三次样条插值代码
三次样条插值算法C++实现

三次样条插值算法C++实现三次样条插值算法1 总体说明三次样条插值算法是⼀种计算量和效果都⽐较理想的插值算法。
关于三次样条插值算法的原理这⾥不做过多的解释,下⾯的代码是我在⽹上收集了两种C++实现版本的基础上⾃⼰整合的⼀个版本。
由于本⼈刚接触C++不久,⽔平有限。
没有使⽤模板机制将代码做的更通⽤。
关于算法实现有下⾯⼏点说明。
1. 所有有关的类都被包含到SplineSpace命名空间中。
2. SplineSpace中⼀个有三个类分别是异常类(SplineFailure),接⼝类(SplineInterface)和实现类(Spline)。
有⼀个枚举类型说明边界条件(BoundaryCondition),取值为:GivenFirstOrder和GivenSecondOrder。
分别对应I型边界条件和II型边界条件。
3. 接⼝类定义了Spline在实现的过程中必须要有的三个⽅法:单点插值、多点插值和⾃动⽣成插值序列。
4. 异常类是可能被实现类抛出的类,如果在实现类的运⾏过程中出现了已知数据过少构造失败、使⽤了外插值、设定输出点数过少等⾏为会抛出该类。
因此应该将插值的过程⽤try...catch(SplineFailure sf)包裹起来。
如:double x0[2]={1,2};double y0[2]={3,4};try{SplineInterface* sp = new Spline(x0,y0,2);//...}catch(SplineFailure sf){cout<<sf.GetMessage()<<endl;}上⾯代码就会抛出异常并显⽰“构造失败,已知点数过少”。
2 插值⽅法调⽤2.1单点插值调⽤⽅法如下:#include <iostream>#include "Spline.h"using namespace std;using namespace SplineSpace;int main(void){//单点插值测试double x0[5]={1,2,4,5,6}; //已知的数据点double y0[5]={1,3,4,2,5};try{//Spline sp(x0,y0,5,GivenSecondOrder,0,0);SplineInterface* sp = new Spline(x0,y0,5); //使⽤接⼝,且使⽤默认边界条件double x=4.5;double y;sp->SinglePointInterp(x,y); //求x的插值结果ycout<<"x="<<x<<"时的插值结果为:"<<y<<endl;}catch(SplineFailure sf){cout<<sf.GetMessage()<<endl;}getchar(); //程序暂停}此时屏幕会输出"x=4.5时的插值结果为2.71107"。
第五章 三次样条插值Spline

Lagrange插 值
Cubic Spline
利用插值条件
S ( xi 1 ) yi 1 , S ( xi ) yi
定出积分常数,可以得到
( xi x ) 3 ( x x i 1 )3 S ( x ) M i 1 Mi 6hi 6hi yi 1 M i 1hi 6 hi yi M i hi ( xi x ) 6 hi (3.1) ( x xi 1 )
i
hi hi yi yi 1 M i 1 M i 6 3 hi
( xi 1 xi )2 ( xi xi )2 yi 1 yi hi 1 S ( x ) Mi M i 1 M i 1 M i 2hi 1 2hi 1 hi 1 6
对于I 类边界条件,S( x0 ) M0 , S( xn ) Mn
2 M 0 0 M1 0 n M n1 2 M n n
0 0, 0 2 M 0 n 0, n 2 M n
Cubic Spline
即得关于Mi (i = 0, 1, …, n)的 n+1 元线性方程组
其系数矩阵按行严格对角占优,故有唯一解. 可用追赶法求解. 对于II 类边界条件,S( x0 ) m0 , S( xn ) mn 利用(3.2)式, S ( x0 )
y1 y0 h1 h1 M 0 M1 m0 3 6 h1 6 y1 y0 2 M 0 M1 m0 0 ( 0 1) h1 h1
三次样条插值问题
定义 设 a x0 x1 ... xn b 。三次样条函数 S( x) C
2
matlab三次样条插值例题解析

文章标题:深度解析Matlab三次样条插值1. 前言在数学和工程领域中,插值是一种常见的数值分析技术,它可以用来估计不连续数据点之间的值。
而三次样条插值作为一种常用的插值方法,在Matlab中有着广泛的应用。
本文将从简单到复杂,由浅入深地解析Matlab中的三次样条插值方法,以便读者更深入地理解这一技术。
2. 三次样条插值概述三次样条插值是一种利用分段三次多项式对数据点进行插值的方法。
在Matlab中,可以使用spline函数来进行三次样条插值。
该函数需要输入数据点的x和y坐标,然后可以根据需要进行插值操作。
3. 三次样条插值的基本原理在进行三次样条插值时,首先需要对数据点进行分段处理,然后在每个分段上构造出一个三次多项式函数。
这些多项式函数需要满足一定的插值条件,如在数据点处函数值相等、一阶导数相等等。
通过这些条件,可以得到一个关于数据点的插值函数。
4. Matlab中的三次样条插值实现在Matlab中,可以使用spline函数来进行三次样条插值。
通过传入数据点的x和y坐标,可以得到一个关于x的插值函数。
spline函数也支持在已知插值函数上进行插值点的求值,这为用户提供了极大的灵活性。
5. 三次样条插值的适用范围和局限性虽然三次样条插值在许多情况下都能够得到较好的插值效果,但也存在一些局限性。
在数据点分布不均匀或有较大噪音的情况下,三次样条插值可能会出现较大的误差。
在实际应用中,需要根据具体情况选择合适的插值方法。
6. 个人观点和总结通过对Matlab中三次样条插值的深度解析,我深刻地理解了这一插值方法的原理和实现方式。
在实际工程应用中,我会根据数据点的情况选择合适的插值方法,以确保得到准确且可靠的结果。
我也意识到插值方法的局限性,这为我在实际工作中的决策提供了重要的参考。
通过以上深度解析,相信读者已经对Matlab中的三次样条插值有了更加全面、深刻和灵活的理解。
在实际应用中,希望读者能够根据具体情况选择合适的插值方法,以提高工作效率和准确性。
三次样条插值计算算法

/* 三次样条插值计算算法*/#include "math.h "#include "stdio.h "#include "stdlib.h "/*N:已知节点数N+1R:欲求插值点数R+1x,y为给定函数f(x)的节点值{x(i)} (x(i) <x(i+1)) ,以及相应的函数值{f(i)} 0 <=i <=NP0=f(x0)的二阶导数;Pn=f(xn)的二阶导数u:存插值点{u(i)} 0 <=i <=R求得的结果s(ui)放入s[R+1] 0 <=i <=R返回0表示成功,1表示失败*/int SPL(int N,int R,double x[],double y[],double P0,double Pn,double u[],double s[]){/*声明局部变量*/double *h; /*存放步长:{hi} 0 <=i <=N-1 */double *a; /*存放系数矩阵{ai} 1 <=i <=N ;分量0没有利用*/ double *c; /*先存放系数矩阵{ci} 后存放{Bi} 0 <=i <=N-1 */double *g; /*先存放方程组右端项{gi} 后存放求解中间结果{yi} 0 <=i <=N */double *af; /*存放系数矩阵{a(f)i} 1 <=i <=N ;*/double *ba; /*存放中间结果0 <=i <=N-1*/double *m; /*存放方程组的解{m(i)} 0 <=i <=N ;*/int i,k;double p1,p2,p3,p4;/*分配空间*/if(!(h=(double*)malloc(N*sizeof(double)))) exit(1);if(!(a=(double*)malloc((N+1)*sizeof(double)))) exit(1);if(!(c=(double*)malloc(N*sizeof(double)))) exit(1);if(!(g=(double*)malloc((N+1)*sizeof(double)))) exit(1);if(!(af=(double*)malloc((N+1)*sizeof(double)))) exit(1);if(!(ba=(double*)malloc((N)*sizeof(double)))) exit(1);if(!(m=(double*)malloc((N+1)*sizeof(double)))) exit(1);/*第一步:计算方程组的系数*/for(k=0;k <N;k++)h[k]=x[k+1]-x[k];for(k=1;k <N;k++)a[k]=h[k]/(h[k]+h[k-1]);for(k=1;k <N;k++)c[k]=1-a[k];for(k=1;k <N;k++)g[k]=3*(c[k]*(y[k+1]-y[k])/h[k]+a[k]*(y[k]-y[k-1])/h[k-1]); c[0]=a[N]=1;g[0]=3*(y[1]-y[0])/h[0]-P0*h[0]/2;g[N]=3*(y[N]-y[N-1])/h[N-1]+Pn*h[N-1]/2;/*第二步:用追赶法解方程组求{m(i)} */ba[0]=c[0]/2;g[0]=g[0]/2;for(i=1;i <N;i++){af[i]=2-a[i]*ba[i-1];g[i]=(g[i]-a[i]*g[i-1])/af[i];ba[i]=c[i]/af[i];}af[N]=2-a[N]*ba[N-1];g[N]=(g[N]-a[N]*g[N-1])/af[N];m[N]=g[N]; /*P110 公式:6.32*/ for(i=N-1;i> =0;i--)m[i]=g[i]-ba[i]*m[i+1];/*第三步:求值*/for(i=0;i <=R;i++){/*判断u(i)属于哪一个子区间,即确定k */if(u[i] <x[0] || u[i]> x[N]){/*释放空间*/free(h);free(a);free(c);free(g);free(af);free(ba);free(m);return 1;}k=0;while(u[i]> x[k+1])k++;//p1=(h[k]+2*(u[i]-x[k])*pow((u[i]-x[k+1]),2)*y[k])/pow(h[k],3); //p2=(h[k]-2*(u[i]-x[k+1])*pow((u[i]-x[k]),2)*y[k+1])/pow(h[k],3);p1=(h[k]+2*(u[i]-x[k]))*pow((u[i]-x[k+1]),2)*y[k]/pow(h[k],3);p2=(h[k]-2*(u[i]-x[k+1]))*pow((u[i]-x[k]),2)*y[k+1]/pow(h[k],3); p3=(u[i]-x[k])*pow((u[i]-x[k+1]),2)*m[k]/pow(h[k],2);p4=(u[i]-x[k+1])*pow((u[i]-x[k]),2)*m[k+1]/pow(h[k],2);s[i]=p1+p2+p3+p4;}/*释放空间*/free(h);free(a);free(c);free(g);free(af);free(ba);free(m);return 0;}void main(){int N,R;double *x,*y,*u,*s;double P0,Pn;int i;/*验证算法:*/N=7;R=6;/*分配空间*/if(!(x=(double*)malloc((N+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}if(!(y=(double*)malloc((N+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}if(!(u=(double*)malloc((R+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}if(!(s=(double*)malloc((R+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}x[0]=0.5;x[1]=0.7;x[2]=0.9;x[3]=1.1;x[4]=1.3;x[5]=1.5;x[6]=1.7;x[7]=1.9;y[0]=0.4794;y[1]=0.6442;y[2]=0.7833;y[3]=0.8912;y[4]=0.9636;y[5]=0.9975;y[6]=0.9917;y[7]=0.9 463;u[0]=0.6;u[1]=0.8;u[2]=1.0;u[3]=1.2;u[4]=1.4;u[5]=1.6;u[6]=1.8;P0=-0.4794;Pn=-0.9463;if(!SPL( N, R, x, y, P0, Pn, u, s)){/*打印结果*/printf( "\nx= ");for(i=0;i <=N;i++)printf( "%8.1f ",x[i]);printf( "\ny= ");for(i=0;i <=N;i++)printf( "%8.4f ",y[i]);printf( "\n\nu= ");for(i=0;i <=R;i++)printf( "%9.2f ",u[i]);printf( "\ns= ");for(i=0;i <=R;i++)printf( "%9.5f ",s[i]);printf( "\nsin= ");for(i=0;i <=R;i++)printf( "%9.5f ",sin(u[i]));}/*释放空间*/free(x);free(y);free(u);free(s);}/* 测试数据来自课本55页例5 《数值分析》清华大学出版社第四版*/ //输入327.7 4.128 4.329 4.130 3.013.0 -4.0//输出输出三次样条插值函数:1: [27.7 , 28]13.07*(x - 28)^3 + 0.22*(x - 27.7)^3+ 14.84*(28 - x) + 14.31*(x - 27.7)2: [28 , 29]0.066*(29 - x)^3 + 0.1383*(x - 28)^3+ 4.234*(29 - x) + 3.962*(x - 28)3: [29 , 30]0.1383*(30 - x)^3 - 1.519*(x - 29)^3+ 3.962*(30 - x) + 4.519*(x - 29)//三次样条插值函数#include<iostream>#include<iomanip>using namespace std;const int MAX = 50;float x[MAX], y[MAX], h[MAX];float c[MAX], a[MAX], fxym[MAX];float f(int x1, int x2, int x3){float a = (y[x3] - y[x2]) / (x[x3] - x[x2]);float b = (y[x2] - y[x1]) / (x[x2] - x[x1]);return (a - b)/(x[x3] - x[x1]);} //求差分void cal_m(int n){ //用追赶法求解出弯矩向量M……float B[MAX];B[0] = c[0] / 2;for(int i = 1; i < n; i++)B[i] = c[i] / (2 - a[i]*B[i-1]);fxym[0] = fxym[0] / 2;for(i = 1; i <= n; i++)fxym[i] = (fxym[i] - a[i]*fxym[i-1]) / (2 - a[i]*B[i-1]);for(i = n-1; i >= 0; i--)fxym[i] = fxym[i] - B[i]*fxym[i+1];}void printout(int n);int main(){int n,i; char ch;do{cout<<"Please put in the number of the dots:";cin>>n;for(i = 0; i <= n; i++){cout<<"Please put in X"<<i<<':';cin>>x[i]; //cout<<endl;cout<<"Please put in Y"<<i<<':';cin>>y[i]; //cout<<endl;}for(i = 0; i < n; i++) //求步长h[i] = x[i+1] - x[i];cout<<"Please 输入边界条件\n 1: 已知两端的一阶导数\n 2:两端的二阶导数已知\n 默认:自然边界条件\n";int t;float f0, f1;cin>>t;switch(t){case 1:cout<<"Please put in Y0\' Y"<<n<<"\'\n";cin>>f0>>f1;c[0] = 1; a[n] = 1;fxym[0] = 6*((y[1] - y[0]) / (x[1] - x[0]) - f0) / h[0];fxym[n] = 6*(f1 - (y[n] - y[n-1]) / (x[n] - x[n-1])) / h[n-1];break;case 2:cout<<"Please put in Y0\" Y"<<n<<"\"\n";cin>>f0>>f1;c[0] = a[n] = 0;fxym[0] = 2*f0; fxym[n] = 2*f1;break;default:cout<<"不可用\n";//待定};//switchfor(i = 1; i < n; i++)fxym[i] = 6 * f(i-1, i, i+1);for(i = 1; i < n; i++){a[i] = h[i-1] / (h[i] + h[i-1]);c[i] = 1 - a[i];}a[n] = h[n-1] / (h[n-1] + h[n]);cal_m(n);cout<<"\n输出三次样条插值函数:\n";printout(n);cout<<"Do you to have anther try ? y/n :";cin>>ch;}while(ch == 'y' || ch == 'Y');return 0;}void printout(int n){cout<<setprecision(6);for(int i = 0; i < n; i++){cout<<i+1<<": ["<<x[i]<<" , "<<x[i+1]<<"]\n"<<"\t";/*cout<<fxym[i]/(6*h[i])<<" * ("<<x[i+1]<<" - x)^3 + "<<<<" * (x - "<<x[i]<<")^3 + "<<(y[i] - fxym[i]*h[i]*h[i]/6)/h[i]<<" * ("<<x[i+1]<<" - x) + "<<(y[i+1] - fxym[i+1]*h[i]*h[i]/6)/h[i]<<"(x - "<<x[i]<<")\n";cout<<endl;*/float t = fxym[i]/(6*h[i]);if(t > 0)cout<<t<<"*("<<x[i+1]<<" - x)^3";else cout<<-t<<"*(x - "<<x[i+1]<<")^3";t = fxym[i+1]/(6*h[i]);if(t > 0)cout<<" + "<<t<<"*(x - "<<x[i]<<")^3";else cout<<" - "<<-t<<"*(x - "<<x[i]<<")^3";cout<<"\n\t";t = (y[i] - fxym[i]*h[i]*h[i]/6)/h[i];if(t > 0)cout<<"+ "<<t<<"*("<<x[i+1]<<" - x)";else cout<<"- "<<-t<<"*("<<x[i+1]<<" - x)";t = (y[i+1] - fxym[i+1]*h[i]*h[i]/6)/h[i];if(t > 0)cout<<" + "<<t<<"*(x - "<<x[i]<<")";else cout<<" - "<<-t<<"*(x - "<<x[i]<<")";cout<<endl<<endl;}cout<<endl;}。
Opencv三次样条曲线(CubicSpline)插值

Opencv 三次样条曲线(CubicSpline )插值本系列⽂章由 @YhL_Leo 出品,转载请注明出处。
⽂章链接:1.样条曲线简介样条曲线()本质是分段多项式实函数,在实数范围内有:,在区间上包含个⼦区间,且有:对应每⼀段区间的存在多项式: ,且满⾜于:其中,多项式中最⾼次项的幂,视为样条的阶数或次数(Order of spline ),根据⼦区间的区间长度是否⼀致分为均匀(Uniform )样条和⾮均匀(Non-uniform )样条。
满⾜了公式的多项式有很多,为了保证曲线在区间内具有据够的平滑度,⼀条次样条,同时应具备处处连续且可微的性质:其中 。
2.三次样条曲线2.1曲线条件按照上述的定义,给定节点:三次样条曲线满⾜三个条件:1. 在每段分段区间上,都是⼀个三次多项式;2. 满⾜;3. 的⼀阶导函数和⼆阶导函数在区间上都是连续的,从⽽曲线具有光滑性。
则三次样条的⽅程可以写为:其中,分别代表个未知系数。
曲线的连续性表⽰为:其中。
曲线微分连续性:其中。
曲线的导函数表达式:令区间长度,则有:S:[a,b]→R [a,b]k [,]t i−1t i a =<<⋯<<=bt 0t 1t k−1t k (1)i :[,]→R P it i−1t i S(t)=(t) , ≤t <,P 1t 0t 1S(t)=(t) , ≤t <,P 2t 1t 2⋮S(t)=(t) , ≤t ≤.P k t k−1t k (2)(t)P i [,]t i−1t i (2)S n ()=();P (j)i t i P (j)i+1t i (3)i =1,…,k −1;j =0,…,n −1t :z :a =t 0z 0<t 1z 1<⋯⋯<t k−1z k−1<t k z k=b(4)[,],i =0,1,…,k −1t i t i+1S(t)=(t)S i S()=,i =1,…,k −1t i z i S(t)(t)S ′(t)S ′′[a,b](t)=+(t −)+(t −+(t −,S i a i b i t i c i t i )2d i t i )3(5),,,a i b i c i d i n ()=,S i t i z i (6)()=,S i t i+1z i+1(7)i =0,1,…,k −1()=(),S ′i t i+1S ′i+1t i+1(8)()=(),S ′′i t i+1S ′′i+1t i+1(9)i =0,1,…,k −2=+2(t −)+3(t −,S ′i b i c i t i d i t i )2(10)(x)=2+6(t −),S ′′i c i d i t i (11)=−h it i+1t i(6)1. 由公式,可得:;2. 由公式,可得:;3. 由公式,可得:;; ;4. 由公式,可得:; ; ;设,则:A.;B.将代⼊;C.将代⼊2.2端点条件在上述分析中,曲线段的两个端点和是不适⽤的,有⼀些常⽤的端点限制条件,这⾥只讲解⾃然边界。
三次样条插值c++代码实现及注释

一、引言在计算机编程和数据处理领域,插值是一种常见的数值分析方法,用于在已知数据点之间估算未知点的数值。
而三次样条插值是插值方法中的一种重要技术,它可以在使用较少插值节点的情况下,实现更为平滑和精确的插值结果。
本文将着重探讨三次样条插值的原理和C++代码实现,并给出详细的注释和解释。
二、三次样条插值的原理三次样条插值是一种分段插值方法,它将整个插值区间分割为若干个小区间,每个小区间内采用三次多项式进行插值。
这样做的好处是可以在每个小区间内实现更为细致和精确的插值,从而提高插值的准确性和平滑性。
而三次样条插值的核心在于确定每个小区间内的三次多项式的系数,一般采用自然边界条件进行求解。
在具体实现中,我们需要先对给定的插值节点进行排序,并求解出每个小区间内的三次多项式系数。
最终将这些系数整合起来,就可以得到整个插值区间的三次样条插值函数。
三、C++代码实现及注释接下来,我们将给出使用C++语言实现三次样条插值的代码,并对每个关键步骤进行详细注释和解释。
```cpp// include necessary libraries#include <iostream>#include <vector>using namespace std;// define the function for cubic spline interpolationvector<double> cubicSplineInterpolation(vector<double> x, vector<double> y) {// initialize necessary variables and containersint n = x.size();vector<double> h(n-1), alpha(n), l(n), mu(n), z(n), c(n), b(n), d(n);vector<double> interpolatedValues;// step 1: calculate the differences between x valuesfor (int i = 0; i < n-1; i++) {h[i] = x[i+1] - x[i];}// step 2: calculate alpha valuesfor (int i = 1; i < n-1; i++) {alpha[i] = (3/h[i]) * (y[i+1] - y[i]) - (3/h[i-1]) * (y[i] - y[i-1]); }// step 3: calculate l, mu, and z valuesl[0] = 1;mu[0] = 0;z[0] = 0;for (int i = 1; i < n-1; i++) {l[i] = 2*(x[i+1] - x[i-1]) - h[i-1]*mu[i-1];mu[i] = h[i]/l[i];z[i] = (alpha[i] - h[i-1]*z[i-1])/l[i];}l[n-1] = 1;z[n-1] = 0;c[n-1] = 0;// step 4: calculate coefficients for the cubic polynomials for (int j = n-2; j >= 0; j--) {c[j] = z[j] - mu[j]*c[j+1];b[j] = (y[j+1] - y[j])/h[j] - h[j]*(c[j+1] + 2*c[j])/3;d[j] = (c[j+1] - c[j])/(3*h[j]);}// step 5: interpolate values using the cubic polynomials for (int i = 0; i < n-1; i++) {double xi = x[i];while (xi < x[i+1]) {double dx = xi - x[i];double interpolatedValue = y[i] + b[i]*dx + c[i]*dx*dx + d[i]*dx*dx*dx;interpolatedValues.push_back(interpolatedValue);xi += 0.1; // adjust the step size for finer interpolation }}return interpolatedValues;}// main function for testing the cubic spline interpolation int main() {vector<double> x = {1, 2, 3, 4, 5};vector<double> y = {3, 6, 8, 10, 15};vector<double> interpolatedValues = cubicSplineInterpolation(x, y);for (int i = 0; i < interpolatedValues.size(); i++) {cout << "Interpolated value " << i << " : " << interpolatedValues[i] << endl;}return 0;}```四、总结与展望通过本文的学习,我们了解了三次样条插值的原理和C++代码实现。
三次样条插值matlab代码实现

三次样条插值matlab代码实现三次样条插值是一种常用的插值方法,可以用于曲线拟合和数据逼近。
在Matlab中,可以使用内置函数`interp1`来实现三次样条插值。
下面是一个简单的示例代码,演示了如何在Matlab中实现三次样条插值:matlab.% 创建一些示例数据。
x = 1:5;y = [3 6 5 8 2];% 生成更密集的x值,用于插值。
xi = 1:0.1:5;% 使用interp1进行三次样条插值。
yi = interp1(x, y, xi, 'spline');% 绘制原始数据和插值结果。
plot(x, y, 'o', xi, yi, '-');legend('原始数据', '三次样条插值');在这个示例中,我们首先创建了一些示例数据`x`和`y`,然后生成了更密集的`xi`值,用于插值。
接下来,我们使用`interp1`函数进行三次样条插值,并将结果存储在`yi`中。
最后,我们使用`plot`函数将原始数据和插值结果可视化出来。
需要注意的是,`interp1`函数中的第四个参数'spline'表示我们使用三次样条插值方法。
除了'spline'外,还可以选择'linear'(线性插值)或'pchip'(分段立方插值)等方法,具体选择取决于实际情况和数据特点。
以上就是在Matlab中实现三次样条插值的简单示例代码。
当然,实际应用中可能涉及到更复杂的数据和情况,需要根据具体问题进行相应的调整和处理。
希望这个示例能够帮助到你理解如何在Matlab中实现三次样条插值。
三次样条插值cubicsplineinterpolation

三次样条插值cubicsplineinterpolation什么是三次样条插值 插值(interpolation)是在已知部分数据节点(knots)的情况下,求解经过这些已知点的曲线,然后根据得到的曲线进⾏未知位置点函数值预测的⽅法(未知点在上述已知点⾃变量范围内)。
样条(spline)是软尺(elastic ruler)的术语说法,在技术制图中,使⽤软尺连接两个相邻数据点,以达到连接曲线光滑的效果。
样条插值是⼀种分段多项式(piecewise polynomial)插值法。
数学上,曲线光滑需要在曲线上处处⼀阶导连续,因此,在节点处需要满⾜⼀阶导数相等。
另外,为了使得曲线的曲率最⼩,要求曲线⼆阶导连续【1】,在节点处需要⼆阶导相等。
三次及以上多项式可以满⾜节点处光滑和曲率最⼩要求,但是次数⾼的曲线容易震荡,因此,就选⽤三次多项式即可。
数学表述 假设有n个已知节点: 函数关系记为:。
在区间中插值多项式曲线:注意,这⾥头曲线为,尾曲线为。
插值在节点处满⾜条件: (1)曲线经过节点: (2)曲线⼀阶导连续(光滑): (3)曲线⼆阶导连续(曲率最⼩): 边界条件:对两端节点的约束。
(B1)⾃然(natural (or free))边界条件 (B2)固定(clamped)边界条件 固定⼀阶导数: , 固定⼆阶导数: , (B3)⾮节点边界(not-a-knot ) 要求在第⼆个节点和倒数第⼆个节点,曲线的三阶导也连续:三次多样式函数的计算 样条函数采⽤n-1个三次多项式,每个三次多项式有4个参数,⼀共是4n-4个参数,因此需要4n-4个⽅程。
条件(1)n-1个曲线每个两端经过节点,提供2(n-1)=2n-2个⽅程; 条件(2)n-1个曲线相邻⼀阶导连续,提供n-2个⽅程; 条件(3)n-1个曲线相邻⼆阶导连续,提供n-2个⽅程; 以上⼀共是4n-6个⽅程,还需要2个⽅程,这两个⽅程由边界条件提供,条件(B1), (B2), (B3)每个均提供2个⽅程,这样就凑够了4n-4个⽅程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 三次样条插值程序 三次样条插值利用方案二(求解固支样条或压紧样条)
按照要求要起点和终点的一阶导数值已知, 可得关于01,,.....,n M M M 的严格对角占优势的三对角方程组
然后利用三对角法(追赶法)解此线性方程组。
(1)编写M 文件,并保存文件名scfit.m
% x,y 分别为n 个节点的横坐标和纵坐标值组成的向量
% dx0和dxn 分别为S 的导数在x0和xn 处的值,即m 0和m n
n=length(x)-1;
h=diff(x);
d=diff(y)./h;
a=h(2:n-1);
b=2*(h(1:n-1)+h(2:n));
c=h(2:n);
u=6*diff(d);
b(1)=b(1)-h(1)/2;
u(1)=u(1)-3*(d(1)-dx0);
b(n-1)=b(n-1)-h(n)/2;
u(n-1)=u(n-1)-3*(dxn-d(n));
%追赶法部分
for k=2:n-1
temp=a(k-1)/b(k-1);
b(k)=b(k)-temp*c(k-1);
u(k)=u(k)-temp*u(k-1);
end
m(n)=u(n-1)/b(n-1);
for k=n-2:-1:1
m(k+1)=(u(k)-c(k)*m(k+2))/b(k);
end
%求S K1,S K2,S K3,S K4
m(1)=3*(d(1)-dx0)/h(1)-m(2)/2;
m(n+1)=3*(dxn-d(n))/h(n)-m(n)/2;
for k=0:n-1
00
()S x m '=()n n S x m '=0011111111212212n n n n n n M d M d M d M d μλμλ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
S(k+1,1)=(m(k+2)-m(k+1))/(6*h(k+1));
S(k+1,2)=m(k+1)/2;
S(k+1,3)=d(k+1)-h(k+1)*(2*m(k+1)+m(k+2))/6;
S(k+1,4)=y(k+1);
End
P=mkpp(x,S);
ppval(P,x);
plot(x,y ,'-*')
(或fnplt(P))
(2)在Command window 内输入已知条件(课本数值试验一后例子,令x0和xn 处一阶导数为0)
>> x=[1 2 3 4 5 6 7 8 9 10];
>> y=[3.56 2.56 1.54 0.53 0.26 0.90 1.81 2.12 1.53 0.56];
>> dx0=0;dxn=0;
调用编写的M 文件
>> S=scfit(x,y ,dx0,dxn)
回车
计算结果:
S =
0.7390 -1.7390 0 3.5600
-0.2369 0.4780 -1.2610 2.5600
0.2387 -0.2328 -1.0159 1.5400
0.0120 0.4834 -0.7654 0.5300
-0.1167 0.5193 0.2373 0.2600
-0.1853 0.1693 0.9260 0.9000
-0.0122 -0.3865 0.7088 1.8100
-0.0658 -0.4232 -0.1010 2.1200
0.7953 -0.6205 -1.1447 1.5300
即插值结果为
.().()().,[,]
.().().().,[,]()........................
.().().().,[,]32232322073901173901013561202369204780212610225623079539062059114479153910x x x x x x x x s x x x x x ⎧---+-+∈⎪--+---+∈⎪=⎨
⎪⎪-----+∈⎩
第一个图是利用ppval(P,x);plot(x,y)显示的图形,图中*为数据点 第二个图是利用fnplt(P)显示的图形。