(完整版)医学统计学重点
医学统计学重点总结

(1) 单个样本均数 H0:μ=μ0t= ν=n-1 (小样本)
(已知样本——均数) H1:μ≠μ0
α=u= 或u= (大样本)(2)配对:H0:μ=μ0
H1:μ≠μ0t= ν=对子数-1
α=
(3) 两独立样本均数H0:μ=μ0t= ν=n1+n2-2
(4)(已知样本——样本) H1:μ≠μ0
9.对任何参数μ和σ的正态分布,都可以通过一个简单的变量变换成标准正态分布,即μ=X-μ
σ
9
标准正态分布
正态分布
面积或概率
-1~1
μ σ
%
~
μ σ
%
·
μ σ
%
10.医学参考值范围(reference value range)传统上称作正常值范围,指正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。习惯上是包含95%的参照总体的范围。
实际工作中标准差 σ往往未知,因而通常用样本标准差S代替σ,求得样本均数 准误估计值S ,计算公式为 S = (当n→无穷,S→σ,S →0)
3 95%的可信区间的计算:x (μ,σ ) 1) σ已知,可信区间= σ
2)σ未知,n为小样本: t 3)σ未知,n为大样本:
T变换
μ变换
N (0,1)
3、t分布曲线的形态变化与自由度v=n-1有关。
2.四格表专用公式(
3对于四格表资料,通常规定为:(1)当n≥40且所有的T ≥ 5时,用检验的基本公式或四格表的专用公式;(2)当n ≥ 40 但有1≤T<5时,用四格表资料的校正公式;(3)当n<40,或T<1时,用四格表资料的Fisher确切 概率法。
4 行×列表资料的χ 检验: 自由度:ν=(行数-1)(列数-1)
医学统计学重点概要

第一章 绪论总体:根据研究目的确定的同质的所有观察单位某种变量值的集合。
总体包括有限总体和无限总体。
样本:从总体中随机抽取的部分观察单位,其实测值的集合。
获取样本仅仅是手段,通过样本信息来推断总体特性才是研究的目的。
资料的类型计量资料、计数资料和等级资料。
误差包括随机误差、系统误差和非系统误差。
抽样误差:由抽样造成的样本统计量和总体参数之间的差异或者是各个样本统计量之间的差异称为抽样误差。
概率:是描述随机事件发生可能性大小的一个度量。
取值范围0≤P ≤1。
小概率事件:表示在一次实验或观察中该事件发生的可能性很小,可以认为很可能不发生。
P ≤0.05或P ≤0.01。
医学统计学的步骤:设计、收集资料、整理资料和分析资料。
统计分析包括:统计描述和统计推断。
统计推断包括:参数估计和假设检验。
第二章计量资料的统计描述频数表和频数分布图的用途:(1)描述频数分布的类型,以便选择相应的统计指标和分析方法。
对称分布:集中位置在中间,左右两侧頻数基本对称。
偏态分布:正、负偏态分布正偏态集中位置偏向值小一侧,负偏态反之。
(2)描述頻数分布的特征;(3)便于发现资料中的可疑值;(4)便于进一步计算统计指标和进行统计分析。
计量资料集中趋势包括算术均数、几何均数和中位数。
算术均数:直接法(样本小):n x x ∑=;頻数表法(样本大)x =nfx ∑ 几何均数:直接法:)lg (lg 1n x G ∑-=;頻数表法)lg (lg )lg (lg 11n x f fx f G ∑∑∑--==(常用于等比资料或对数正态分布资料)中位数:直接法:n 为奇数2/)1(+=n x M ,n 为偶数2/)(12/2/++=n n x x M ;頻数表法:∑-⨯+=)%50(L M M f n f iL M 。
中位数的应用注意事项:可用于各种分布资料,不受极端值的影响,主要用于(1)偏态分布资料(2)端点无确切值的资料(3)分布不明确的资料。
医学统计学重点

医学统计学重点第一章绪论1.根本概念:总体:根据研究目确实定的性质相同或相近的研究对象的某个变量值的全体。
样本:从总体中随机抽取局部个体的某个变量值的集合。
总体参数:刻画总体特征的指标,简称参数。
是固定不变的常数,一般未知。
统计量:刻画样本特征的指标,由样本观察值计算得到,不包含任何未知参数。
抽样误差:由随机抽样造成的样本统计量与相应的总体参数之间的差异。
频率:假设事件A在n次独立重复试验中发生了m次,那么称m为频数。
称m/n为事件A在n 次试验中出现的频率或相对频率。
概率:频率所稳定的常数称为概率。
统计描述:选用适宜统计指标(样本统计量)、统计图、统计表对数据的数量特征及其分布规律进行刻画和描述。
统计推断:包括参数估计和假设检验。
用样本统计指标(统计量)来推断总体相应指标(参数),称为参数估计。
用样本差异或样本与总体差异推断总体之间是否可能存在差异,称为假设检验。
2.样本特点:足够的样本含量、可靠性、代表性。
3.资料类型:〔1〕定量资料:又称计量资料、数值变量或尺度资料。
是对观察对象测量指标的数值大小所得的资料,观察指标是定量的,表现为数值大小。
每个个体都能观察到一个观察指标的数值,有度量衡单位。
〔2〕分类资料:包括无序分类资料〔计数资料〕和有序分类资料〔等级资料〕①计数资料:是将观察单位按某种属性或类别分组,清点各组观察单位的个数(频数),由各分组标志及其频数构成。
包括二分类资料和多分类资料。
二分类:将观察对象按两种对立的属性分类,两类间相互对立,互不相容。
多分类:将观察对象按多种互斥的属性分类②等级资料:将观察单位按某种属性的不同程度、档次或等级顺序分组,清点各组观察单位的个数所得的资料。
4.统计工作根本步骤:统计设计、资料收集、资料整理、统计分析。
第二章实验研究的三要素1.实验设计三要素:被试因素、受试对象、实验效应2.误差分类:随机误差〔抽样误差、随机测量误差〕、系统误差、过失误差。
3.实验设计的三个根本原那么:对照原那么、随机化分组原那么、重复原那么。
医科大学医学统计学重点知识总结

第一章绪论1、统计学的定义:统计学研究数据的收集、整理、分析的一门学科。
医学统计学:医学统计学是以医学理论为指导,应用概率论与数理统计的有关原理、方法,研究医学资料的搜集、整理、分析和推断的一门科学。
2、医学统计研究三个步骤:研究设计、资料分析、结论3、(必考的)几个概念:(1)同质:性质相同异质:性质不同观察单位间的同质性是进行研究的前提同质是相对的(不同研究中或同一研究中不同观察指标对观察对象的同质性的要求不同)(2)个体变异:同质个体间的差异。
变异的两个方面:不同观察单位(个体)间的差别;同一个体在不同阶段的差别(重复测量)个体变异是普遍存在的;个体变异是有规律的。
注意:由于个体变异的存在,同质个体指标的取值会存在差异!(例:体温波动)(3)总体:按研究目的所确定的同质研究对象的全体。
有限总体:有时间、空间的概念,观察单位有限无限总体:无时间、空间的概念(例:某种治疗措施的效果,就包括接受这种治疗措施的所有病人过去、现在、未来,因而观察单位无限)(4)个体:组成总体的基本单位。
样本:从研究总体中随机抽取具有代表性的部分观察单位随机性的三个体现:抽样随机、分组随机、试验顺序随机(5)随机变量:观察对象个体的特征或测量的结果观察结果在一定范围内以一定的概率分布随机取值的变量,表示随机现象。
在一定条件下,并不总是出现相同结果变量值:个体观察指标具体取值(6)总体参数:总体的统计指标或特征值固有的、不变的,但往往是未知的(7)样本统计量:由样本所算出的统计指标或特征值已知的,且随着试验的不同而不同,但分布是有规律的(8)样本含量:样本中包含个体的数量(9)频率f=m/n,f的值随n的增大接近常数p,概率P(A)=p即:频率为一变量,是样本统计量;概率为常数,是一总体参数小概率事件:概率小于等于0.05小概率原理:小概率事件在一次试验中是不会发生的(10)抽样误差:两个表现:样本统计量与总体参数间的差别;不同样本统计量间的差别两个原因:个体变异;抽样过程抽样误差不可避免,但是有规律。
医学统计学重点

医学统计学重点说明:本重点仅供参考:不能包括所有选择题考题,名词和简答可信度高,计算题熟练运算过程;同时自己要清楚各种检验方法的基本思想,重点程度与星号数量相关)一、名词解释1、★★★医学统计学:用概率论和数理统计方法研究医学事件的群体特征的一门方法。
2、★总体:根据研究目的确定的同质的研究对象的全体(集合)。
3、样本:从总体中随机抽取的部分研究对象。
4、随机:总体中每个个体有同等的机会进入样本。
5、系统误差:指数据搜集和测量过程中由于仪器不准确、标准不规范等原因,造成观察结果呈倾向性的偏大或偏小,这种误差称为系统误差。
6、随机误差:由于一些非人为的偶然因素使得结果或大或小,是不确定、不可预知的。
7、★★抽样误差:由于抽样原因造成的样本指标与总体指标之间的差,或者是样本指标与样本指标之间的差。
8、准确度(accuracy)或真实性(validity):观察值与真值的接近程度,受系统误差的影响(9、可靠度(reliabiliy)——也称精密度(precision)或重复性(repeatability):重复观察时观察值与其均值的接近程度,受随机误差的影响。
10、★★★小概率事件:一般常将p ≤ 0.05或p ≤ 0.01称为小概率事件,表示某事件发生的可能性很小。
通俗讲一次抽样是不可能发生的事件。
11、★★正态分布定:又称高斯分布,是一条中间高,两头低,左右完全对称地下降,但永远不与横轴相交的钟形曲线。
12、★★医学参考值范围:指绝大多数正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。
最常用的是95%参考值范围。
13、★★标准误:用于反映均数抽样误差大小的指标,也叫样本均数的标准差,它反映了样本均数之间的离散程度。
14、★95%的可信区间:如果从同一总体中重复抽取100个独立样本,将可能有95个可信区间包括总体均数,有5个可信区间未包括总体均数。
二、填空题1、★医学统计学工作基本步骤:统计设计;收集资料.;整理资料;分析资料2、★统计分析包括:统计描述、统计推断3、频数分布的两个重要特征:集中趋势和离散趋势4、正态分布的两个参数:均数;标准差。
(完整word版)医学统计学符号,公式,重点

(完整word版)医学统计学符号,公式,重点第⼀章医学统计中的基本概念1、医学统计学是研究医学数据的收集、整理、分析、解释和呈现其结果的⼀门学科。
2、个体:研究的基本观察单位。
3、变量:⽤于观察研究对象的指标。
4、观察值:个体变量的数值。
5、资料:⼜称为数据,由变量的观察值构成。
变异:个体观察值之间具有的差异。
变异和同质是对统计学数据的要求!变异是统计学研究的真正对象!统计学是研究变异规律的科学!同质:个体观察值之间的变异在允许范围内。
异质:个体观察值之间的变异超出允许范围。
⼀、总体、抽样、样本、参数、统计量总体:同质的个体所构成的全体研究对象。
总体同时具有同质和变异两个特点。
有限总体:总体中的个体数量是有限的。
⽆限总体:总体中的个体数量是⽆限的。
样本:从总体中随机抽取的部分个体。
样本量:样本所包含的个体数⽬。
参数:刻画总体特征的指标。
统计量:刻画样本特征的指标。
抽样:从总体中随机抽取部分个体的过程。
抽样具有代表性、随机性、可靠性、可⽐性;原则:代表性:样本能充分反映总体特征。
随机性:保证总体中每个个体都有相同的⼏率被抽样。
随机性是代表性的保证;⽣活中随机性的例⼦(思考题);计量资料:由连续变量的观察值构成的资料。
对每个观察对象的观察指标⽤定量⽅法测定其数值⼤⼩所得的资料,⼀般有度量衡单位,例如年龄、⾝⾼、⾎糖。
计数资料:由离散变量的观察值构成的资料。
先将观察对象的观测指标按性质或类别进⾏分组,然后计数各组的数⽬所得的资料,例如性别、患病、⾎型。
等级分组资料:由等级变量的观测值构成的资料。
具有计数资料的特征,同时⼜具有半定量性质的资料,例如细菌培养阳性结果。
⼆、3种设计类型:完全随机设计;配对设计;配伍组设计。
三、抽样误差、概率和⼩概率事件抽样误差:由抽样引起的样本统计量与总体参数之间的差异。
抽样误差的原因;抽样误差是不可避免的。
概率P :表⽰某事件发⽣的可能性⼤⼩的度量。
⼩概率事件:统计学上习惯将P ≤0.05或P ≤0.01的事件称为⼩概率事件,表⽰该事件发⽣的可能性很⼩。
医学统计学重点官方版

一:基本概念:1.参数:反映总体的统计指标。
2. 统计量:反映样本的统计指标称为统计量。
3. 概率:描述随机事件发生的可能性的大小的一个量度4.小概率事件:把p小于等于0.05或小于等于0.01的随机事件。
资料类型:计量资料,计数资料,等级资料。
医学统计的基本步骤:研究设计,收集资料,整理资料,分析资料,结果报告与结论表达。
二:变量分布:1.正态分布:指变量的频数或频率呈中间最多,两端逐渐对称地减少,表现为钟形的一种概率分布。
特征:(1)正态分布曲线是单峰,对称,钟形曲线,X=μ时曲线达到最高峰。
(2)正态曲线有两个参数,总体均数μ和总体标准差σ,μ越大曲线右移,越小左移,故称位置参数,σ越小曲线越瘦高,越大曲线越矮胖,故称形状参数。
(3)正态分布曲线下的面积分布具有一定的规律。
P80页。
应用:(1)质量控制(2)是统计学的理论基础(3)制定医学参考值范围制定医学参考值范围:包括绝大多数正常人的人体形态功能和代谢反应等各种生理生化指标的波动范围,是作为判定某项指标正常与否的参考标准。
方法:确定正常人对象的范围,统一测量标准,确定分组,样本含量确定,确定参考值范围的但双侧,确定百分界值,医学参考值范围的估计。
2.二项分布特征:(1)二项分布的图形:当π=0.5时图形对称,π≠0.5时,图形呈偏态,且当n的含量增大时,图形趋于对称。
(2)二项分布的均数与标准差:μ=n π;σ²=nπ(1-π);σ=根号下nπ(1-π)(3)二项分布的正态近似:当n无限增大时越趋近于正态分布。
应用:对立性,独立性,重复性三:统计分析:㈠1.统计描述:图表和指标(1)图表:频数分布图分为正偏态和负偏态,长尾向右侧延伸为正偏态,向左侧延伸为负偏态。
频数分布的特点:集中趋势和离散趋势。
(2)指标:分为计数指标和计量指标。
计数指标:相对数。
应用相对数的注意事项:①计算相对数时分母不宜太小②观测单位数不等的几个率不能直接想加求其合计率③资料对比时注意可比性④资料分析时不能以构成比代替率⑤考虑存在抽样误差计量指标:1.集中趋势:①算数均数χ:适用于对称分布资料,特别是正态或近似正态分布的计量资料。
医学统计学重点

医学统计学重点医学统计学是医学领域中不可或缺的一门学科,它借助数理统计方法研究医学数据和临床试验的结果,为医学决策提供可靠的依据。
以下是医学统计学的几个重点内容。
一、描述统计学描述统计学是医学统计学的基础,主要研究如何分类、整理和描述医学数据。
其主要方法包括测量尺度、频率分布表、中心趋势测量和变异程度测量。
1. 测量尺度在医学统计学中,常见的测量尺度包括名目尺度、有序尺度和数值尺度。
名目尺度适用于无序分类的变量,有序尺度适用于有序分类的变量,而数值尺度适用于具有度量意义的变量。
2. 频率分布表频率分布表用来展示变量的分布情况,主要包括类别、频数和频率等内容。
通过频率分布表,可以直观地了解变量的分布状况。
3. 中心趋势测量中心趋势测量主要包括平均数、中位数和众数。
平均数是所有观测值的总和除以观测值的个数,中位数是将观测值按大小排列后的中间值,众数是出现次数最多的观测值。
4. 变异程度测量变异程度测量用来描述数据的分散程度,主要包括极差、方差和标准差。
极差是最大观测值与最小观测值之间的差异,方差是观测值与均值之间的差异的平方的平均数,标准差是方差的平方根。
二、推断统计学推断统计学是医学统计学的核心内容,主要研究如何通过样本数据推断总体参数,并对假设进行检验。
其中包括参数估计、假设检验和置信区间等方法。
1. 参数估计参数估计是利用样本数据估计总体参数,常用的方法有点估计和区间估计。
点估计是通过样本数据得到一个单一的数值作为总体参数的估计值,区间估计是通过样本数据得到一个范围作为总体参数的估计区间。
2. 假设检验假设检验是用来检验某个陈述是否与观察数据相符的方法。
在医学研究中,研究者常常根据实验数据对研究假设进行检验,以确定是否有统计显著性。
3. 置信区间置信区间是对总体参数的一个范围估计。
置信区间的计算方法与区间估计相似,通过对样本数据进行分析计算得到。
三、生存分析生存分析是医学统计学中的一个重要分支,主要研究疾病患者的生存时间和生存率等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
医学统计学重点第一章绪论1.基本概念:总体:根据研究目的确定的性质相同或相近的研究对象的某个变量值的全体。
样本:从总体中随机抽取部分个体的某个变量值的集合。
总体参数:刻画总体特征的指标,简称参数。
是固定不变的常数,一般未知。
统计量:刻画样本特征的指标,由样本观察值计算得到,不包含任何未知参数。
抽样误差:由随机抽样造成的样本统计量与相应的总体参数之间的差异。
频率:若事件A在n次独立重复试验中发生了m次,则称m为频数。
称m/n为事件A在n次试验中出现的频率或相对频率。
概率:频率所稳定的常数称为概率。
统计描述:选用合适统计指标(样本统计量)、统计图、统计表对数据的数量特征及其分布规律进行刻画和描述。
统计推断:包括参数估计和假设检验。
用样本统计指标(统计量)来推断总体相应指标(参数),称为参数估计。
用样本差别或样本与总体差别推断总体之间是否可能存在差别,称为假设检验。
2.样本特点:足够的样本含量、可靠性、代表性。
3.资料类型:(1)定量资料:又称计量资料、数值变量或尺度资料。
是对观察对象测量指标的数值大小所得的资料,观察指标是定量的,表现为数值大小。
每个个体都能观察到一个观察指标的数值,有度量衡单位。
(2)分类资料:包括无序分类资料(计数资料)和有序分类资料(等级资料)①计数资料:是将观察单位按某种属性或类别分组,清点各组观察单位的个数(频数),由各分组标志及其频数构成。
包括二分类资料和多分类资料。
二分类:将观察对象按两种对立的属性分类,两类间相互对立,互不相容。
多分类:将观察对象按多种互斥的属性分类②等级资料:将观察单位按某种属性的不同程度、档次或等级顺序分组,清点各组观察单位的个数所得的资料。
4.统计工作基本步骤:统计设计、资料收集、资料整理、统计分析。
第二章实验研究的三要素1.实验设计三要素:被试因素、受试对象、实验效应2.误差分类:随机误差(抽样误差、随机测量误差)、系统误差、过失误差。
3.实验设计的三个基本原则:对照原则、随机化分组原则、重复原则。
4.实验设计方法有析因设计正交试验设计均匀试验设计交互作用两组:异体配对设计同体配对设计交叉设计无随机同期对照实验设计(单因素两水平)扩展多组:单因素多水平配伍组设计拉丁方设计(两因素多水平)(三因素多水平)配伍组设计:也称随机区组设计,将条件相近的受试对象配伍,每个配伍组中的对象随机分配到各处理组中。
析因设计:考察两个或两个以上的处理因素,将各个因素的水平进行全面组合,每个组合下至少有两个以上的观察对象重复测量。
一般来讲,应尽可能安排等重复试验,以简化计算,2-3个水平数。
优点是全面性和均衡性较好,可同时分析处理因素的效应及因素间的交互作用。
拉丁方设计:用于三因素等水平无交互。
第三章定量资料的统计描述、参考值范围1.频数表编制过程(了解)(1)找出样本数据的最大值和最小值,计算极差 R;(2)分组:确定分组的组距 d 和组数 k;一般n<50,5-6组;n在100左右,7-10组;n>100,10-15组(3)求频率密度:统计频数,算出频率、频率密度和累积频率;(4)画出直方图。
2.频数表和直方图的作用:用于观察个数较多资料的统计描述,可以直观提示资料的分布特征和分布类型。
3.集中趋势、离散趋势的指标及适用范围(1)集中趋势:x,G,M,Px ,M算术均数:适用于对称分布;不适用于偏态分布和资料中出现极值的资料。
几何均数:适用于呈倍数关系的资料或对数正态分布的资料,尤其是正偏态分布。
不适用与观察值中有0或正负数值同时出现的资料。
中位数:适用于大样本偏态分布或分布情况不明的资料或资料中有不确定数值的资料。
百分位数的作用:多个百分位数结合使用,全面描述数据分布的特征;用于确定医学参考值范围(偏态或分布不明的资料)。
众数:适用于大样本,较粗糙。
(2)离散趋势:极差:优点:简单明了、容易使用。
缺点:①只反映最大值和最小值间的差异,不能反映其他观察值的变异程度。
②样本容量越大,极差可能越大。
③极差的抽样误差大,不稳定。
四分位数间距:适用于确定医学参考值范围,与中位数一起描述偏态分布资料变异程度。
缺点:类似于极差,利用度低。
方差与标准差:与均数一起描述对称分布,特别是正态分布的分布特征。
变异系数:适用于:①适用于比较度量衡单位不同资料的变异度。
②比较均数相差悬殊的资料的变异度。
③衡量实验精密度和稳定性的常用指标。
(3)频数分布特征高峰在中间,左右大致对称,称为对称分布。
平均数=中位数=众数高峰偏向小值的一侧(左侧),称正偏态分布(亦称右偏态)。
平均数>中位数>众数高峰偏向大值的一侧(左侧),称负偏态分布(亦称左偏态)。
平均数<中位数<众数对称分布正(右)偏态分布负(左)偏态分布4.正态分布图形的特点及意义(1)特点:①f (x )关于x=μ对称 ②x=μ时取得最大值③在x=μ±σ处为拐点,且以 x 轴为水平渐近线 ④f (x )大于0⑤P (x=a )=0⑥若 f (x) 在点 x 处连续,则F ´(x )=f (x) (2)意义:⎰+∞∞-)(x f =1,f (x )在负无穷到正无穷的积分值为1,即曲线下方面积为1。
5.μ和σ2的意义μ:位置参数,当σ固定时,μ增大,曲线沿横轴向右移动;μ减小,曲线沿横轴向左移动。
σ2:形状参数,当μ固定时,σ越大,曲线越矮胖;σ越小,曲线越高瘦。
6.标准化变换z=σμ-x x ~N (μ,σ2) z ~N (0,1) F (x)=Ф(σμ-x )=Ф(z) 即P (X ≤x)=Ф(σμ-x )=P (Z ≤z)P (a<x<b)=F (b)-F (a)=Ф(σμ-b )-Ф(σμ-a P (σμ-a <σμ-x <σμ-b )=P (σμ-a < Z <σμ-b )7.标准正态分布界值规定:界值右侧曲线下方面积等于它的下角标。
下角标一致,x 轴上方中间面积一致。
双侧界值:P (|z|≤z 2α)=1-α P (z<z 2α)=1-2αP (|z|≥z 2α)=α P (z>z 2α)=2α单侧界值:上限: 下限:P (z>z α)=α P (z>z 1-α)=1-α P (z<z α)=1-α P (z<z 1-α)=α8.正常值范围及意义概念:医学临床中,常将就诊者的某些生理、生化、免疫学指标的测定结果,与排除了对研 究指标有影响的疾病和有关因素的大多数“正常人”的相应数值进行比较,以就诊者 的测定值是否超出了大多数“正常人”相应指标的波动范围,作为临床诊断的重要参 考,又称医学参考值范围。
意义:95%的参考值范围含义是指:样本中有95%的个体测定值在所求范围之内。
以95%的置信区间来说,意义是:该区间以95%的概率包含了待估计的参数,这种 估计的可信度是95%,会冒5%的风险。
公式: 双侧95%的界限值:x ±1.96s 单侧95%的上限值:x +1.645s 单侧95%的上限值:x -1.645s第四章 总体均数的估计、假设检验1.标准误(1)概念:每次样本计算出的x 不同,这些x 的标准差称为均数的标准误。
(2)意义:是衡量样本统计量抽样误差大小的统计指标。
(3)与标准差的区别:二者都是描述变异程度的指标,标准差描述个体值的变异,标准误描 述统计量的变异。
(4)均数标准误的公式:S x =ns 2.置信区间(1)定义:设θ为总体的未知参数,若由样本确定的两个统计量θ1(x 1、x 2、…、xn)和θ2(x 1、 x 2、…、x n ),且θ1<θ2,对于预先给定的值α(0<α<1),若满足P(^θ1<^θ2)=1-α, 则称随机区间(^θ1,^θ2)为θ的1-α置信区间,其中称为^θ1置信下限,称为^θ2 置信上限,1-α称置信度。
(2)意义:区间(^θ1,^θ2)包含有参数θ的概率为1-α,不能说θ在(^θ1,^θ2)的概率为 1-α。
例:可以说(a ,b )包含均数μ的概率为95%,不能说μ在(a ,b )的概率为95%。
(3)公式:单个正态总体均数μ的区间估计①σ已知:双侧:nz x σα2± 即 x z x σα2±z 分布单侧:nz x σα± 即 x z x σα±②σ未知:双侧:n st x 2α± 即 x s t x 2α± 小样本(n ≤50) t 分布单侧:nst x α± 即 x s t x α±双侧:n sz x 2α± 即 x s z x 2α± 大样本(n>50) z 分布单侧:nsz x α± 即 x s z x α± (4)两要素:准确度:由1-α 决定,1-α 越大,准确度越高。
精确度:由区间长度决定。
99%置信区间准确度高于95%置信区间。
95%置信区间精确度更高。
3.抽样分布(1)t 分布①定义: 来自正态总体的一组样本,x 和s 分别是样本的均数和标准差。
则t=ns x /μ-~t 分布,自由度 df=n-1,极限分布是标准正态分布。
②图形分布特征:以0为中心,左右对称的单峰分布。
自由度越大,越高瘦③界值: 双侧:P (|t|≤t 2α)=1-α P (t<t 2α)=1-2αP (|t|≥t 2α)=α P (t>t 2α)=2α单侧:上限: 下限:P (t<t α)=1-α P (t<t 1-α)=α P (t>t α)=α P (t>t 1-α)=1-α (2)χ2分布①定义:若从均数为μ,标准差σ的正态总体中,每次抽取样本含量为n 的样本,计算 样本标准差s ,则χ2=(n-1)s 2/σ2服从自由度df=n-1的χ2分布。
②图形分布特征: 曲线偏向左边 自由度越小曲线越偏 ③界值: 双侧:P (x 2>x 22α)=2α P (x 2>212α-x )=1-2α P (x 2<x 22α)=1-2α P (x 2<212α-x )=2α 单侧:上限: 下限:P (x 2>x 2α)=α P (x 2>x 21-α)=1-α P (x 2<x 2α)=1-α P (x 2<x 21-α)=α (3)F 分布①定义:如果分别从两个正态总体N (μ1,σ1)和N (μ1,σ1)中随机抽取样本含量 n 1、n 2的两个样本,算出样本均数和方差分别为x 1,s 21和x 2,s 22,则σσ22222121//s s F =服从df 1=n 1-1,df 2=n 2-1的F 分布。