三次样条插值知识讲解

合集下载

三次样条插值的方法和思路

三次样条插值的方法和思路

三次样条插值的方法和思路摘要:1.三次样条插值的基本概念2.三次样条插值的数学原理3.三次样条插值的实现步骤4.三次样条插值的优缺点5.三次样条插值在实际应用中的案例正文:在日常的科学研究和工程应用中,我们经常会遇到需要对一组数据进行插值的问题。

插值方法有很多,其中三次样条插值是一种常见且有效的方法。

本文将从基本概念、数学原理、实现步骤、优缺点以及实际应用案例等方面,全面介绍三次样条插值的方法和思路。

一、三次样条插值的基本概念三次样条插值(Cubic Spline Interpolation)是一种基于分段多项式的插值方法。

它通过在各个节点上构建一条三次多项式曲线,使得这条曲线在节点之间满足插值条件,从而达到拟合数据的目的。

二、三次样条插值的数学原理三次样条插值的数学原理可以分为两个部分:一是分段三次多项式的构建,二是插值条件的满足。

1.分段三次多项式的构建假设有一组数据点序列为(x0,y0),(x1,y1),(x2,y2),(x3,y3),我们可以将这些数据点连接起来,构建一条分段三次多项式曲线。

分段三次多项式在每个子区间上都是一个三次多项式,它们之间通过节点值进行连接。

2.插值条件的满足为了使分段三次多项式在节点之间满足插值条件,我们需要在每个子区间上满足以下四个条件:(1)端点条件:三次多项式在区间的端点上分别等于节点值;(2)二阶导数条件:三次多项式在区间内的二阶导数等于节点间的斜率;(3)三阶导数条件:三次多项式在区间内的三阶导数等于节点间的曲率;(4)内部点条件:三次多项式在区间内部满足插值函数的连续性。

通过求解这四个条件,我们可以得到分段三次多项式的系数,从而实现插值。

三、三次样条插值的实现步骤1.确定插值节点:根据数据点的位置,选取合适的节点;2.构建分段三次多项式:根据节点值和插值条件,求解分段三次多项式的系数;3.计算插值结果:将待插值点的横坐标代入分段三次多项式,得到插值结果。

3.4三次样条插值

3.4三次样条插值

3.4.2
三次样条函数插值法
样条(Spline)是早期飞机、造船工作中,绘图员 是早期飞机、造船工作中, 样条 是早期飞机 用来画光滑曲线的细木条或细金属丝。绘图时, 用来画光滑曲线的细木条或细金属丝。绘图时,为 将一些已知点连成光滑的曲线, 将一些已知点连成光滑的曲线,绘图员用压铁把样 条固定在这些点处,因样条有弹性, 条固定在这些点处,因样条有弹性,便形成通过这 些点的光滑曲线,沿着它就可画出所需曲线。数学 些点的光滑曲线,沿着它就可画出所需曲线。 上仿此得出的函数便称为样条函数。 上仿此得出的函数便称为样条函数。 是一种分段函数, 所谓 m 次样条函数 S(x) ,是一种分段函数, 它在节点(a = x0 < x1 <L< xn−1 < xn = b) 分成的每个 xi 小区间i−1, xi ] 上是 次多项式,而在整个区间 ,b] [x [a m 次多项式, 阶导数连续。常用三次样条函数。 上 m−1 阶导数连续。常用三次样条函数。
样条插值的存在惟一问题
1)由于在每个小区间上是三次多项式,有四个 由于在每个小区间上是三次多项式, 待定系数。有个n小区间,共4n个待定系数。 待定系数。有个n小区间, 待定系数。 2)分析三次样条函数满足的条件可得: 分析三次样条函数满足的条件可得: 每个小区间的两个端点上满足插值条件
S j +1 ( x j ) = y j S j +1 ( x j +1 ) = y j +1 ( j = 0,1,2L , n − 1)
( x − x1)( x − x2 ) 1 = 2 ( x − x1 )( x − x2 ) l0(x) = ( x0 − x1)( x0 − x2 ) 2h ( x − x0 )( x − x2 ) 1 其中 l1(x) = = − 2 ( x − x0 )( x − x2 ) ( x1 − x0 )( x1 − x2 ) h (x − x0 )( x − x1) 1 l2(x) = ( x − x )( x − x ) = 2h2 ( x − x0 )( x − x1 ) 2 0 2 1

三次样条插值

三次样条插值

0)
s(xn 0) s(xn 0)
三弯矩插值法
x xi,
x i+1
s”(x) M i , M i+1
记Mi = s″(xi), f(xi)= yi ,考虑它在任一区间[xi, xi+1]上的形式. 根据三次样条的定义可知 , s(x)的二阶导数 s ″(x)在每一个子区
间[xi, xi+1] ( i=0,1,2,,n-1)上都是线性函数.
2 6
M
i
)(xi1
xi
)
(1)
同理在[xi1, xi ]上讨论得
s(xi )
yi xi
yi1 xi1
(
2 6
M
i
1 6 M i1)(xi
xi1)
(2)
因为s( x)连续,所以(1)(2)即
yi1 yi xi1 xi
1 ( 6 M i1
2 6
M i )(xi1
xi )
yi xi
yi1 xi1
(2) (n 1)内节点处连续及光滑性条件:
s(x s( x
j j
0) 0)
s(x j 0) s(x j 0)
j
1,2,...,n
1
s(x j 0) s(x j 0)
对于待定系数a j ,bj , c j .d j j 1,2,...n,即4n个未知系数,
而插值条件为4n 2个,还缺两个,因此须给出两个 条件称为边界条件,有以下三类:
——分段三次插值多项式
分段插值存在着一个缺点,就是会导致插值函数在子区间的端点 (衔接处)不光滑,即导数不连续。
实际应用中,如机翼设计、船体放样等往往要求有二阶光滑度, 即二阶连续导数。早期工程师制图时,把富有弹性的细长木条 (所谓样条SPLINE )用压铁固定在样点上,其它地方让其自 由弯曲,然后画下曲线(称为样条曲线),它实际上是由分段 多项式光滑连接而成,在样点上要求二阶连续可导。

第5章-3三次样条插值解析

第5章-3三次样条插值解析

0 x
( x 3)3 ,
解 利用上面的定理(光滑因子)验证.



2( x 1)3 ,
3
x,
所以由定理5.5可知该函数为三次样条函数.
例,设
x3 x 2 0 x 1 S ( x) 3 2 ax bx cx 1 1 x 2
是以0,1,2为节点的三次样条函数,则a= 解:1)由 , b= , c=
p j ( x), x j x x j 1

p j ( x) Pm ( j 0,1,...,n)
pn ( x), xn x
s(x)是m次样条的充要条件应为 p0 ( x) a0 a1x am xm ,
பைடு நூலகம்
p1 ( x) p0 ( x) c1 ( x x1 )m ,
已知 f(x0)=f(xn) 确定的周期函数。
例,已知 f(-1)=1,f(0)=0,f(1)=1,求 f(x)在区间[-1,1]上的
三次自然样条插值多项式。 解:这里n=2区间[-1,1]分成两个子区间,故设
S ( x)


s0 ( x) a0 x3 b0 x2 c0 x d0
1)它只在插值区间端点比Lagarnge多项式插值问题多两个
边界条件,但却在内点处有一阶、二阶连续的导函数,从而要比 分段Lagarnge插值更光滑。
2)分段Hermite三次多项式插值问题,只有被插值函数在所有
插值节点处的函数值和导数值都已知时才能使用,而且在内节点处 二阶导函数一般不连续。
下面我们讨论三次样条插值多项式s3(x)的构造。 一般来讲,构造三次样条插值多项式s3(x) ,若用待定系数法, 可写成 S3 ( x) ai x3 bi x2 ci x di x xi , xi1 i 0, 1, , n 1 其中 ai, bi, ci, di 为待定系数,共有4n个。按定义s3(x)应满足: (1)插值条件n+1个: S ( xi ) yi i 0, 1, , n 连续性条件n-1个:S ( xi 0) S ( xi 0) i 0, 1, , n 1 (2)在内节点一阶导数连续性条件n-1个:

三次样条插值算法详解知识讲解

三次样条插值算法详解知识讲解

mn
Mn
18
稍加整理得
2m0m13y1h0y0h20M0 g0 m n12m n3ynh n y 1n1hn 21M n gn
联合基本方程组得一个n+1阶三对角方程组, 化成矩阵形式为:仍然是严格对角占优
2 1
1
2
1
m0 m1
g0 g1
2 2 2
3 2
m 2 g2
x [ x i,x i 1 ]h i, x i 1 x i,i 0 , 1 , ,n 1
( x ) ( 2 x 1 )x ( 1 ) 2 ,1 ( x ) x ( x 1 ) 2 12
对Si(x)求二阶,导 并数 整理后得
Si(x)6(xix hii3 12x)(yi1yi) 6 x 2 x h ii2 4 x i 1m i6 x 4 x h ii2 2 x i 1m i 1
3
(1)因为s(x)在每个小区间上是一个次小于三次的多 项式,故有四个未知系数; (2)因为s(x)有n分段,从而共有4n个未知系数! (3)但插值条件与样条条件仅给出4n-2个条件,无法 定出4n个未知系数,还差2个条件!这2个条件我们用 边界条件给出!
4
通常我们对插值多项式在两端点的状态加以要求也就是 所谓的边界条件:
6
第三类又称周期边界条件: 由区间端点处的函数值或导数值满足周期条件给出
s3 (x0 0) s3 (xn 0)
s3
(
x0
0)
s3 ( xn
0)
s3(x0 0) s3(xn 0)
这样三次样条插 值问题就分成三 类!其实不止这
三类!
7
样条函数的例子
容易验证: (11x326x215x)15 0x1

详细讲解三次样条插值法及其实现方法

详细讲解三次样条插值法及其实现方法
1
样条函数的定义 定义4.1 设区间[a,b]上给定一个节点划分
a=x0<x1<……<xn-1<xn=b 如果存在正整数k使得[a,b]上的分段函数s(x)满足 如下两条: (1)在[a,b]上有直到k-1阶连续导数。 (2)在每个小区间[xi,xi+1]上是次数不大于k的多项式。 则称分段函数s(x)是以(2.6)为节点集的k次样条函数。
x xi i i 1 hi
) mi1hi
( ) xi1x
1 hi
x [xi , xi1], hi xi1 xi , i 0,1,, n 1
(x) (2x 1)( x 1)2,1(x) x(x 1)2 13
对Si (x)求二阶导数 ,并整理后得
Si( x)
6( xi
xi 1 hi3
2x)
因为分段三次Hermite插值多项式已经至少是一阶连续 可导了,为了让它成为三次样条函数只需确定节点处 的一阶导数使这些节点处的二阶导数连续即可!
S(xi 0) S(xi 0), i 1,, n 1
S(x)
y ( xxi i 0 hi
)
y ( ) m h ( xi1x i1 0 hi
( yn
yn 1 )
2 hn1
(mn1
2mn )
立即可得下式:
21
其中:
nm1 nmn1 2mn gn
n
h0
h0 hn1
, n
hn1 h0 hn1
1 n
gn
3 n
y1 y0 h0
n
yn
yn1 hn1
联合基本方程得一个广义三对角或周期三对角方程组:
2 1
1
1
2

数值分析三次样条插值

数值分析三次样条插值


0
2
1



n1
1
n2
2 n1
M d 0
MM dd n2 M d 2


1 1 2 2
n1 n1 n n
di f xi2, xi1, xi
华长生制作
7
2、 三弯矩构造法
三次样条插值函数 S( x) 可以有多种表达式,有时用二阶导数
值S( xi) Mi (i 0,1,, n)
Mi
xi
表示时,使用更方便。 在力学上解释
为细M梁i 在 S处( x的) 弯矩,并且得到的弯矩与相邻两个弯矩有关,故
称用由于表S(示x)在区间的算[x法i , x为i三1](弯i 矩0,算1,法,。n 1) 上是三次多项式,
hn
n1 3
Mn

f
x0 , x1 f
xn1, xn
其中
0

h1 h1h n
1
0 ,
hn , 0 hnh0
d1

6(
f
[
x
,
0
x1]
f
x[ , n1
x
n])(h1
h
n)
1
.
可解出 M i (i 0,1,, n) ,方程组的矩阵形式为
2
hi
min hi
,M4
max x[a,b]
f (4) (x)
1in
华长生制作
16
精品课件!
精品课件!
可见S(x), S(x)和S(x)在[a,b]上一致收敛到f (x), f (x)和f (x)

三次样条插值算法详解

三次样条插值算法详解
局限性
三次样条插值算法要求数据点数量较多,且在某些情况下可能存在数值不稳定性,如数据 点过多或数据点分布不均等情况。此外,该算法对于离散数据点的拟合效果可能不如其他 插值方法。
对未来研究的展望
01
02
03
改进算法稳定性
针对数值不稳定性问题, 未来研究可以探索改进算 法的数值稳定性,提高算 法的鲁棒性。
3
数据转换
对数据进行必要的转换,如标准化、归一化等, 以适应算法需求。
构建插值函数
确定插值节点
根据数据点确定插值节点,确保插值函数在节点处连续且光滑。
构造插值多项式
根据节点和数据点,构造三次多项式作为插值函数。
确定边界条件
根据实际情况确定插值函数的边界条件,如周期性、对称性等。
求解插值函数
求解线性方程组
06
结论
三次样条插值算法总结
适用性
三次样条插值算法适用于各种连续、光滑、可微的分段函数插值问题,尤其在处理具有复 杂变化趋势的数据时表现出色。
优点
该算法能够保证插值函数在分段连接处连续且具有二阶导数,从而在插值过程中保持数据 的平滑性和连续性。此外,三次样条插值算法具有简单、易实现的特点,且计算效率较高 。
根据数据点的数量和分布,合理分段,确保 拟合的精度和连续性。
求解线性方程组
使用高效的方法求解线性方程组,如高斯消 元法或迭代法。
结果输出
输出拟合得到的插值函数,以及相关的误差 分析和图表。
03
三次样条插值算法步骤
数据准备
1 2
数据收集
收集需要插值的原始数据点,确保数据准确可靠。
数据清洗
对数据进行预处理,如去除异常值、缺失值处理 等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)差商定义
定义
称 f[xi,xj]f(xxi)i xfj(xj), ij 为 f ( x ) 在 x i , x j
两点处的一阶差商.
f[x0,x1,x2]f[x0,xx10 ] xf2[x1,x2]
二阶差商
f[x 0 ,x 1 ,L x n ]f[x 0 ,x 1 L x n x 1 0 ] x fn [x 1 ,x 2 ,L x n ]n 阶差商
n
P n(x)
i0
yi (xxn i)1(n 'x)1(xi)
(2)插值误差估计
定理2 设 f (n) (x) 在[a, b] 上连续,f (n1) (x)在 (a, b) 内存在,
节点 a x 0 x 1 x n b ,Pn ( x) 是拉格朗日插值多项 式,则对任意 x[a,b] , 插值余项
1 (x4)(x6)(x8)(x10) 3(x2)(x6)(x8)(x10)
384
96
5(x2)(x4)(x8)(x10) 4(x2)(x4)(x6)(x10)
64
96
1 (x2)(x4)(x6)(x8) 384
缺点: 当增加或减少插值节点时,基函数需要重新 构造,不便于实际的计算使用
四、 Newton插值法
为 Det(A) (xi xj) ,由定理中条件,插值结点为彼此互异的, 那么行 0jin
列式不为零.故由Cramer法则知线性代数方程组 Aa b 存在唯一解.
三、Lagrange插值法
(1)Lagrange插值多项式可以表示为
n
Pn (x) yili (x) i0
l i( x ) ( x ( i x x x 0 0 ) ) L L ( ( x x i x x i i 1 1 ) ) ( ( x x i x x i i 1 1 ) ) L L ( ( x x i x n x ) n ) ,i 0 ,1 ,L n
二、存在唯一性
定理1 设 x0,x1xn为给定的彼此互异的 n 1个插值 节点,则存在唯一的次数不超过 n的多项式 Pn (x) ,满足 条件
Pn(xi) yi , i0,1,n.
证明: 设 P n a 0 a 1 x a 2 x 2 L a n x n, 其中 a0,a1,a2,Lan
插值与拟合
前言
函数是多种多样的,在科研与工程实际中有的 函数表达式过于复杂而不便于计算,但又需要计算 多点的函数值;有的函数甚至给不出数学式子,只 能通过实验和测量得到一些离散数据(如某些点的 函数值和导数值)。面对这种情况,很自然的一个 想法就是构造某个简单的函数作为要考察的函数的 近似 。
如果要求近似函数满足给定的离散数据,则称之 为的插值函数。实用上,我们常取结构相对比较简 单的代数多项式作为插值函数,这就是所谓的代数插 值。
为待定系数.利用插值条件 Pn(xi) yi ,我们得到一个线性代数方程
组 Aa b ,其中
1 x0 L A 1 x1 L
M M LM
,
a0
a
a1
,
M
x
n
n
a
n
y0
b
y1
M
y
n
观察发现矩阵A是范德蒙矩阵,那么,由几代知识知道矩阵A 的行列式
差商表
xk
f (xk)
一阶 差商
二阶差商
三阶差商 四阶差商
一、问题提出
设 x0,x1L xn为给定的节点,yi f(xi),i0,1,n 为相应的函数值,求一个次数不超过 n的多项式 Pn (x), 使其满足
Pn(xi) yi, i0,1,n. 这类问题称为插值问题。f ( x ) 称为被插值函数,P n ( x ) 称
为插值函数,x0,x1L xn 称为插值节点
R n(x)f(x)P n(x)f(n (n 1)1 ())!n 1(x) 其中(a,b)且依赖于 x.
例2.求过点(2,0)(4,3)(6,5)(8,4)(10,1)的拉格朗日型插值多 项式。
解:用4次插值多项式对5个点插值
x0,y02 ,0,x1,y14 ,3 ,x2,y26 ,5, x3,y38 ,4,x4,y41 0 ,1 ,
引入记号 n 1 ( x i ) ( x x 0 ) x ( x 1 ) ( x x n ),
易证 n 1 ( x i ) ( x i x 0 ) ( x i x i 1 ) x i x ( i 1 ) ( x i x n ) ,
从而Lagrange插值多项式可表示为
( x 2 ) ( x 4 ) ( x 8 ) ( x 1 0 )1 l2 ( x ) ( 6 2 ) ( 6 4 ) ( 6 8 ) ( 6 1 0 ) 6 4 ( x 2 ) ( x 4 ) ( x 8 ) ( x 1 0 ) l3 (x ) ( (x 8 2 2 ) )( (8 x 4 4 ) )( (8 x 6 6 ) )( (8 x 1 1 0 0 ) ) 9 1 6 (x 2 )(x 4 )(x 6 )(x 1 0 )
( x 4 ) ( x 6 ) ( x 8 ) ( x 1 0 ) 1 l0 ( x ) ( 2 4 ) ( 2 6 ) ( 2 8 ) ( 2 1 0 ) 3 8 4 ( x 4 ) ( x 6 ) ( x 8 ) ( x 1 0 )
( x 2 ) ( x 6 ) ( x 8 ) ( x 1 0 ) 1 l 1 ( x ) ( 4 2 ) ( 4 6 ) ( 4 8 ) ( 4 1 0 ) 9 6 ( x 2 ) ( x 6 ) ( x 8 ) ( x 1 0 )
l4 (x ) (1 ( 0 x 2 2 )( ) 1 (0 x 4 4 ) )( (1 x 0 6 6 )( )( x 1 0 8 )8 ) 3 1 8 4 (x 2 )(x 4 )(x 6 )(x 8 )
于是有
P 4 ( x ) y 0 l 0 ( x ) y 1 l 1 ( x ) y 2 l 2 ( x ) y 3 l 3 ( x ) y 4 l 4 ( x )
相关文档
最新文档