概率论与数理统计课后答案 北邮版 (第三章)
概率与数理统计第3章答案

第3章习题答案祥解1.现有10件产品,其中6件正品,4件次品。
从中随机抽取2次,每次抽取1件,定义两个随机变量、如下:X Y ⎩⎨⎧=。
次抽到次品第次抽到正品第11,0;,1X ⎩⎨⎧=。
次抽到次品第次抽到正品第22,0;,1Y 试就下面两种情况求的联合概率分布和边缘概率分布。
),(Y X (1)第1次抽取后放回;(2)第1次抽取后不放回。
解(1)依题知所有可能的取值为.因为),(Y X )1,1(),0,1(),1,0(),0,0(; 254104104)0|0()0()0,0(1101411014=⨯=⋅===⋅====C C C C X Y P X P Y X P 256106104)0|1()0()1,0(1101611014=⨯=⋅===⋅====C C C C X Y P X P Y X P 256104106)1|0()1()0,1(1101411016=⨯=⋅===⋅====C C C C X Y P X P Y X P ; 259106106)1|1()1()1,1(1101611016=⨯=⋅===⋅====C CC C X Y P X P Y X P 所以的联合概率分布及关于、边缘概率分布如下表为:),(Y X X Y (2)类似于(1),可求得; 15293104)0|0()0()0,0(191311014=⨯=⋅===⋅====C C C C X Y P X P Y X P YX01⋅i p 0254256251012562592515jp ⋅251025151YX01⋅i p -111p 041021p 22p 21; 15496104)0|1()0()1,0(191611014=⨯=⋅===⋅====C C C C X Y P X P Y X P ; 15494106)1|0()1()0,1(191411016=⨯=⋅===⋅====C C C C X Y P X P Y X P 15595106)1|1()1()1,1(191511016=⨯=⋅===⋅====C C C C X Y P X P Y X P 所以的联合概率分布及关于、边缘概率分布如下表为:),(Y X X Y 2.已知随机变量、的概率分布分别为X Y 且,求1)0(==⋅Y X P (1)和的联合概率分布;(2).X Y )(Y X P =解(1)因为)1,0()0,0()0,1()0,1()0(=======-===⋅Y X Y X Y X Y X Y X 所以1)1,0()0,0()0,1()0,1()0(22213111=+++==+==+==+=-===⋅p p p p Y X P Y X P Y X P Y X P Y X P = 又根据得,从而.于是由表12131=∑∑==j i ijp03212=+p p 03212==p p YX01⋅i p 01521541561154155159jp ⋅1561591X P-11412141Y P12121YX01⋅i p -141041002121141021jp ⋅21211可得,,,.4111=p 4131=p 2122=p 0212221=-=p p 故的联合概率分布为),(Y X (2)由(1)知.0)1,1()0,0()(===+====Y X P Y X P Y X P 3.设二维随机向量服从矩形区域上的均匀分),(Y X {}10,20),(≤≤≤≤=y x y x D 布,且⎩⎨⎧>≤=.,1;,0Y X Y X U ⎩⎨⎧>≤=.2,1;2,0Y X Y X V 求与的联合概率分布。
概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
概率论与数理统计课后谜底 北邮版 第三章 2

X Y 4
2
dx
0 2 8
4x 1(6 x y)dy 2 .
题5图 6.设 X 和 Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为
求:(1) X 与 Y 的联合分布密度;(2) P{Y≤X}.
fY(y)= 0,
题6图 【解】(1) 因 X 在(0,0.2)上服从均匀分布,所以 X 的密度函数为
0
P{0 X 1, 0 Y 2} 1 212e(3x4 y)dxdy (1 e3 )(1 e8 ) 0.9499.
0 0
5.设随机变量(X,Y)的概率密度为
(1) 确定常数 k; (2) 求 P{X<1,Y<3}; (3) 求 P{X<1.5}; (4) 求 P{X+Y≤4}. 【解】(1) 由性质有
而
f
X
(
x)
D1
D2
5e5y , y 0,
1 0.2
,
0, 其他.
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
《概率论与数理统计》第三版--课后习题标准答案-

习题一:1.1 写出下列随机实验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数。
解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和。
解:}{12,11,4,3,22 =Ω;(3) 观察某医院一天内前来就诊的人数。
解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品。
解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格。
解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2)。
解:用x 表示最低气温, y 表示最高气温。
考虑到这是一个二维的样本空间,故:()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离。
解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8 ; 1.2(1) A 与B 都发生, 但C 不发生。
C AB ;(2) A 发生, 且B 与C 至少有一个发生。
)(C B A ⋃; (3) A,B,C 中至少有一个发生。
C B A ⋃⋃;(4) A,B,C 中恰有一个发生。
C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生。
BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生。
C B C A B A ⋃⋃;(7) A 。
B 。
C 中至多有两个发生。
ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。
最新概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
《概率论与数理统计》(第三版)课后习题答案

习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8 ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。
《概率论与数理统计》习题及答案第三章

《概率论与数理统计》习题及答案第 三 章1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。
解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以11()(1)(1),2,3,.k k P X k p p p p k --==-+-=2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个数X 的分布列。
解 从a b +个球中任取r 个球共有ra b C +种取法,r 个球中有k 个黑球的取法有kr kb aC C -,所以X 的分布列为()k r kb ara bC C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+,此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。
3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。
解 设i A =‘第i 个零件是合格品’1,2,3i =。
则1231111(0)()23424P X P A A A ===⋅⋅=, 123123123(1)()P X P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++111121113623423423424=⋅⋅+⋅⋅+⋅⋅=, 123123123(2)()P X P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++1211131231123423423424=⋅⋅+⋅⋅⋅+⋅⋅=,1231236(3)()23424P X P A A A ===⋅⋅=. 即X 的分布列为01231611624242424XP. 4.一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为12,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律.3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sin sin sin sin0sin sin0sin4346362(31).4=--+=-g g g g题3图说明:也可先求出密度函数,再求概率。
4.设随机变量(X,Y)的分布密度f(x,y)=⎩⎨⎧>>+-.,0,0,0,)43(其他yxA yxe求:(1)常数A;(2)随机变量(X,Y)的分布函数;(3)P{0≤X<1,0≤Y<2}.【解】(1)由-(34)00(,)d d e d d112x yAf x y x y A x y+∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得A=12(2)由定义,有(,)(,)d dy xF x y f u v u v-∞-∞=⎰⎰(34)340012e d d(1e)(1e)0,0,0,0,y y u vx yu v y x-+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y≤<≤<12(34)3800{01,02}12e d d(1e)(1e)0.9499.x yP X Yx y-+--=<≤<≤==--≈⎰⎰5.设随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧<<<<--.,0,42,2),6(其他yxyxk(1)确定常数k;(2)求P{X<1,Y<3};(3)求P{X<1.5};(4)求P{X+Y≤4}.【解】(1)由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83xx x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他 所以(,),()()X Y f x y X Y f x f y g 独立5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25e d d y y xDP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-5500-1d 25e d (5e 5)d =e 0.3679.xyx x y x -==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他. 8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=e ,0,0,.y x y -⎧<<⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰e d e ,0,=0,.0,y x x y x +∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰0e d e ,0,=0,.0,yy x x y y --⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=22,1,0,.cx y x y ⎧≤≤⎨⎩其他(1) 试确定常数c ;(2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212422121(1),11,d 840,0,.x x x x x y y ⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰522217d ,01,420,0,.y y x y x y y -⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=1,,01,0,.y x x ⎧<<<⎨⎩其他求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.xx y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表3 4 5{}i P X x =13511C 10= 3522C 10= 3533C 10= 610 23511C 10= 3522C 10= 310 3 02511C 10= 110{}i P Y y =110 310 610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠===g 故X 与Y 不独立2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03(2) X 与Y 是否相互独立? 2 5 8 P {Y=y i } 0.4 0.15 0.30 0.35 0.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38YXXYXY(2) 因{2}{0.4}0.20.8P X P Y ===⨯g 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩g 独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ∆=-≥故 X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰21/2001d e d 212[(1)(0)]0.1445.x y x yπ-==-Φ-Φ=⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z zP z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==⎰⎰⎰⎰ 33610231010=d 2z zy yzy +∞⎛⎫-= ⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y x x yx y +∞≥==⎰⎰⎰⎰ 336231010101=d 12y y zy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180h 的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立34{180}{180}P X P X ≥≥g1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<gg g 44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U 于是0{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑g()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki ki n i k i n k ii k k n k i k n k P X i P Y k i n n p q p q i k i n n p q i k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑g方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.(1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律. 【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i ====<+≤=10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑ 0,1,2,3,4,5i =所以V的分布律为V=max(X,Y) 0 1 2 3 4 5P 0 0.04 0.16 0.28 0.24 0.28(3) {}{min(,)}P U i P X Y i===351{,}{,}{,}{,}k i k iP X i Y i P X i Y iP X i Y k P X k Y i==+==≥+>====+==∑∑0,1,2,3,i=于是U=min(X,Y) 0 1 2 3P 0.28 0.30 0.25 0.17W=X+Y0 1 2 3 4 5 6 7 8P0 0.02 0.06 0.13 0.19 0.24 0.19 0.12 0.05(1)求P{Y>0|Y>X};(2)设M=max{X,Y},求P{M>0}.题20图【解】因(X,Y)的联合概率密度为22221,,(,)π0,.x y Rf x y R⎧+≤⎪=⎨⎪⎩其他(1){0,}{0|}{}P Y Y XP Y Y XP Y X>>>>=>(,)d(,)dyy xy xf x yf x yσσ>>>=⎰⎰⎰⎰π2π/405π42π/401d dπ1d dπRRr rRr rRθθ=⎰⎰⎰⎰3/83;1/24== (2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===⎰(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩⎰其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和y 1 y 2 y 3P {X =x i }=p ix 1 x 21/81/8P {Y =y j }=p j 1/61【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-= YX而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====g ,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x ===又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y ===同理21{},2P Y y == 223{,}8P X x Y y ===又31{}1j j P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=L .(2) {,}{}{|}P X n Y m P X n P Y m X n ======ge C (1),,0,1,2,.!m m n mnnp p n m n n n λλ--=-≤≤=g L 24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩ 因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩ 推得 1{max{,}1}9P X Y ≤=. 26. 设二维随机变量(X ,Y )的概率分布为其中a ,b ,c 为常数,且X 的数学期望E (X )= -0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求:(1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4. 由()0.2E X =-,可得0.1a c -+=-.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为-2,-1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.27. 设随机变量X,Y 独立同分布,且X 的分布函数为F(x),求Z=max{X,Y}的分布函数.解:因为X,Y 独立同分布,所以F X (z )=F Y (z),则F Z (z )=P{Z ≤z}=P{X ≤z ,Y ≤z}=P{x ≤z}·P{Y ≤z}=[F (z )]2.28.设随机变量X 与Y 相互独立,X 的概率分布为1{},1,0,1,3P X i i ===-Y 的概率密度为1,01,()0,Y y f y ≤<⎧=⎨⎩其他.记Z =X +Y .(1)求1{|0};2P Z X ≤= (2)求Z 的概率密度()Z f z分析 题(1)可用条件概率的公式求解.题(2)可先求Z 的分布函数,再求导得密度函数.解(1)1{0,}12{|0}2{0}P X Z P Z X P X =≤≤=== 1{0,}2{0}P X Y P X =≤== 11{}22P Y =≤=(2)(){}{}Z F z P Z z P X Y z =≤=+≤{,1}{,0}{,1}P X Y z X P X Y z X P X Y z X =+≤=-++≤=++≤= {1,1}{,0}{1,1}P Y z X P Y z X P Y z X =≤+=-+≤=+≤-= {1}{1}{}{0}{1}{1}P Y z P X P Y z P X P Y z P X =≤+=-+≤=+≤-=1[{1}{}{1}]3P Y z P Y z P Y z =≤++≤+≤-1[(1)()(1)]3Y Y Y F z F z F z =+++-'1()()[(1)()(1)]3Z Z Y Y Y f z F z f z f z f z ==+++-1,1230,.z ⎧-≤<⎪=⎨⎪⎩其他29.设随机变量(X,Y)服从二维正态分布,且X 与Y 不相关,f X (x),f Y (y)分别表示X,Y 的概率密度,求在Y=y 的条件下,X 的条件概率密度f X |Y (x |y).解:由第四章第三节所证可知,二维正态分布的不相关与独立性等价,所以f(x,y)= f X (x) ·F Y (y),由本章所讨论知,/()()(,)(/)()()()X Y X Y X Y Y f x f y f x y f x y f x f y f y ===g .30.设二维随机变量(X ,Y )的概率密度为2,01,01,(,)0,.x y x y f x y --<<<<⎧=⎨⎩其他(1)求{2};P X Y >(2)求Z =X +Y 的概率密度()Z f z .分析 已知(X,Y)的联合密度函数,可用联合密度函数的性质{(,)P X Y ∈}(,)GG f x y dxdy =⎰⎰ 解(1); Z=X+Y 的概率密度函数可用先求Z 的分布函数再求导的方法或直接套公式求解. 解 (1)2{2}(,)x yP X Y f x y dxdy >>=⎰⎰1200120(2)57().824x dx x y dy x x dx =--=-=⎰⎰⎰(2)()(,),Z f z f x z x dx +∞-∞=-⎰其中 2()01,01(,)0x z x x z x f x z x ---<<<-<⎧-=⎨⎩其他201,01z x z x -<<<-<⎧=⎨⎩其他当02z z ≤≥或时,()0Z f z =; 当01z <<时,0()(2)(2);zZ f z z dx z z =-=-⎰ 当12z ≤<时,121()(2)(2),Z z f z z dx z -=-=-⎰即Z 的概率密度为2(2)01()(2)120Z z z z f z z z -<<⎧⎪=-≤<⎨⎪⎩其他。