统计学计算题
统计学分析计算题

1、某地区2013—2017年的水泥产量如表:根据资料特征,试用最小二乘法拟合合适的方程,并据以预测2018年的水泥平均产量。
(答案:直线,469.5万吨)2、某地区2013—2017年的小麦产量如表:计算:(1)2016年的逐期增长量、累计增长量、环比发展速度、定基发展速度、环比增长速度、定基增长速度、增长1%的绝对值;(2)2014—2017年平均发展速度和平均增长速度。
(答案:105.85%,5.85%)3、某企业2018年上半年资料如下:求:(1)该企业上半年的平均人数;111人(110.67人)(2)该企业上半年的月平均总产值;486万元(3)该企业3月份的劳动生产率;4.33万元/人(4)该企业上半年的月平均劳动生产率。
4.39万元/人=486/110.67万元/人4、某地区2017年生猪存栏头数资料如表:要求:计算一季度(答案:15.75万头)、上半年(答案:16.38万头)、下半年(答案:20万头)及全年的生猪平均存栏头数(答案:18.19万头)。
5、某地区2013—2017年GDP的有关速度指标如表:要求:(1)填空;(红字原来是空格,现为答案)(2)计算2013—2017年GDP年平均增长速度;(答案:7.99%)(3)若2012年GDP为110亿元,试按此平均增长速度推算2019年的国民生产总值。
(答案:188.40亿元)6、某市A商品零售量资料如下:(单位:万件)要求:(1)用按季平均法计算A商品零售量的季节比率;30.40%,45.87%,130.13%,193.60%(2)用趋势剔除法计算A商品零售量的季节比率;33.00%,46.64%,129.32%,191.04%(3)若2018年A商品零售量若为240万件,分别用两种方法预测各个季度商品零售量分别为多少?按季平均法18.24,27.52,78.08,116.16趋势剔除法19.80, 27.98, 77.59, 114.637、某企业2018年6月份职工人数变动情况如下:6.1有职工2600人,其中非直接生产人员300人;6.13调离企业24人,其中企业管理人员8人;6.23招进生产工人20人。
[统计学原理计算题答案]统计学计算题及答案
![[统计学原理计算题答案]统计学计算题及答案](https://img.taocdn.com/s3/m/b5b9d1f5c850ad02de8041dd.png)
[统计学原理计算题答案]统计学计算题及答案【试卷考卷】统计学计算题及答案篇(一):统计学试题及答案一、填空题(每空1分,共10分)1.从标志与统计指标的对应关系来看,标志通常与( )相同。
2.某连续变量数列,其首组为开口组,上限为80,又知其邻组的组中值为95,则首组的组中值为( )。
3.国民收入中消费额和积累额的比例为1:0.4,这是( )相对指标。
4.在+A的公式中,A称为( )。
5.峰度是指次数分布曲线项峰的( ),是次数分布的一个重要特征。
6.用水平法求平均发展速度本质上是求( )平均数。
7.按习惯做法,采用加权调和平均形式编制的物量指标指数,其计算公式实际上是( )综合指数公式的变形。
8.对一个确定的总体,抽选的样本可能个数与( )和( )有关。
9.用来反映回归直线代表性大小和因变量估计值准确程度的指标称( )。
二、是非题(每小题1分,共10分)1.统计史上,将国势学派和图表学派统称为社会经济统计学派。
2.统计总体与总体单位在任何条件下都存在变换关系统计学原理试题及答案统计学原理试题及答案。
3.学生按身高分组,适宜采用等距分组。
4.根据组距数列计算求得的算术平均数是一个近似值。
5.基尼系数的基本公式可转化为2(S1+S2+S3)。
6.对连续时点数列求序时平均数,应采用加权算术平均方法。
7.分段平均法的数学依据是Σ(Y-YC)2=最小值。
8.平均数、指数都有静态与动态之分。
9.在不重复抽样下,从总体N中抽取容量为n的样本,则所有可能的样本个数为Nn个10.根据每对x和y的等级计算结果ΣD2=0,说明x与y 之间存在完全正相关。
三、单项选择题(每小题2分,共10分)1.在综合统计指标分析的基础上,对社会总体的数量特征作出归纳、推断和预测的方法是A.大量观察法B.统计分组法C.综合指标法D.模型推断法2.对同一总体选择两个或两个以上的标志分别进行简单分组,形成A.复合分组B.层叠分组C.平行分组体系D.复合分组体系3.交替标志方差的最大值为A.1B.0.5C.0.25D.04.如果采用三项移动平均修匀时间数列,那么所得修匀数列比原数列首尾各少A.一项数值B.二项数值C.三项数值D.四项数值5.可变权数是指在一个指数数列中,各个指数的A.同度量因素是变动的B.基期是变动的C.指数化因数是变动的D.时期是变动的四、多项选择题(每小题2分,共10分)1.反映以经济指标为中心的三位一体的指标总体系包括A.社会统计指标体系B.专题统计指标体系C.基层统计指标体系D.经济统计指标体系E.科技统计指标体系2.典型调查A.是一次性调查B.是专门组织的调查C.是一种深入细致的调查D.调查单位是有意识地选取的E.可用采访法取得资料3.下列指标中属于总量指标的有A.月末商品库存额B.劳动生产率C.历年产值增加额D.年末固定资金额E.某市人口净增加数4.重复抽样的特点是A.各次抽选互不影响B.各次抽选相互影响C.每次抽选时,总体单位数逐渐减少D.每次抽选时,总体单位数始终不变E.各单位被抽中的机会在各次抽选中相等5.下列关系中,相关系数小于0的现象有A.产品产量与耗电量的关系B.单位成本与产品产量的关系C.商品价格与销售量的关系D.纳税额与收入的关系E.商品流通费用率与商品销售额的关系五、计算题(每小题10分,共60分)要求:(1)写出必要的计算公式和计算过程,否则,酌情扣分。
统计学计算习题

第四章六、计算题工资更具有代表性。
1、(1) 430025500267x f x f⨯+⨯+===∑∑甲工资总额总人数3002%5008%7003%fx x f=⋅=⨯+⨯+⨯+∑∑乙(2) 计算变异系数比较 σ=甲 σ乙 V x σσ=甲甲甲V x σσ=乙乙乙根据V σ甲、V σ乙大小判断,数值越大,代表性越小。
假定生产条件相同,试研究这两个品种的收获率,确定那一个品种具有稳定性和推广价值。
2、(1) 收获率(平均亩产)2430528.254.8x ===甲总产量总面积 22505004.5x ==乙 (2) 稳定性推广价值(求变异指标)σ=甲σ=乙求V σ甲、V σ乙,据此判断。
8.某地20个商店,1994年第四季度的统计资料如下表4-6。
试计算(1)该地20个商店平均完成销售计划指标 (2)该地20个商店总的流通费用率 (提示:流通费用率=流通费用/实际销售额) 8、(1) ()101%1%ff x ===⨯∑∑20实际销售额计划销售额实际销售额计划完成(2) 据提示计算:2012.7%x =13、提示:=销售额平均价格销售量(2)平均一级品率。
14、(1) ()%=实际产量产量平均计划完成计划产量(2) ()%⨯==实际一级品实际产量一级品率平均一级品率实际产量实际产量15.某生产小组有36名工人,每人参加生产的时间相同,其中有4人每件产品耗时5分钟,20人每件耗时8分钟,12人每件耗时10分钟。
试计算该组工人平均每件产品耗时多少分钟?如果每人生产的产品数量相同,则平均每件产品耗时多少分钟?15、(1) 设时间为t ,36124201058tt t t==⨯+⨯+⨯总时间每件平均耗时总产量(2) 设产品数量为a ,45208121036a a aa⨯+⨯⨯+⨯⨯=每件平均耗时16.为了扩大国内居民需求,银行为此多次降低存款利润,近5年年利润率分别为7%、5%、4%、3%、2%,试计算在单利和复利情况下5年的平均年利率。
统计学计算题

统计学计算题1. 某企业生产的A 、B两种产品的产量及产值资料如下:产品总产值(万元)产量的环比发展速度(%)基期报告期A B 400600580760110100★标准答案:2. 某厂生产的三种产品的有关资料如下:产品名称产量单位产品成本基期报告期基期报告期甲10001200108乙500050004丙1500200087要求:计算三种产品的成本总指数以及由于单位产品成本变动使总成本使总成本变动的绝★标准答案:产品成本指数=由于单位产品成本变动使总成本使总成本变动的绝对额;(-)=461000-48000=-1900(万元)3. 某企业本月分三批购进某种原材料,已知每批购进的价格及总金额如下:购进批次价格(元/吨)总金额(元)一二三200190205160001900028700★标准答案:4. 某厂三个车间一季度生产情况如下:第一车间实际产量为200件,完成计划95%;第二车间实际产量280件,完成计划100%;第三车间实际产量650件,完成计划105%,请问★标准答案:平均计划完成程度☆考生答案:解:三个车间总的计划产量=200/95%+280/100%+650/105%=1110(件)三个车间总的实际产量=200+280+650=1130(件)三个车间产品产量的平均计划完成程度=1130/1110*100%=%5. 三种商品的销售额及价格资料如下:商品销售额(万元)报告期价格比基期增(+)或减(-)的%基期报告期甲乙丙5070809010060+10+8-4合计200250—★标准答案:6. 某公司下属三个企业上季度生产计划完成情况及一级品率资料如下:企业计划产量(件)计划完成(%)实际一级品率(%)甲乙丙50034025010310198969895根据资料计算:(1)产量计划平均完成百分比;★标准答案:☆考生答案:解:(1)计划平均完成百分比=(500*+340*+250*)/(500+340+250)*100%=% (2)平均一级品率=(500**+340**+250**)/(500*+340*+250*)*100%=%7. 某商店主要商品价格和销售额资料如下:商品计量单位价格本月销售额(万元)上月本月甲乙丙件台套1005060110486311024★标准答案:8. 某市场上某种蔬菜早市每斤元,中午每斤元,晚市每斤元,现在早、中、晚各买一元,★标准答案:.平均价格H==(元)☆考生答案:解:购买的总斤数=1/+1/+1/=19(斤)平均价格=(1+1+1)/19=(元/斤)9. 某商店出售某种商品第一季度价格为元,第二季度价格为元,第三季度为6元,第四季度为元,已知第一季度销售额3150元,第二季度销售额3000元,第三季度销售额5400元,★标准答案:☆考生答案:解:平均价格=(3150+3000+5400+4650)/(3150/+3000/+5400/6+4650/)=(元)10. 某厂生产某种机床配件,要经过三道工序,各加工工序的合格率分别为%,%,%。
统计学计算题整理

:典型计算题一1、某地区销售某种商品的价格和销售量资料如下:根据资料计算三种规格商品的平均销售价格。
解:36==∑∑ffxx (元)点评: 第一,此题给出销售单价和销售量资料,即给出了计算平均指标的分母资料,所以需采用算术平均数计算平均价格。
第二,所给资料是组距数列,因此需计算出组中值。
采用加权算术平均数计算平均价格。
第三,此题所给的是比重权数,因此需采用以比重形式表示的加权算术平均数公式计算。
2、某企业1992年产值计划是1991年的105%,1992年实际产值是1991的的116%,问1992年产值计划完成程度是多少解:%110%105%116===计划相对数实际相对数计划完成程度。
即1992年计划完成程度为110%,超额完成计划10%。
点评:此题中的计划任务和实际完成都是“含基数”百分数,所以可以直接代入基本公式计算。
3、某企业1992年单位成本计划是1991年的95%,实际单位成本是1991年的90%,问1992年单位成本计划完成程度是多少解: 计划完成程度%74.94%95%90==计划相对数实际相对数。
即92年单位成本计划完成程度是%,超额完成计划%。
点评:本题是“含基数”的相对数,直接套用公式计算计划完成程度。
4、某企业1992年产值计划比91年增长5%,实际增长16%,问1992年产值计划完成程度是多少解:计划完成程度%110%51%161=++=点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数”的相对数,才能进行计算。
5、某企业1992年单位成本计划比1991年降低5%,实际降低10%,问1992年单位成本降低计划完成程度是多少解:计划完成程度%74.94%51%101=--=点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数”的相对数,才能进行计算。
6、某企业产值计划完成103%,比上期增长5%,问产值计划规定比上期增加多少 解:103%=105%÷(1+x )x=%即产值计划规定比上期增加%.点评:计划完成程度=103%,实际完成相对数=105%,设产值计划规定比上期增加x,则计划任务相对数=1+x,根据基本关系推算出x.7、某煤矿某月计划任务为5400吨,各旬计划任务是均衡安排的,根据资料分析本月生产情况.=104%),但在节奏性方面把握不解:从资料看,尽管超额完成了全期计划(5400好。
统计学计算题整理

:典型计算题一1、某地区销售某种商品的价格和销售量资料如下:根据资料计算三种规格商品的平均销售价格。
解:(元)点评:第一,此题给出销售单价和销售量资料,即给出了计算平均指标的分母资料,所以需采用算术平均数计算平均价格.第二,所给资料是组距数列,因此需计算出组中值。
采用加权算术平均数计算平均价格.第三,此题所给的是比重权数,因此需采用以比重形式表示的加权算术平均数公式计算.2、某企业1992年产值计划是1991年的105%,1992年实际产值是1991的的116%,问1992年产值计划完成程度是多少?解:.即1992年计划完成程度为110%,超额完成计划10%。
点评:此题中的计划任务和实际完成都是“含基数"百分数,所以可以直接代入基本公式计算。
3、某企业1992年单位成本计划是1991年的95%,实际单位成本是1991年的90%,问1992年单位成本计划完成程度是多少?解:计划完成程度。
即92年单位成本计划完成程度是94。
74%,超额完成计划5。
26%.点评:本题是“含基数”的相对数,直接套用公式计算计划完成程度。
4、某企业1992年产值计划比91年增长5%,实际增长16%,问1992年产值计划完成程度是多少?解:计划完成程度点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数"的相对数,才能进行计算。
5、某企业1992年单位成本计划比1991年降低5%,实际降低10%,问1992年单位成本降低计划完成程度是多少?解:计划完成程度点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数”的相对数,才能进行计算。
6、某企业产值计划完成103%,比上期增长5%,问产值计划规定比上期增加多少?解:103%=105%÷(1+x)x=1。
9%即产值计划规定比上期增加1.9%.点评:计划完成程度=103%,实际完成相对数=105%,设产值计划规定比上期增加x,则计划任务相对数=1+x,根据基本关系推算出x。
统计学练习题(计算题)

统计学练习题(计算题)第四章----第一部分总量指标与相对指标4.1:(1)某企业产值计划完成程度为105%,比上年增长7%,试计算计划规定比上年增长多少?(2)单位产品成本上年为420元,计划规定今年成本降低5%,实际降低6%,试确定今年单位成本的计划数字和实际数字,并计算出降低成本计划完成程度指标。
(3)按计划规定,劳动生产率比上年提高10%,实际执行结果提高了12%,劳动生产率计划完成程度是多少?4.2:某市三个企业某年的下半年产值及计划执行情况如下:要求:[1]试计算并填写上表空栏,并分别说明(3)、(5)、(6)、(7)是何种相对数;[2]丙企业若能完成计划,从相对数和绝对数两方面说明该市三个企业将超额完成计划多少?4.3:我国2008年-2013年国内生产总值资料如下:单位:亿元根据上述资料,自行设计表格:(1)计算各年的第一产业、第二产业、第三产业的结构相对指标和比例相对指标;(2)计算我国国内生产总值、第一产业、第二产业、第三产业与上年对比的增长率;(3)简要说明我国经济变动情况。
4.4:某公司下属四个企业的有关销售资料如下:根据上述资料:(1)完成上述表格中空栏数据的计算;(2)若A能完成计划,则公司的实际销售额将达到多少?比计划超额完成多少?(3)若每个企业的计划完成程度都达到B企业的水平,则公司的实际销售额将达到多少?比计划超额完成多少?第四章-----第二部分平均指标与变异指标4.5:已知某地区各工业企业产值计划完成情况以及计划产值资料如下:要求:(1)根据上述资料计算该地区各企业产值计划的平均完成程度。
(2)如果在上表中所给资料不是计划产值而是实际产值,试计算产值计划平均完成程度。
、4.6:已知某厂三个车间生产不同的产品,其废品率、产量和工时资料如下:计算:(1)三种产品的平均废品率;(2)假定三个车间生产的是同一产品,但独立完成,产品的平均废品率是多少;(3)假定三个车间是连续加工某一产品,产品的平均废品率是多少。
统计学计算题

第三章统计整理例 1、某厂工人日产量资料如下:(单位:公斤)162 158 158 163 156 157 160 162 168 160164 152 159 159 168 159 154 157 160 159163 160 158 154 156 156 156 169 163 167试根据上述资料,编制组距式变量数列,并计算出频率。
解:将原始资料按其数值大小重新排列。
152158 159154 154 156 156 156 156 157 157 158 158 159 159 159 159 160 160 160 162 162 163 163 163 164 167168 168 169最大数=169,最小数=152,全距=169-152=17n=30, 分为 6 组例 2、某企业 50 个职工的月工资资料如下:113 125 78 115 84 135 97 105 110 130105 85 88 102 101 103 107 118 103 87116 67 106 63 115 85 121 97 117 10794 115 105 145 103 97 120 130 125 127122 88 98 131 112 94 96 115 145 143试根据上述资料,将50 个职工的工资编制成等距数列,列出累计频数和累计频率。
解:将原始资料按其数值大小重新排列。
63 97 117 118工人按日产量分组(公斤)152-154155-157158-160161-163164-166 工人数(人)361151比率(频率)(%)10.0020.0036.6016.7067 78 84 85 85 87 88 88 94 94 96 97 97 98 101 102 103 103 103 105 105 105 107 110 112 113 115 115 115 115 116 118 120 121 122 125 125 127 130 130 131 135 143 145 145按工资额分组(元)60-70 70-80 80-90频数216工人数频率( %)4212频数239向上累计频率( %)4618频数504847向下累计频率(%)1009694例 3、有 27 个工人看管机器台数如下:5 4 2 4 3 4 3 4 4 2 4 3 4 3 26 4 4 2 2 3 4 5 3 2 4 3试编制分布数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学计算题27、【104199】(计算题)某班级30名学生统计学成绩被分为四个等级:A .优;B .良;C .中;D .差。
结果如下:B C B A B D B C C B C D B C A B B C B A B A B B D C C B C A BDAACDCABD(1)根据数据,计算分类频数,编制频数分布表;(2)按ABCD 顺序计算累积频数,编制向上累积频数分布表和向下累计频数分布表。
【答案】28、【104202】(计算题)某企业某班组工人日产量资料如下:根据上表指出:(1)上表变量数列属于哪一种变量数列;(2)上表中的变量、变量值、上限、下限、次数; (3)计算组距、组中值、频率。
【答案】(1)该数列是等距式变量数列。
(2)变量是日产量,变量值是50-100,下限是,、、、、9080706050上限是,、、、、10090807060次数是111625199、、、、; (3)组距是10,组中值分别是 9585756555、、、、,频率分别是13.75%31.25%.20%23.75%11.25% 、、。
29、【104203】(计算题) 甲乙两班各有30名学生,统计学考试成绩如下:(1)根据表中的数据,制作甲乙两班考试成绩分类的对比条形图; (2)比较两班考试成绩分布的特点。
【答案】乙班学生考试成绩为优和良的比重均比甲班学生高,而甲班学生考试成绩为中和差的比重比乙班学生高。
因此乙班学生考试成绩平均比乙班好。
两个班学生都呈现出"两头大,中间小"的特点,即考试成绩为良和中的占多数,而考试成绩为优和差的占少数。
30、【104205】(计算题)科学研究表明成年人的身高和体重之间存在着某种关系,根据下面一组体重身高数据绘制散点图,说明这种关系的特征。
体重(Kg )5053 57 60 66 70 76 75 80 85 身高(cm ) 150155160165168172178180182185【答案】散点图:可以看出,身高与体重近似呈现出线性关系。
身高越高,体重越重。
31、【150771】(计算题) 某班40名学生统计学考试成绩分别为:66 89 88 84 86 87 75 73 72 68 75 82 97 58 81 54 79 76 95 76 71 6090 65 76 72 76 85 89 92 64 57 83 81 78 77 72 61 70 81学校规定:60分以下为不及格,60-70为及格,70-80分为中,80-90分为良,90-100分为优。
要求:(1)将该班学生分为不及格、及格、中、良、优五组,编制一张次数分配表。
(2)指出分组标志及类型;分组方法的类型;分析本班学生考试情况。
【答案】(1)"学生考试成绩"为连续变量,需采组距式分组,同时学生考试成绩变动均匀,故可用等距式分组来编制变量分配数列。
(2)分组标志为考试成绩,属于数量标志,简单分组;从分配数列中可看出,该班同学不及格人数和优秀生的人数都较少,分别为%5.7和%10。
大部分同学成绩集中在70-90分之间,说明该班同学成绩总体良好。
考试成绩一般用正整数表示时,可视为离散变量也可用单项式分组,但本班学生成绩波动幅度大,单项式分组只能反映成绩分布的一般情况,而组距分组分配数列可以明显看出成绩分配比较集中的趋势,便于对学生成绩分配规律性的掌握。
62、【104275】(计算题)设某产品的完整生产过程包括3道流水作业的连续工序,这3道生产工序的产品合格率分别为80%、90%和95%。
则整个生产流程的产品总合格率是多少?【答案】%1.88684.095.09.08.033==⨯⨯63、【145013】(计算题) 某学院一年级两个班的学生高等数学考试成绩如下表:试分别计算两个班的平均成绩和标准差,并比较说明哪个班的高等数学考试成绩差异程度更大。
【答案】甲班成绩均值:804032005151===∑∑==i ii ii f f x x 甲甲班成绩标准差:()()()()()()62.10406809517808510807558065280552222251512=⨯-+⨯-+⨯-+⨯-+⨯-=-=∑∑--i ii i i f f x x s 甲甲甲班成绩离散系数:1328.08062.10===甲甲甲x s V乙班成绩均值:4.785039205151===∑∑==i ii ii f f x x 乙乙班成绩标准差:()()()()()36.115074.7895184.7885144.786544.7855222251512=⨯-+⨯-+⨯-+⨯-=-=∑∑--i ii i i f f x x s 乙乙乙班成绩离散系数:1449.04.7836.11===乙乙乙x s V乙甲V V <,因此,乙班的高等数学考试成绩差异更大。
64、【145019】(计算题)根据下表资料,计算众数和中位数。
【答案】次数最多的是168万人,众数所在组为15~30这一组,故15=L X ,30=U X人261421681=-=∆,人72961682=-=∆,98.181572262615211=⨯++=⋅∆+∆∆+=d X M L o 或:98.181572267230212=⨯+-=⋅∆+∆∆-d M o26125222===∑f中位数位置,说明这个组距数列中的第262位所对应的人口年龄是中位数。
从累计(两种方法)人口数中可见,第261位被包括在第2组,即中位数在15~30这组中。
15=L X ,30=U X ,168=m f ,1421=-m S ,2121=+m S625.25151681422611521=⨯-+=⨯-+=-∑d f S fX M mm L e或者:625.25151682122613021=⨯--=⨯--=+∑d f S fX M mm U e65、【145089】(计算题) 有甲乙两个生产小组,甲组平均每个工人的日产量为32件,标准差为8件。
乙组工人日产量资料如下:要求:(1)计算乙组平均每个工人的日产量和标准差。
(2)比较甲、乙两生产小组哪个组的日产量差异程度大?【答案】(1)03.281234382512453435382525154141i =+++⨯+⨯+⨯+⨯==∑∑==i iii f f x x 乙()()()()()43.9123438251203.28453403.28353803.28252503.2815222241412=+++⨯-+⨯-+⨯-+⨯-=-=∑∑==i ii i i f f x x s 甲乙(2)25.0328===甲甲甲x s V34.003.2843.9===乙乙乙x s V说明乙组日产量差异程度大于甲组。
66、【163301】(计算题)某年度两家工厂采购同一种原材料的价格和批量情况如下表。
试分别计算这两个厂的平均采购价格。
【答案】74.74054.04007804577052755827251067001154552821061155151==++++++++==∑∑--i iii ix mm x 甲(元/吨)27.74667.05007801007701007551007251007001001001001001001005151==+++++++===∑∑--i iii i x mm x x 甲乙(元/吨)67、【173857】(计算题)某农场在不同自然条件的地段上用同样的管理技术试种两个粮食新品种,有关资料如下表所示:试计算有关指标,并从作物收获率的水平和稳定性两方面综合评价,哪个品种更有推广价值?【答案】平均值18.412133.5358134203.53942.43855.14500.24141==⨯+⨯+⨯+⨯==∑∑==i ii ii f f x x 甲标准差()()()()()90.20133.518.4124202.418.4123945.118.4123850.218.412450222241412==⨯-+⨯-+⨯-+⨯-=-=∑∑==i ii i i f f x x s 甲甲标准差系数0507.018.41290.20===甲甲甲x S V平均值75.390137.5079133725.54212.34058.13835.24141==⨯+⨯+⨯+⨯==∑∑==i ii ii f f x x 乙标准差()()()()()34.20135.575.3903722.375.3904218.175.3904055.275.390383222241412=⨯-+⨯-+⨯-+⨯--=∑∑==i ii ii f f x x s 乙乙标准差系数0521.075.39034.20===乙乙乙x s V87、【104322】(计算题)某车间有20台机床,在给定的一天每一台机床不运行的概率都是0.05,机床之间相互独立。
问在给定的一天内,至少有两台机床不运行的概率是多少?(结果保留三位小数) 【答案】设x 表示在给定的一天内不运行的机床台数,则),(~p n B X ,20=n ,05.0=p 解法一:[]264.03774.03585.01)95.0()05.0()95.0()05.0(1)1()0(1)2(1)2(191120200020=--=--==+=-=<-=≥c c x p x p x p x p解法二:因为20=n ,05.0=p ,51≤=np ,可以用泊松分布近似计算二项分布 1==np λ,则有:3679.0!01!)0(10==≈=--e e x x p xλλ 3679.0!11!)1(11==≈=--e ex x p xλλ则264.0)1()0(1)2(1)2(==-=-=<-=≥x p x p x p x p88、【150764】(计算题)某厂生产的螺栓的长度服从均值为10cm ,标准差为0.05的正态分布。
按质量标准规定,长度在9.9~10.1cm 范围内的螺栓为合格品。
试求该厂螺栓的不合格率是多少。
(查概率表知,()()97725.022=Φ=<X P ) 【答案】螺栓的长度)05.0,10(~N X ,则)1,0(~05.010N X Z -=,合格的概率为9545.0197725.021)2(2)2()2(}05.0101.1005.01005.0109.9{}1.109.9{=-⨯=-Φ=-Φ-Φ=-≤-≤-=≤≤X P X P0455.09545.01=-故不合格率为。
110、【122755】(计算题)一家调查公司进行一项调查,其目的是为了了解某市电信营业厅大客户对该电信的服务满意情况。
调查人员随机访问了30名去该电信营业厅办理业务的大客户,发现受访的大客户中有9名认为营业厅现在的服务质量比两年前好。