试求三次样条插值S(X)

合集下载

样条插值实验报告

样条插值实验报告

四、三次样条插值1. 样条函数插值的原理给定区间[a,b]上划分A:a=x<x<<x<x=b,若分段函数S(x)满足:01n-1n1.S(x)在各个子区间[x,x],i=0,1,,n-1上均为x的三次多项式;ii+12.S(x)在整个区间[a,b]上有直至二阶的连续导数。

则称S(x)为[a,b]上依次划分的三次样条函数,简称样条函数。

具体地有分段表达式:ax3+bx2+cx+d,x G[x,x]000001ax3+bx2+cx+d,x G[x,x]111112S(x)=\ax3+bx2+cx+d,x G[x,x](1)222223ax3+bx2+cx+d,x G[x,x]、°*n-1n—T•••n-1n-1n-1n共有4n个参数a,b,c,d,i=0,1,,n,它们在内节点处满足iiii'S(x)=S(x),…i-0i+0<S'(x)=S'(x),i=1,2,,n-1.(2)i-0i-0S''(x)=S''(x),Ji-0i+0满足样条函数定义的函数集合称为分划A上的三次样条函数空间,记为S(3,A),可以证明S(3,A)为线性空间。

若S(x)G S(3,A),且进一步满足插值条件S(x)=y=f(x),i=0,1,,n(3)iii其中y为节点x处的给定函数值(若被插函数了(x)已知;••则用了(x)代替之),iii则称S(x)为以x,x,,x,x为节点的三次样条函数。

01n-1n其中式(3)插值节点提供了n+1个约束条件;加上式(2)的3n-3个,合起来共有4n-2个;欲求4n个待定参数的唯一解;尚缺两个条件。

这两个条件一般由样条函数的边界条件提供。

常用三类边界条件;他们分别与三次样条函数;构成不同边界条件的样条函数插值问题。

2. 三类样条函数插值问题2.1第二类边界条件给定边界条件两端的一阶导数值:S'(x)=y'=m,S'(x)=y'=m000nnn这相当于样条两短处的方向给定(压铁在两端点的压力方向确定),对应的插值问题如下:对于分划A:a=x<x<<x<x=b,给定节点对应的函数值01n—1ny,y,y,,y,以及两端点处的一阶导数值y'=m,y'=m,求三次样条函数012n00nnS(x),使…f S(x)=y,i=0,1,,n2iiI S'(x)=m,S'(x)=mJ00n…n2.2第一类边界条件给定边界两端的二阶导数值:S''(x)=y''=M,S''(x)=y''=M000nnn这相当于在样条两端处外加一个力矩,使梁两端点处有相应的曲率。

(完整版)数值分析第一次作业

(完整版)数值分析第一次作业

问题1:20.给定数据如下表:试求三次样条插值S(x),并满足条件 (1)S`(0.25)=1.0000,S`(0.53)=0.6868; (2)S ’’(0.25)=S ’’(0.53)=0。

分析:本问题是已知五个点,由这五个点求一三次样条插值函数。

边界条件有两种,(1)是已知一阶倒数,(2)是已知自然边界条件。

对于第一种边界(已知边界的一阶倒数值),可写出下面的矩阵方程。

⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡432104321034322110d M M M M M 200020000020022d d d d λμμλμλμλ其中μj =j1-j 1-j h h h +,λi=j1-j j h h h +,dj=6f[x j-1,x j ,x j+1], μn =1,λ0=1对于第一种边界条件d 0=0h 6(f[x 0,x 1]-f 0`),d n =1-n h 6(f`n-f `[x n-1,x n ]) 解:由matlab 计算得:由此得矩阵形式的线性方程组为:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡ 2.1150-2.4286-3.2667-4.3143-5.5200-M M M M M 25714.00001204286.000004000.026000.0006429.023571.0001243210解得 M 0=-2.0286;M 1=-1.4627;M 2= -1.0333; M 3= -0.8058; M 4=-0.6546S(x)=⎪⎪⎩⎪⎪⎨⎧∈-+-+-∈-+-+-∈-+-+-∈-+-+-]53.0,45.0[x 5.40x 9.1087x 35.03956.8.450-x 1.3637-x .5301.67881- ]45.0,39.0[x 9.30x 11.188x 54.010.418793.0-x 2.2384-x .450(2.87040-]39.0,30.0[x 03.0x 6.9544x 9.30 6.107503.0-x 1.9136-x .3902.708779-]30.0,25.0[x 5.20x 10.9662x 0.3010.01695.20-x 4.8758-x .3006.76209-33333333),()()()(),()()()),()()()(),()()()(Matlab 程序代码如下:function tgsanci(n,s,t) %n代表元素数,s,t代表端点的一阶导。

第5章-3三次样条插值解析

第5章-3三次样条插值解析

0 x
( x 3)3 ,
解 利用上面的定理(光滑因子)验证.



2( x 1)3 ,
3
x,
所以由定理5.5可知该函数为三次样条函数.
例,设
x3 x 2 0 x 1 S ( x) 3 2 ax bx cx 1 1 x 2
是以0,1,2为节点的三次样条函数,则a= 解:1)由 , b= , c=
p j ( x), x j x x j 1

p j ( x) Pm ( j 0,1,...,n)
pn ( x), xn x
s(x)是m次样条的充要条件应为 p0 ( x) a0 a1x am xm ,
பைடு நூலகம்
p1 ( x) p0 ( x) c1 ( x x1 )m ,
已知 f(x0)=f(xn) 确定的周期函数。
例,已知 f(-1)=1,f(0)=0,f(1)=1,求 f(x)在区间[-1,1]上的
三次自然样条插值多项式。 解:这里n=2区间[-1,1]分成两个子区间,故设
S ( x)


s0 ( x) a0 x3 b0 x2 c0 x d0
1)它只在插值区间端点比Lagarnge多项式插值问题多两个
边界条件,但却在内点处有一阶、二阶连续的导函数,从而要比 分段Lagarnge插值更光滑。
2)分段Hermite三次多项式插值问题,只有被插值函数在所有
插值节点处的函数值和导数值都已知时才能使用,而且在内节点处 二阶导函数一般不连续。
下面我们讨论三次样条插值多项式s3(x)的构造。 一般来讲,构造三次样条插值多项式s3(x) ,若用待定系数法, 可写成 S3 ( x) ai x3 bi x2 ci x di x xi , xi1 i 0, 1, , n 1 其中 ai, bi, ci, di 为待定系数,共有4n个。按定义s3(x)应满足: (1)插值条件n+1个: S ( xi ) yi i 0, 1, , n 连续性条件n-1个:S ( xi 0) S ( xi 0) i 0, 1, , n 1 (2)在内节点一阶导数连续性条件n-1个:

MATLAB三次样条插值之三弯矩法

MATLAB三次样条插值之三弯矩法
边界条件为自然边界条件,即:S’’(0.9)=0,s’’(13.3)=0(可画出图形)。
解:
程序:
%解样条差值%
function[newu,w,newv,d]=sanzhi(x,y,x0,y0,y1a,y1b)
n=length(x);m=length(y);
if m~=n
error('x or y重新输入');
for k=2:n-1
v(k)=h(k-1)/(h(k-1)+h(k));
u(k)=1-v(k);
d(k)=3*(v(k)*(y(k+1)-y(k))/h(k)+u(k)ห้องสมุดไป่ตู้(y(k)-y(k-1))/h(k-1));
end
d(1)=d(1)-u(1)*y1a;
d(n-1)=d(n-1)-v(n-1)*y1b;
24.构造三次样条函数s(x)去模拟一只飞鸟外形的上部,测得的数据如下:
x=[0.9,1.3,1.9,2.1,2.6,3.0,3.9,4.4,4.7,5.0,6.0,7.0,8.0,9.2,10.5,11.3,11.6,12.0,12.6,13.0,13.3];
y=[1.2,1.5,1.85,2.1,2.6,2.7,2.4,2.15,2.05,2.1,2.25,2.3,2.25,1.95,1.4,0.9,0.7,0.6,0.5,0.4,0.25];
newv=v(1:n-2,:);
newu=u(2:n-1,:);
function intersanzhi(x,y,x0,y0,y1a,y1b)
n=length(x);m=length(y);
if m~=n
error('x or y重输');

三次样条 求离散点斜率的公式

三次样条 求离散点斜率的公式

三次样条求离散点斜率的公式
我们要找出三次样条插值法中离散点斜率的计算公式。

首先,我们需要了解三次样条插值法的基本原理。

三次样条插值法是一种数学方法,用于通过给定的离散点集来拟合一个连续的函数。

这个方法的关键在于找到一个连续的、在离散点处可微的函数,这个函数通常被称为“样条”。

假设我们有一个离散点集(x0, y0), (x1, y1), ..., (xn, yn)。

我们希望找到一个连续的、在离散点处可微的函数S(x),使得S(xi) = yi,其中i = 0, 1, ..., n。

三次样条插值法的核心在于找到这样一个函数S(x),它由一系列的三次多项式组成,这些多项式在相邻的离散点之间是连续的,并且在离散点的边界处也是连续的。

对于离散点(xi, yi),其斜率可以通过以下公式计算:
斜率= 3hi / (xi - xi-1)
其中hi 是样条在该点处的“高度”(或称为“步长”)。

这个公式告诉我们如何根据给定的离散点集计算每个离散点的斜率。

计算结果为:斜率= 3hi / (xi - xi-1)
所以,离散点斜率的计算公式为:斜率= 3hi / (xi - xi-1)。

第5章-3-三次样条插值PPT课件

第5章-3-三次样条插值PPT课件

(x
a)
m
m次截断多项式
a
.
7
定理5.5 任意s(x)∈Sm(x1,x2,…,xn)均可唯一地表示为
n
s(x)pm(x) cj(xxj)m , x (4-31) j1
其中pm(x)∈Pm,cj(j=1,2,…,n)为实数。
定理5.6 为使s(x)∈Sm(x1,x2,…,xn),必须且只须存在pm(x)∈Pm
8
例1 验证分片多项式是三次样条函数。
1 2x
x 3
S ( x) 2825x9x2x3 3x1
2619x3x2x3 1x0
2619x3x2
0 x
解 利用上面的定理(光滑因子)验证.
(x 3)3,
2(x 1)3,
x3,
所以由定理5.5可知该函数为三次样条函数.
例,设
x3x2
0x1
S(x) a3xb2 xc x11x2
信息;

样? ?条?插插值值::(样条函数—满足一定光滑性的分段多项式)。 局部性好, 满足一定光滑性, 收敛性保证, 只需要函数值
信息。
.
2
样条函数是一个重要的逼近工具,在插值、数值微分、曲 线拟合等方面有着广泛的应用。
定义5.3 对区间(-∞,+∞)的一个分割:
: x 1 x 2 x n ,
n
p n (x )p n 1 (x ) c n (x x n )m p0(x) cj(xxj)m j1
为了便于表示分段信息, 引进截断多项式:
(x a)m
(x a)m , x a,
0, x a,
(5-30)
易见
(x
a)
m
∈Cm-1(-∞,+∞)

数值分析第四版习题及答案

数值分析第四版习题及答案

第四版数值分析习题第一章绪论设x>O,x 的相对误差为S ,求In x 的误差. 设x 的相对误差为2%,求x n 的相对误差. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位 ,试指出它们是几位有效数字: x = 1.1021, x^ = 0.031, x^ = 385.6, x^ = 56.430, x^ = 7 1.0.利用公式(3.3)求下列各近似值的误差限:(i)x *+x ;+x 4,(ii)x *x ;x ;,(iii )x ;/x ;,其中 x ;,x ;,x 3,x ;均为第 3题所给的数.计算球体积要使相对误差限为 1%,问度量半径R 时允许的相对误差限是多少 ?设\)=28,按递推公式AY n =Y n d- _ .783100( n=1,2,…)计算到Y 00.若取7783衣27.982(五位有效数字),试问计算^00将有多大误差? 求方程X 2 -56X • 1 =0的两个根,使它至少具有四位有效数字 (■ 783沁27.982).\ ------ d x 当N 充分大时,怎样求N 1 x? 正方形的边长大约为 100 cm ,应怎样测量才能使其面积误差不超过 s *2设 2 假定g 是准确的,而对t 的测量有土 0.1秒的误差,证明当t 增加时s 的绝对 误差增加,而相对误差却减小. 序列{yn}满足递推关系y n _ 10y n _ 1(n=1,2,…),若y0 _ X 2 1.41 (三位有效数字),计算到y 10时误差有多大?这个计算过程稳定吗?计算f = c- 2 一1)6,取' 2 : 1.4,利用下列等式计算,哪一个得到的结果最好?f (x) =1 n (x X -1),求 f(30)的值.若开平方用六位函数表,问求对数时误差有多大改用另一等价公式ln(x_ Jx 2 T) = -ln(x +Jx 2 +1)计算,求对数时误差有多大?1. 2. 3. 4.5. 6.7.8.9.10.11.12.13.21 cm1 (、2 1)61 (32 . 2)3,99 -70、2.?若根据(2.2)定义的范德蒙行列式,令证明V n (x)是n 次多项式,它的根是X 0^L ,X nJ ,且当x= 1 , -1 , 2时,f(x)= 0 , -3,4 ,求f(x)的二次插值多项式.给出cos x,0 ° < x 90。

三次样条插值计算算法

三次样条插值计算算法

/* 三次样条插值计算算法*/#include "math.h "#include "stdio.h "#include "stdlib.h "/*N:已知节点数N+1R:欲求插值点数R+1x,y为给定函数f(x)的节点值{x(i)} (x(i) <x(i+1)) ,以及相应的函数值{f(i)} 0 <=i <=NP0=f(x0)的二阶导数;Pn=f(xn)的二阶导数u:存插值点{u(i)} 0 <=i <=R求得的结果s(ui)放入s[R+1] 0 <=i <=R返回0表示成功,1表示失败*/int SPL(int N,int R,double x[],double y[],double P0,double Pn,double u[],double s[]){/*声明局部变量*/double *h; /*存放步长:{hi} 0 <=i <=N-1 */double *a; /*存放系数矩阵{ai} 1 <=i <=N ;分量0没有利用*/ double *c; /*先存放系数矩阵{ci} 后存放{Bi} 0 <=i <=N-1 */double *g; /*先存放方程组右端项{gi} 后存放求解中间结果{yi} 0 <=i <=N */double *af; /*存放系数矩阵{a(f)i} 1 <=i <=N ;*/double *ba; /*存放中间结果0 <=i <=N-1*/double *m; /*存放方程组的解{m(i)} 0 <=i <=N ;*/int i,k;double p1,p2,p3,p4;/*分配空间*/if(!(h=(double*)malloc(N*sizeof(double)))) exit(1);if(!(a=(double*)malloc((N+1)*sizeof(double)))) exit(1);if(!(c=(double*)malloc(N*sizeof(double)))) exit(1);if(!(g=(double*)malloc((N+1)*sizeof(double)))) exit(1);if(!(af=(double*)malloc((N+1)*sizeof(double)))) exit(1);if(!(ba=(double*)malloc((N)*sizeof(double)))) exit(1);if(!(m=(double*)malloc((N+1)*sizeof(double)))) exit(1);/*第一步:计算方程组的系数*/for(k=0;k <N;k++)h[k]=x[k+1]-x[k];for(k=1;k <N;k++)a[k]=h[k]/(h[k]+h[k-1]);for(k=1;k <N;k++)c[k]=1-a[k];for(k=1;k <N;k++)g[k]=3*(c[k]*(y[k+1]-y[k])/h[k]+a[k]*(y[k]-y[k-1])/h[k-1]); c[0]=a[N]=1;g[0]=3*(y[1]-y[0])/h[0]-P0*h[0]/2;g[N]=3*(y[N]-y[N-1])/h[N-1]+Pn*h[N-1]/2;/*第二步:用追赶法解方程组求{m(i)} */ba[0]=c[0]/2;g[0]=g[0]/2;for(i=1;i <N;i++){af[i]=2-a[i]*ba[i-1];g[i]=(g[i]-a[i]*g[i-1])/af[i];ba[i]=c[i]/af[i];}af[N]=2-a[N]*ba[N-1];g[N]=(g[N]-a[N]*g[N-1])/af[N];m[N]=g[N]; /*P110 公式:6.32*/ for(i=N-1;i> =0;i--)m[i]=g[i]-ba[i]*m[i+1];/*第三步:求值*/for(i=0;i <=R;i++){/*判断u(i)属于哪一个子区间,即确定k */if(u[i] <x[0] || u[i]> x[N]){/*释放空间*/free(h);free(a);free(c);free(g);free(af);free(ba);free(m);return 1;}k=0;while(u[i]> x[k+1])k++;//p1=(h[k]+2*(u[i]-x[k])*pow((u[i]-x[k+1]),2)*y[k])/pow(h[k],3); //p2=(h[k]-2*(u[i]-x[k+1])*pow((u[i]-x[k]),2)*y[k+1])/pow(h[k],3);p1=(h[k]+2*(u[i]-x[k]))*pow((u[i]-x[k+1]),2)*y[k]/pow(h[k],3);p2=(h[k]-2*(u[i]-x[k+1]))*pow((u[i]-x[k]),2)*y[k+1]/pow(h[k],3); p3=(u[i]-x[k])*pow((u[i]-x[k+1]),2)*m[k]/pow(h[k],2);p4=(u[i]-x[k+1])*pow((u[i]-x[k]),2)*m[k+1]/pow(h[k],2);s[i]=p1+p2+p3+p4;}/*释放空间*/free(h);free(a);free(c);free(g);free(af);free(ba);free(m);return 0;}void main(){int N,R;double *x,*y,*u,*s;double P0,Pn;int i;/*验证算法:*/N=7;R=6;/*分配空间*/if(!(x=(double*)malloc((N+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}if(!(y=(double*)malloc((N+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}if(!(u=(double*)malloc((R+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}if(!(s=(double*)malloc((R+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}x[0]=0.5;x[1]=0.7;x[2]=0.9;x[3]=1.1;x[4]=1.3;x[5]=1.5;x[6]=1.7;x[7]=1.9;y[0]=0.4794;y[1]=0.6442;y[2]=0.7833;y[3]=0.8912;y[4]=0.9636;y[5]=0.9975;y[6]=0.9917;y[7]=0.9 463;u[0]=0.6;u[1]=0.8;u[2]=1.0;u[3]=1.2;u[4]=1.4;u[5]=1.6;u[6]=1.8;P0=-0.4794;Pn=-0.9463;if(!SPL( N, R, x, y, P0, Pn, u, s)){/*打印结果*/printf( "\nx= ");for(i=0;i <=N;i++)printf( "%8.1f ",x[i]);printf( "\ny= ");for(i=0;i <=N;i++)printf( "%8.4f ",y[i]);printf( "\n\nu= ");for(i=0;i <=R;i++)printf( "%9.2f ",u[i]);printf( "\ns= ");for(i=0;i <=R;i++)printf( "%9.5f ",s[i]);printf( "\nsin= ");for(i=0;i <=R;i++)printf( "%9.5f ",sin(u[i]));}/*释放空间*/free(x);free(y);free(u);free(s);}/* 测试数据来自课本55页例5 《数值分析》清华大学出版社第四版*/ //输入327.7 4.128 4.329 4.130 3.013.0 -4.0//输出输出三次样条插值函数:1: [27.7 , 28]13.07*(x - 28)^3 + 0.22*(x - 27.7)^3+ 14.84*(28 - x) + 14.31*(x - 27.7)2: [28 , 29]0.066*(29 - x)^3 + 0.1383*(x - 28)^3+ 4.234*(29 - x) + 3.962*(x - 28)3: [29 , 30]0.1383*(30 - x)^3 - 1.519*(x - 29)^3+ 3.962*(30 - x) + 4.519*(x - 29)//三次样条插值函数#include<iostream>#include<iomanip>using namespace std;const int MAX = 50;float x[MAX], y[MAX], h[MAX];float c[MAX], a[MAX], fxym[MAX];float f(int x1, int x2, int x3){float a = (y[x3] - y[x2]) / (x[x3] - x[x2]);float b = (y[x2] - y[x1]) / (x[x2] - x[x1]);return (a - b)/(x[x3] - x[x1]);} //求差分void cal_m(int n){ //用追赶法求解出弯矩向量M……float B[MAX];B[0] = c[0] / 2;for(int i = 1; i < n; i++)B[i] = c[i] / (2 - a[i]*B[i-1]);fxym[0] = fxym[0] / 2;for(i = 1; i <= n; i++)fxym[i] = (fxym[i] - a[i]*fxym[i-1]) / (2 - a[i]*B[i-1]);for(i = n-1; i >= 0; i--)fxym[i] = fxym[i] - B[i]*fxym[i+1];}void printout(int n);int main(){int n,i; char ch;do{cout<<"Please put in the number of the dots:";cin>>n;for(i = 0; i <= n; i++){cout<<"Please put in X"<<i<<':';cin>>x[i]; //cout<<endl;cout<<"Please put in Y"<<i<<':';cin>>y[i]; //cout<<endl;}for(i = 0; i < n; i++) //求步长h[i] = x[i+1] - x[i];cout<<"Please 输入边界条件\n 1: 已知两端的一阶导数\n 2:两端的二阶导数已知\n 默认:自然边界条件\n";int t;float f0, f1;cin>>t;switch(t){case 1:cout<<"Please put in Y0\' Y"<<n<<"\'\n";cin>>f0>>f1;c[0] = 1; a[n] = 1;fxym[0] = 6*((y[1] - y[0]) / (x[1] - x[0]) - f0) / h[0];fxym[n] = 6*(f1 - (y[n] - y[n-1]) / (x[n] - x[n-1])) / h[n-1];break;case 2:cout<<"Please put in Y0\" Y"<<n<<"\"\n";cin>>f0>>f1;c[0] = a[n] = 0;fxym[0] = 2*f0; fxym[n] = 2*f1;break;default:cout<<"不可用\n";//待定};//switchfor(i = 1; i < n; i++)fxym[i] = 6 * f(i-1, i, i+1);for(i = 1; i < n; i++){a[i] = h[i-1] / (h[i] + h[i-1]);c[i] = 1 - a[i];}a[n] = h[n-1] / (h[n-1] + h[n]);cal_m(n);cout<<"\n输出三次样条插值函数:\n";printout(n);cout<<"Do you to have anther try ? y/n :";cin>>ch;}while(ch == 'y' || ch == 'Y');return 0;}void printout(int n){cout<<setprecision(6);for(int i = 0; i < n; i++){cout<<i+1<<": ["<<x[i]<<" , "<<x[i+1]<<"]\n"<<"\t";/*cout<<fxym[i]/(6*h[i])<<" * ("<<x[i+1]<<" - x)^3 + "<<<<" * (x - "<<x[i]<<")^3 + "<<(y[i] - fxym[i]*h[i]*h[i]/6)/h[i]<<" * ("<<x[i+1]<<" - x) + "<<(y[i+1] - fxym[i+1]*h[i]*h[i]/6)/h[i]<<"(x - "<<x[i]<<")\n";cout<<endl;*/float t = fxym[i]/(6*h[i]);if(t > 0)cout<<t<<"*("<<x[i+1]<<" - x)^3";else cout<<-t<<"*(x - "<<x[i+1]<<")^3";t = fxym[i+1]/(6*h[i]);if(t > 0)cout<<" + "<<t<<"*(x - "<<x[i]<<")^3";else cout<<" - "<<-t<<"*(x - "<<x[i]<<")^3";cout<<"\n\t";t = (y[i] - fxym[i]*h[i]*h[i]/6)/h[i];if(t > 0)cout<<"+ "<<t<<"*("<<x[i+1]<<" - x)";else cout<<"- "<<-t<<"*("<<x[i+1]<<" - x)";t = (y[i+1] - fxym[i+1]*h[i]*h[i]/6)/h[i];if(t > 0)cout<<" + "<<t<<"*(x - "<<x[i]<<")";else cout<<" - "<<-t<<"*(x - "<<x[i]<<")";cout<<endl<<endl;}cout<<endl;}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档