做对角线,即为合力。
这种关系叫平行四边形定则。
5. 力的合成方法:几何作图法,计算法。
6. 多个力的合成先取两个力求合力,再与第三个力求合力,依次进行下去直到与最后一个分力求得的合力就是多个力的合力。
7. 力是矢量:有大小有方向遵循平行四边形定则。
凡矢量有大小有方向还要遵循平行四边形定则。
(二)力的分解1. 力的分解:由一个已知力求分力的过程叫力的分解。
2. 力的分解中分力与合力仍遵循平行四边形定则,是力的合成的逆运算。
3. 分解一个力时,对分力没有限制,可有无数组分力。
4. 分解力的步骤:(1)根据力作用效果确定分力作用的方向,作出力的作用线。
(2)根据平行四边形定则,作出完整的平行四边形。
(3)根据数学知识计算分力5.一个力分解为二个分力的几种情况:(1)已知合力及两分力方向,求分力大小,有唯一定解。
(2)已知合力及一个分力的大小方向,求另一分力大小方向,有唯一定解。
(3)已知合力及一个分力方向,求另一分力,有无数组解,其中有一组是另一分力最小解。
(4)已知合力和一个分力的方向,另一分力的大小,求解。
如已知合力F,一个分力F1的方向,另一分力F2的大小,且F与F1夹角可能有一组解,可能有两组解,也可能无解。
力的合成与分解

力的合成与分解力在物理学中是一个重要的概念,它描述了物体之间相互作用的效果。
而力的合成与分解是力学中的一种基本问题,它帮助我们理解多个力作用在物体上时的结果,以及如何将一个力分解为多个力的合力,或者将一个力的合力分解为多个力。
一、力的合成力的合成是指将多个力作用于物体上时,求出它们的合力。
合力的大小和方向决定了物体受到的合力效果。
当多个力作用于物体上时,可以使用力的几何法进行合成。
力的几何法可以通过在力的作用方向上构成力的向量,并使用矢量相加的方法得到合力。
例如,假设一个物体同时受到水平向右的力F₁和竖直向上的力F₂,我们可以使用力的几何法求出它们的合力F。
首先,将力F₁和F₂分别用箭头表示在一个力的作用方向上。
然后,将F₁的箭头的起点连接到F₂的箭头的终点,得到一个新的力F的箭头。
该箭头的起点是F₁的起点,终点是F₂的终点。
最后,连接F₁的终点和F₂的起点,即得到了合力F的箭头。
根据箭头的直线方向和箭头的长度,我们可以得到合力F的大小和方向。
二、力的分解力的分解是指将一个力拆解成多个分力,使得这些分力的合成恰好等于原来的力。
力的分解可以帮助我们分析复杂情况下的力的作用效果。
当一个力作用在物体上时,有时候我们需要将这个力分解成两个或更多个分力,以便更好地理解和计算物体的运动情况或受力效果。
常见的力的分解方法有平行四边形法和正交分解法。
在平行四边形法中,我们假设一个力F可以被分解为两个分力F₁和F₂。
首先,确定一个合适的力F₄与F形成一个平行四边形。
然后,根据平行四边形法则,连接F₁的起点与F₂的起点,连接F₁的终点与F₄的起点,连接F₂的终点与F₄的终点。
这样,我们得到了两个分力F₁和F₂,它们的合力恰好等于原来的力F。
正交分解法是指将一个力拆解成一个或多个方向上的力分量。
对于任何一个力F,我们可以将它分解成多个垂直于不同方向的力分量。
例如,如果一个力F斜向上,我们可以将它拆解成一个垂直向上的力分量和一个垂直向右的力分量。
力的合成与分解

4 .如图所示, F1 、 F2 、 F3 恰好构成封闭的直角三 角形,这三个力的合力最大的是( C )
【解析】由矢量合成法则可知A图的合力为2F3,B图的 合力为0,C图的合力为2F2,D图的合力为2F3,因F2为 直角三角形的斜边,故这三个力的合力最大的为C图.
【提升能力】
保持静止,则工件上受到的向 上的压力多大? 【思路点拨】弄清力的实际作用效果,确定两个分力 的方向,再作出力的平行四边形,确定边角关系,最 后由数学知识计算两分力的大小.
【解析】F 作用在 B 物体上,产生了压紧水平面和 推杆两个效果,将 F 向这两个方向分解如图(1),得 F1 和 F2 两个分力.
【解析】该题最容易犯的错误是错选 A,导致这种错 误的原因是对矢量的方向理解不深刻.错误地认为确 定了三条边就能构成一个唯一确定的三角形,即只有 唯一解.这样就把矢量与线段混淆了,从而导致了错 误.已知两个不平行分力的大小 (F1+F2>F).如图所 示,分别以F的始端、末端为圆心,以F1、F2为半径 作圆,两圆有两个交点,所以F分解为 F1、F2有两种 情况.
(2)三角形定则:把两个矢量的 首尾
顺次连结起来,第一
个矢量的首端到第二个矢量的 尾端的 有向线段 为合矢量.如图所示. 4.合力和分力的大小关系 共点的两个力 F1 、 F2 的合力 F 的大小,与它们的夹 越小 ; θ 越小,合 角 θ 有关; θ 越大,合力 力 越大 .F1与F2 同向 时合力最大;F1与F2 反向
③求Fx与Fy的合力即为共点力的合力(如图所示)
1 .如图所示,物体静止于光滑水平面 M 上,力 F 作用 于物体的O点,现要使物体沿着 OO′方向做直线运动 (F 与 OO′ 方向都在 M 平面内 ) ,必须同时再加一个力 F′ , 这个力的最小值是( )C A.Ftanθ B.Fcotθ C.Fsinθ
力的合成与分解

力的合成与分解在物理学中,力的合成与分解是一种常见的分析力学问题。
力的合成指的是将多个力合并为一个力的过程,而力的分解则是将一个力拆分成多个分力的过程。
通过理解和应用力的合成与分解的原理,我们可以更好地理解并解决各种力学问题。
一、力的合成力的合成是指通过几个力的矢量相加得到一个合力的过程。
合力的大小和方向由各个分力的大小和方向共同决定。
在力的合成中,我们常常使用向量图或使用三角法进行计算。
1. 向量图法向量图法是一种常见且直观的力的合成方法。
首先,我们将各个力按照大小和方向画成箭头,然后将它们的起点置于同一点,根据力的大小与方向,画出各个力的箭头。
最后,将各个箭头首尾相接,最终合力的箭头即为各个力的矢量和。
2. 三角法三角法是力的合成的一种数学计算方法。
对于平面力的合成,我们可以使用三角函数来求解。
假设有两个力F1和F2,它们分别与x轴的夹角为α和β,力的合力F与x轴的夹角为θ。
根据三角法的原理,我们可以使用正弦定理和余弦定理来计算合力的大小和方向。
二、力的分解力的分解是指将一个力分解成多个分力的过程。
分力的大小和方向由原力及分解方式共同决定。
力的分解在解决复杂力学问题时非常有用,可以将一个力分解为多个方向上的简单力,从而简化问题的求解过程。
1. 直角坐标系分解直角坐标系分解是一种常用的力的分解方法,适用于力在水平和竖直方向上的分解。
假设力F的大小为F,与x轴的夹角为α。
我们可以将力F分解为水平方向上的分力Fx和竖直方向上的分力Fy。
根据三角函数的定义,我们可以得到分力Fx的大小为F*cosα,分力Fy的大小为F*sinα。
2. 求直角坐标系分解直角坐标系分解也可以用于求解分力。
假设已知合力F与x轴的夹角为θ,合力F的大小为F,需要求解分力F1和F2的大小。
根据三角函数的定义,我们可以得到分力F1的大小为F*cosθ,分力F2的大小为F*sinθ。
结论力的合成与分解为解决各种力学问题提供了重要的方法。
力的合成与分解

7、如图,将一个球放在两块光滑面板AB和AC之间, 两板与水平面的夹角都是60°,现将两板与水平面之 间的夹角以大小相等的角速度同时缓慢地均匀地减小 到30°,则在此过程中,球对两板的压力( B)
A、先增大后减小 B、逐渐减小
C、先减小后增大
D、逐渐增大
B
60°
C
60°
B
G2
FN1
FN2
C
G1
G
三、矢量叠加的法则
平行四边形定则:一切矢量相加遵守平行四 边形定则。 三角形定则:把两个矢量首尾相接与它们的 合矢量组成一个闭合三角形,从而求出合矢量。
四、矢量与标量 矢量:既有大小,又有方向,相加时遵从平行 四边形定则(或三角形定则)的物理量叫做矢 量。 标量:只有大小,没有方向,求和时按照算术 法则相加的物理量叫做标量。
3、共点力:作用于同一点或它们的延长线相交与一 点的几个力。 说明: 1、合力是分力的等效代替,它们的作用效果 相同。 2、合力可以比分力大,也可以比分力小, 还 以等于其中一个分力。
3、大小不变的两个共点力,夹角从0 到180 范围
内变化,合力的变化情况 (1)合力的大小随两力的夹角的增大而减小 (2)合力大小的范围 ︱F1-F2︱≤F≤︱F1+F2︱ 4、平行四边形定则只适用于共点力
3、物体受到两个力F1和F2的作用, F1=3N, F2=9N,则它们的合 力F的数值范围是( B)
A、3N≤F ≤9N B、6N ≤F ≤12N
C、3N ≤F ≤6N
D、3N ≤F ≤12N
4、两个共点力大小都是50N,如果要使这两个力的合力也是50N, 那么这两个力之间的夹角为(D ) A、30° B、45° C、60° D、120° 5、大小不变的两个共点力F1和F2,其合力为F,则下列说法正确 的是( B) A、合力F一定大于任一个分力 B、合力大小既可以等于F1,也可等于F2 C、合力大小等于F1和F2的代数和 D、合力大小随F1、F2之间的夹角(0°≤ θ ≤180°)增大而增 大
力的合成和分解

力的合成和分解力是物体相互作用的结果,是描述物理现象的重要概念。
力的合成和分解是力学中的基本操作,它们帮助我们理解力的相互作用、分析力的性质以及解决实际问题。
下面将详细介绍力的合成和分解的原理和运用。
一、力的合成力的合成是指将多个力按照一定的规律合成为一个力的过程。
根据力的矢量性质,可以使用矢量图法或合力分解法进行力的合成。
1. 矢量图法矢量图法是一种直观、简单的力合成方法,它基于力的矢量性质,可以用力的箭头表示力的大小和方向。
将要合成的力按照一定比例画在同一起点,然后连接起点和终点,合成力的箭头为连线的箭头。
根据三角法或平行四边形法,可以求得合成力的大小和方向。
2. 合力分解法合力分解法是一种将一个力分解为多个力的方法。
利用三角形法则或平行四边形法则,可以将一个力分解为两个分力,满足力的合成原理。
合力分解法不仅可以帮助我们更好地理解力的性质,还可以方便地计算力的分量。
二、力的分解力的分解是指将一个力按照一定的规律拆分成多个力的过程。
根据力的矢量性质,可以使用正交分解法或平行分解法进行力的分解。
1. 正交分解法正交分解法是一种将一个力分解为与轴垂直的两个分力的方法。
根据合力与两个正交方向的关系,可以使用三角函数求得分力的大小。
通过正交分解法,我们可以将斜向作用的力分解为沿着两个正交方向作用的分力,便于我们进一步分析和计算。
2. 平行分解法平行分解法是一种将一个力分解为平行于坐标轴的两个分力的方法。
通过平行四边形法则或直角三角形法则,可以求得分力的大小和方向。
平行分解法在许多实际问题中有广泛应用,如斜面上的物体受到的重力可以通过平行分解法分解为沿着斜面和垂直斜面的两个分力。
力的合成和分解在物理学和工程学中有重要的应用。
通过合理运用力的合成和分解,我们可以更好地理解力的作用规律,解决实际问题。
例如,在平面力系统中,可以通过力的合成将多个力简化为一个合力,从而方便求解物体的平衡条件;在斜面问题中,可以通过力的分解将斜面上的力分解为两个分力,进一步分析物体的受力情况。
力的合成和分解

力的合成和分解力是物体之间相互作用的结果,它在物理学中起着重要的作用。
力的合成和分解是力学中的基本概念,用于描述多个力的综合效果和将力分解为不同方向上的分力。
本文将介绍力的合成和分解的概念、原理和应用。
一、力的合成力的合成是指将多个力按照一定的规则合并为一个合力的过程。
在力的合成中,需要考虑力的大小、方向和作用点。
1. 榆树力的大小合成在力的合成中,力的大小可以通过向量的合成法则进行计算。
向量是用来表示力的数量和方向的,力的大小可以用向量的模表示。
当两个力共同作用于一个物体时,它们的大小可以通过求向量的和来计算。
举例来说,当一个物体受到两个大小分别为F1和F2,方向分别为θ1和θ2的力时,它们的合力可以表示为F=F1+F2,其中F是合力的大小。
合力的方向可以通过计算得到,具体计算方法是通过合力与x轴的夹角θ表示。
2. 力的方向合成力的方向合成是指将多个力按照一定的方法合并为一个力,并确定合力的方向。
在力的方向合成中,需要根据力的方向确定合力的方向,并使用向量图形表示。
举例来说,当一个物体受到两个力F1和F2时,它们的方向可以决定合力的方向。
如果F1和F2的方向相同,则合力的方向与两个力的方向相同。
如果F1和F2的方向相反,则合力的方向与两个力的方向相反。
3. 力的作用点合成力的作用点是指力作用的位置。
在力的合成中,需要确定合力的作用点。
举例来说,当一个物体受到两个力F1和F2作用时,合力的作用点可以通过力的作用点之间的连线的交点来确定。
该交点即为合力的作用点。
二、力的分解力的分解是指将一个力分解为多个在不同方向上的分力的过程。
力的分解可以简化力的分析和计算,能够更好地理解和描述力的作用。
1. 力的水平分解力的水平分解是将一个力分解为水平方向上的分力的过程。
在力的水平分解中,需要将力按照一定的方法分解成水平方向上的分力。
举例来说,当一个物体受到一个斜向上的力F时,可以将这个力分解为水平方向上的分力Fh和竖直方向上的分力Fv。
力的合成与分解知识点总结

力的合成与分解知识点总结力是物理学中的一个重要概念,力的合成与分解是解决力学问题的基础。
下面我们来详细总结一下力的合成与分解的相关知识点。
一、力的合成1、合力的概念如果一个力作用在物体上产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,那几个力就叫做这个力的分力。
2、共点力如果几个力都作用在物体的同一点,或者它们的作用线相交于一点,这几个力就叫做共点力。
3、力的合成法则(1)平行四边形定则两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向。
(2)三角形定则将两个分力首尾相接,连接始端与末端的有向线段就表示合力的大小和方向。
4、合力的计算(1)已知两个分力的大小和方向,求合力的大小和方向,直接运用平行四边形定则或三角形定则计算。
(2)已知两个分力的大小和夹角θ,合力的大小可以通过公式:$F =\sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos\theta}$计算,合力的方向可以通过三角函数关系求得。
5、合力的范围(1)两个力的合力范围:$|F_1 F_2| \leq F \leq F_1 + F_2$。
(2)三个力的合力范围:先求出其中两个力的合力范围。
再看第三个力在这个范围内的情况,从而确定三个力的合力范围。
二、力的分解1、力的分解的概念求一个已知力的分力,叫做力的分解。
2、力的分解遵循的原则力的分解是力的合成的逆运算,同样遵循平行四边形定则或三角形定则。
3、力的分解的方法(1)按照力的实际作用效果进行分解。
例如,放在斜面上的物体受到的重力可以分解为沿斜面方向向下的分力和垂直斜面方向向下的分力。
(2)正交分解法将一个力沿着互相垂直的两个方向进行分解。
4、力的分解的唯一性(1)已知两个分力的方向,有唯一解。
(2)已知一个分力的大小和方向,有唯一解。
(3)已知两个分力的大小,其解的情况可能有:两力之和大于合力时,有两解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F 1
F 2 力的合成和分解
一、标量和矢量
1.将物理量区分为矢量和标量体现了用分类方法研究物理问题的思想。
2.矢量和标量的根本区别在于它们遵从不同的运算法则:标量用代数法;矢量用平行四边形定则或三角形定则。
矢量的合成与分解都遵从平行四边形定则(可简化成三角形定则)。
平行四边形定则实质上是一种等效替换的方法。
一个矢量(合矢量)的作用效果和另外几个矢量(分矢量)共同作用的效果相同,就可以用这一个矢量代替那几个矢量,也可以用那几个矢量代替这一个矢量,而不改变原来的作用效果。
3.同一直线上矢量的合成可转为代数法,即规定某一方向为正方向。
与正方向相同的物理量用正号代入.相反的用负号代入,然后求代数和,最后结果的正、负体现了方向,但有些物理量虽也有正负之分,运算法则也一样.但不能认为是矢量,最后结果的正负也不表示方向如:功、重力势能、电势能、电势等。
二、力的合成与分解
力的合成与分解体现了用等效的方法研究物理问题。
合成与分解是为了研究问题的方便而引人的一种方法.用合力来代替几个力时必须把合力与各分力脱钩,即考虑合力则不能考虑分力,同理在力的分解时只考虑分力而不能同时考虑合力。
1.力的合成
(1)力的合成的本质就在于保证作用效果相同的前提下,用一个力的作用代替几个力
的作用,这个力就是那几个力的“等效力”(合力)。
力的平行四边形定则是运用“等效”观点,通过实验总结出来的共点力的合成法则,它给出了寻求这种“等效代换”所遵循的规律。
(2)平行四边形定则可简化成三角形定则。
由三角形定则还可以得到一个有用的推论:
如果n 个力首尾相接组成一个封
闭多边形,则这n 个力的合力为
零。
(3)共点的两个力合力的大小范围是
|F 1-F 2| ≤ F 合≤ F 1+F 2
(4)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零。
【例1】物体受到互相垂直的两个力F 1、F 2的作用,若两力大小分别为53N 、5 N ,
求这两个力的合力.
解析:根据平行四边形定则作出平行四边形,如图所示,由于F 1、F 2相互垂直,所以作出的平行四边形为矩形,对角线分成的两个三角形为直角三角形,由勾股定理得:
222
2215)35(+=+=F F F N=10 N
合力的方向与F 1的夹角θ为: 3
335512===F F tg θ θ=30° 点评:今后我们遇到的求合力的问题,多数都用计算法,即根据平行四边形定则作出平行四边形后,通过解其中的三角形求合力.在这种情况下作的是示意图,不需要很严格,但要规范,明确哪些该画实线,哪些该画虚线,箭头应标在什么位置等.
【例2】如图甲所示,物体受到大小相等的两个拉力的作用,每个拉力均为200 N ,两力之间的夹角为60°,求这两个拉力的合力.
解析:根据平行四边形定则,作出示意图乙,它是一个菱形,我们可以利用其对角线垂直平分,通过解其中的直角三角形求合力.
320030cos 21== F F N=346 N
合力与F 1、F 2的夹角均为30°.
点评:
(1)求矢量时要注意不仅要求出其大小,
还要求出其方向,其方向通常用它与已知矢量的夹角表示.
(2)要学好物理,除掌握物理概念和规律外,还要注意提高自己应用数学知识解决物理问题的能力.
2.力的分解
(1)力的分解遵循平行四边形法则,力的分解相当于已知对角线求邻边。
(2)两个力的合力惟一确定,一个力的两个分力在无附加条件时,从理论上讲可分解为无数组分力,但在具体问题中,应根据力实际产生的效果来分解。
【例3】将放在斜面上质量为m 的物体的重力mg 分解为下滑力F 1和对斜面的压力F 2,这种说法正确吗?
解析:将mg分解为下滑力F1这种说法是正确的,但是mg的另一个分力F2不是物体对斜面的压力,而是使物体压紧斜面的力,从力的性质上看,F2是属于重力的分力,而物
体对斜面的压力属于弹力,所以这种说法不正确。
【例4】将一个力分解为两个互相垂直的力,有几种分法?
解析:有无数种分法,只要在表示这个力的有向线段的一段任意画一条直
线,在有向线段的另一端向这条直线做垂线,就是一种方法。
如图所示。
(3
①已知两个分力的方向,求两个分力的大小时,有唯一解。
②已知一个分力的大小和方向,求另一个分力的大小和方向时,有唯一解。
③已知两个分力的大小,求两个分力的方向时,其分解不惟一。
④已知一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能惟一,也可能不惟一。
(4)用力的矢量三角形定则分析力最小值的规律:
①当已知合力F的大小、方向及一个分力F1的方向时,另一个分力F2取最小值的条件是两分力垂直。
如图所示,F2的最小值为:F2min=F sinα
②当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2取最小值的条件
是:所求分力F2与合力F垂直,如图所示,F2的最小值为:F2min=F1sinα
③当已知合力F的大小及一个分力F1的大小时,另一个分力F2取最小值的条件是:已知大小的分力F1与合力F同方向,F2的最小值为|F-F1|
(5
把一个力分解成两个互相垂直的分力,这种分解方法称为正交分解法。
用正交分解法求合力的步骤:
①首先建立平面直角坐标系,并确定正方向
②把各个力向x 轴、y 轴上投影,但应注意的是:与确定的正方向相同的力为正,与确定的正方向相反的为负,这样,就用正、负号表示了被正交分解的力的分力的方向
③求在x 轴上的各分力的代数和F x 合和在y 轴上的各分力的代数和F y 合
④求合力的大小 22)()(合合y x F F F +=
合力的方向:tan α=合合
x y F F (α为合力F 与x 轴的夹角)
点评:力的正交分解法是把作用在物体上的所有力分解到两个互相垂直的坐标轴上,分解最终往往是为了求合力(某一方向的合力或总的合力)。
【例5】质量为m 的木块在推力F 作用下,在水平地面上做匀速运动.已知木块与地面间的动摩擦因数为µ,那么木块受到的滑动摩擦力为下列各值的哪个?
A .µmg B.µ(mg+Fsin θ)
C.µ(mg+Fsin θ) D.F cos θ
解析:木块匀速运动时受到四个力的作用:重力mg 、推力F 、支持力F N 、摩擦力F µ.沿水平方向建立x 轴,将F 进行正交分解如图(这样建立坐标系只需分解F ),由于木块做匀速直线运动,所以,在x 轴上,向左的力等于向右的力(水平方向二力平衡);在y 轴上向上的力等于向下的力(竖直方向二力平衡).即
F cos θ=F µ ①
F N =mg+Fsin θ ②
又由于F µ=µF N ③
∴F µ=µ(mg+Fsin θ) 故B、D答案是正确的.
小结:(1)在分析同一个问题时,合矢量和分矢量不能同时使用。
也就是说,在分析问题时,考虑了合矢量就不能再考虑分矢量;考虑了分矢量就不能再考虑合矢量。
(2)矢量的合成分解,一定要认真作图。
在用平行四边形定则时,分矢量和合矢量要画成带箭头的实线,平行四边形的另外两个边必须画成虚线。
(3)各个矢量的大小和方向一定要画得合理。
(4)在应用正交分解时,两个分矢量和合矢量的夹角一定要分清哪个是大锐角,哪个是小锐角,不可随意画成45°。
(当题目规定为45°时除外)。