第3讲 变量间的相关关系与统计案例

合集下载

完整版变量间的相关关系统计案例

完整版变量间的相关关系统计案例

完整版变量间的相关关系统计案例引言:经济学中一个重要的分支是相关关系的研究,通过统计分析不同变量之间的相关性,可以帮助我们理解变量之间的关系。

本文以汽车生产数量和国内生产总值(GDP)为例,通过统计分析两者之间的相关关系,展示相关分析在实际问题中的应用。

方法:本案例采用了经济学中常用的相关分析方法,包括Pearson相关系数和散点图。

本文使用了国在过去10年内的汽车生产数量和GDP的数据。

汽车生产数量的数据来自国家汽车协会,GDP数据来自国家统计局。

分析过程:1.数据收集和整理:将过去10年内的每年汽车生产数量和GDP数据整理成一个数据表格,便于后续分析。

2.描述统计分析:计算汽车生产数量和GDP的均值、标准差和极差等描述性统计量,以了解数据的整体情况。

3.散点图绘制:将每年的汽车生产数量和GDP数据绘制成散点图,横轴表示汽车生产数量,纵轴表示GDP,每个散点表示一个年份。

4.相关性分析:计算汽车生产数量和GDP之间的Pearson相关系数,该系数介于-1和1之间。

系数为正则表示两者正相关,系数为负则表示两者负相关,系数越接近于1或-1,则相关性越强。

结果:1.描述统计分析结果显示,过去10年内每年的汽车生产数量均值为X辆,标准差为X辆,极差为X辆;每年GDP的均值为X万元,标准差为X万元,极差为X万元。

2.散点图显示,汽车生产数量和GDP呈现出一定的正相关趋势。

随着汽车生产数量的增加,GDP也有相应增加的趋势。

3. 相关性分析结果显示,汽车生产数量和GDP之间的Pearson相关系数为X。

由于该系数为正数且接近于1,可以得出结论:汽车生产数量与GDP存在着强正相关关系。

讨论:本案例通过相关分析的方法,探讨了汽车生产数量与GDP之间的关系。

研究结果表明,两者之间存在着强正相关关系,即汽车生产数量的增加会促进GDP的增长。

可能的解释是汽车工业作为一个重要的制造业部门,对于经济的增长有着显著的贡献。

第九章 第三节 变量间的相关关系与统计案例

第九章  第三节  变量间的相关关系与统计案例
返回
2.回归方程 (1)最小二乘法:
求回归直线使得样本数据的点到它的距离的平方和最小 的方法叫做最小二乘法.
返回
(2)回归方程: 方程^y =^bx+^a是两个具有线性相关关系的变量的一组数 据(x1,y1),(x2,y2),…,(xn,yn)的回归方程,其中^a,^b是 待定参数.
n
xi--x yi--y
^
b

i=1
0.01,
^
a

y

^
b
x
=0.47,∴
^
y
=0.01x+0.47,令x=6,得
^
y
=0.53.
[答案] (1)B (2)0.5 0.53
返回
[悟一法] 1.求回归方程,关键在于正确求出系数^a,^b由于计算量较
大,所以计算时要仔细谨慎,分层进行,避免因计算产 生失误,特别注意,只有在散点图大体呈线性时,求出 的回归方程才有意义. 2.利用回归方程可以估计总体,它是回归方程所反映的规律 的延伸,可使我们对有线性相关关系的两个变量进行分 析和控制.
返回
4.独立性检验 (1)分类变量:变量的不同“值”表示个体所属的不同类别,
像这类变量称为分类变量. (2)列联表:列出两个分类变量的频数表,称为列联表.假
设有两个分类变量X和Y,它们的可能取值分别为{x1, x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为
返回
2×2列联表
x1 x2 总计
返回
1.两个变量的线性相关 (1)正相关:
在散点图中,点散布在从 左下角 到右上角的区域,对于 两个变量的这种相关关系,我们将它称为正相关.
返回
(2)负相关: 在散点图中,点散布在从 左上角 到 右下角的区域,两 个变量的这种相关关系称为负相关.

变量间的相关关系、统计案例教案(绝对经典)

变量间的相关关系、统计案例教案(绝对经典)

§11.3 变量间的相关关系与独立性检验⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧、不相关、非线性相关、线性相关、不确定的相关关系、确定的函数关系两个变量的关系32121 1.相关性(1)通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.从散点图上看,点散布在从左下角到右上角的区域内,对于两个变量的这种相关关系,我们将它称为正相关;点散布在从左上角到右下角的区域内,两个变量的这种相关关系称为负相关.(2)从散点图上,如果变量之间存在某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这样的近似过程称为曲线拟合.(3)若两个变量x 和y 的散点图中,所有点看上去都在一条直线附近波动,则称变量间是线性相关,这条直线叫回归直线.若所有点看上去都在某条曲线(不是一条直线)附近波动,称此相关是非线性相关.如果所有的点在散点图中没有显示任何关系,则称变量间是不相关的. (4)相关系数①r =∑ni =1 (x i -x )(y i -y )∑ni =1(x i -x)2∑ni =1(y i -y )2或()()12211ni i i n ni i i i x ynx yr x x y y ===-=--∑∑∑;②当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常当r 的绝对值>0.75时,认为两个变量有很强的线性相关关系。

2.线性回归方程 (1)最小二乘法如果有n 个点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),可以用[y 1-(a +bx 1)]2+[y 2-(a +bx 2)]2+…+[y n -(a +bx n )]2来刻画这些点与直线ˆˆˆybx a =+的接近程度,使得上式达到最小值的直线ˆˆˆy bx a =+就是所要求的直线,这种方法称为最小二乘法(使得样本数据的点到回归直线的距离平方和最小的方法). (2)回归方程方程ˆˆˆybx a =+是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程,其中,是待定参数.121()()ˆ()niii nii x x y y bx x ==--=-∑∑[]112222212()()()()...()()()()...()nnnx x y y x x y y x x yy x x x x x x --+--++--=⎡⎤-+-++-⎣⎦或者1221ˆni ii nii x ynx ybxnx ==-=-∑∑[]1122222212...,...n n nx y x y x y nx y x x x nx++-⋅=⎡⎤+++-⎣⎦ˆˆay bx =- 线性回归方程过样本点的中心(,)3、回归分析(1)y =bx +a +e 中,a 、b 称为模型的未知参数;e 称为随机误差.(2)随机误差e 的估计值e ˆ(a x b y y y e ii i i i ˆˆˆˆ--=-=)叫做相对于点(x i ,y i )的残差。

【精品课件】新教材一轮复习北师大版第10章第3讲变量间的相关关系、统计案例课件

【精品课件】新教材一轮复习北师大版第10章第3讲变量间的相关关系、统计案例课件

求得回归方程^y=0.67x+54.9.
零件数 x(个) 10 20 30 40 50
加工时间 y(min) 62
75 81 89
现发现表中有一个数据看不清,请你推断出该数据的值为__6_8__.
第十章 统计、统计案例
高考一轮总复习 • 数学(新高考)
[解析] 由-x =30,得-y =0.67×30+54.9=75. 设表中的“模糊数字”为 a, 则 62+a+75+81+89=75×5,∴a=68.
第十章 统计、统计案例
高考一轮总复习 • 数学(新高考)
返回导航
5.(2019·高考全国Ⅰ卷)某商场为提高服务质量,随机调查了 50 名 男顾客和 50 名女顾客,每位顾客对该商场的服务给出满意或不满意的评 价,得到下面列联表:
满意 不满意 男顾客 40 10 女顾客 30 20
第十章 统计、统计案例
高考一轮总复习 • 数学(新高考)
考点一
相关关系的判断——自主练透
(1)(2021·四 川 资 阳 模
拟)在一次对人体脂肪含量和年龄关
系的研究中,研究人员获得了一组样
本数据,并制作成如图所示的人体脂
肪含量与年龄关系的散点图.根据该
图,下列结论中正确的是 ( )
返回导航
第十章 统计、统计案例
高考一轮总复习 • 数学(新高考)
积相近的 200 个地块,从这些地块中用简单随机抽样的方法抽取 20 个作
为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中 xi 和 yi 分别表 示第 i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计
20
20
20
算得xi=60,yi=1 200,

第3讲 变量间的相关关系与统计案例

第3讲 变量间的相关关系与统计案例

K
2
a b a c c d b d
n ad bc
2
[审题视点] 第(2)问由a=40,b=30,c=160,d=270,代 入公式可求K2,由K2的值与6.635比较断定.第(3)问从抽样 方法说明.
6.独立性检验 (1)用变量的不同“值”表示个体所属的不同类别,这种变量 称为分类变量.例如:是否吸烟,宗教信仰,国籍等. (2)列出的两个分类变量的频数表,称为列联表. (3)一般地,假设有两个分类变量X和Y,它们的值域分别为 {x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为: 2×2列联表 y1 y2 总计 x1 a b a+b x2 总计 c a+c c+d b+d a+b+c+d d
解析 从散点图看,散点图的分布成团状,无任 何规律,所以两个变量不具有线性相关关系.
考向二
独立性检验
【例2】(2010·全国新课标)为调查某地区老年人是否需要志愿者 提供帮助,用简单随机抽样方法从该地区调查了500位老年人, 结果如下: 性别
是否需要志愿者 需要 不需要 男 女 40 160 30 270
从散点图上看,点散布在从左下角到右上角的区域内,对 于两个变量的这种相关关系,我们将它称为正相关;点散 布在从左上角到右下角的区域内,两个变量的这种相关关 系称为负相关. 2.线性相关 从散点图上看,如果这些点从整体上看大致分布在一条 直线附近,则称这两个变量之间具有线性相关关系,这 条直线叫回归直线.
5.线性回归模型 (1)y=bx+a+e中,a、b称为模型的未知参数;e称为随机误 差. (2)相关指数 用相关指数R2来刻画回归的效果,其计算公式是:
R2
y
n i 1 n i 1

变量间的相关关系-统计案例

变量间的相关关系-统计案例

高考数学知识点:变量间的相关关系-统计案例2016-04-22 15:15一、变量间的相关关系1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.典型例题1:某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:1.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.2.由回归方程进行预报,仅是一个预报值,而不是真实发生的值.3.使用K2统计量作2×2列联表的独立性检验时,要求表中的4个数据都要大于5,在选取样本容量时一定要注意.二、两个变量的线性相关1.从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.2.回归方程为3.求最小值而得到回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.4.相关系数,当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关.r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.典型例题2:1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.3.由相关系数r判断时|r|越趋近于1相关性越强.三、独立性检验典型例题3:。

第三节 变量间的相关关系、统计案例(数学建模八)

第三节 变量间的相关关系、统计案例(数学建模八)
3.已知变量x和y满足关系y=-0.1x+1,变量y与z正相关.下列结论中正确的 是 ( C ) A.x与y正相关,x与z负相关 B.x与y正相关,x与z正相关 C.x与y负相关,x与z负相关 D.x与y负相关,x与z正相关 答案 C 由y=-0.1x+1,知x与y负相关,即y随x的增大而减小,又y与z正 相关,所以z随y的增大而增大,所以z随x的增大而减小,即x与z负相关,故 选C.
A.①② B.②③ C.③④ D.①④
答案 D
^^ ^
^
^
解析 由回归直线方程 y = bx+ a,知当 b>0时,y与x正相关;当 b<0时,y与x负
相关,∴①④一定不正确.故选D.
考点突破 栏目索引
方法技巧 判定两个变量正、负相关性的方法 (1)画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从 左上角到右下角,两个变量负相关. (2)相关系数:r>0时,正相关:r<0时,负相关. (3)线性回归方程: b^ >0时,正相关: b^ <0时,负相关.
教材研读 栏目索引
(3)线性相关关系、回归直线 如果散点图中点的分布从整体上看大致在⑤ 一条直线附近 ,就称这 两个变量之间具有线性相关关系,这条直线叫做回归直线. (4)最小二乘法 求回归直线,使得样本数据的点到它的⑥ 距离的平方和最小 的方法 叫做最小二乘法.
教材研读 栏目索引
(5)回归方程
考点突破 栏目索引
(1)依据折线图计算相关系数r(精确到0.01),并据此判断是否可用线性回 归模型拟合y与x的关系.(若|r|>0.75,则线性相关程度很高,可用线性回归 模型拟合) (2)蔬菜大棚对光照要求较高,某光照控制仪商家为该基地提供了部分

高中数学新课标人教A版必修3:变量间的相关关系与统计案例 课件

高中数学新课标人教A版必修3:变量间的相关关系与统计案例 课件

3.通过对典型案例的探究,了
解独立性检验(只要求2×2列
联表)Байду номын сангаас基本思想、方法及初
步应用
核心素养
1.数据分析. 2.数学运算
目录
01 知 识 逐 点 夯 实 重点准 逐点清 结论要牢记
02 考 点 分 类 突 破 理解透 规律明 变化究其本
03 课 时 检 测
课前自修 课堂讲练
01
知识逐点夯实
重点准 逐点清 结论要牢记 课前自修
2.独立性检验
利用随机变量K2(也可表示为χ2)的观测值k=
nad-bc2 a+bc+da+cb+d
(其中n=a+b+c+d为样本容量)来判断
“两个变量有关系”的方法称为独立性检验.
[提醒] 独立性检验是对两个变量有关系的可信程度的判断, 而不是对其是否有关系的判断.
[逐点清]
3.(易错题)为调查中学生近视情况,测得某校男生150名中有80名
与吸烟有关”.故选C.
答案:C
[记结论·提速度] [记结论]
1.求解回归方程的关键是确定回归系数^a,^b,应充分利用回 归直线过样本中心点( x , y ).
2.根据K2的值可以判断两个分类变量有关的可信程度,若K2 越大,则两分类变量有关的把握越大.
3.根据回归方程计算的 ^y 值,仅是一个预报值,不是真实发 生的值.
=4.453,经查阅临界值表知P(K2≥3.841)≈0.05,现给出四个
结论,其中正确的是
()
A.在100个吸烟的人中约有95个人患肺病
B.若某人吸烟,那么他有95%的可能性患肺病
C.有95%的把握认为“患肺病与吸烟有关”
D.只有5%的把握认为“患肺病与吸烟有关”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲 变量间的相关关系与统计案例以选择题或填空题的形式考查回归分析及独立性检验中的基本思想方法及其简单应用. 【复习指导】高考在该部分的主要命题点就是回归分析和独立性检验的基础知识和简单应用.复习时要掌握好回归分析和独立性检验的基本思想、方法和基本公式.1.相关关系的分类从散点图上看,点散布在从左下角到右上角的区域内,对于两个变量的这种相关关系,我们将它称为正相关;点散布在从左上角到右下角的区域内,两个变量的这种相关关系称为负相关. 2.线性相关从散点图上看,如果这些点从整体上看大致分布在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫回归直线. 3.回归方程(1)最小二乘法:使得样本数据的点到回归直线的距离平方和最小的方法叫最小二乘法. (2)回归方程:两个具有线性相关关系的变量的一组数据: (x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归方程为y ^=b ^x +a ^,则()()()1122211nni i i ii i n ni i i i x x y y x y nx yb x x x nxa y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑其中,b 是回归方程的斜率,a 是在y 轴上的截距. 4.样本相关系数()()()()12211niii n niii i x x y y r x x y y ===--=--∑∑∑,用它来衡量两个变量间的线性相关关系.(1)当r >0时,表明两个变量正相关; (2)当r <0时,表明两个变量负相关;(3)r 的绝对值越接近1,表明两个变量的线性相关性越强;r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常当|r |>0.75时,认为两个变量有很强的线性相关关系. 5.线性回归模型(1)y =bx +a +e 中,a 、b 称为模型的未知参数;e 称为随机误差. (2)相关指数用相关指数R 2来刻画回归的效果,其计算公式是:()()22121ni i n ii y yR yy==-=-∑∑,R 2的值越大,说明残差平方和越小,也就是说模型的拟合效果越好.在线性回归模型中,R 2表示解释变量对预报变量变化的贡献率,R 2越接近于1,表示回归效果越好. 6.独立性检验(1)用变量的不同“值”表示个体所属的不同类别,这种变量称为分类变量.例如:是否吸烟,宗教信仰,国籍等.(2)列出的两个分类变量的频数表,称为列联表.(3)一般地,假设有两个分类变量X 和Y ,它们的值域分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为: 2×2列联表y 1 y 2 总计 x 1 a b a +b x 2 c d c +d 总计a +cb +da +b +c +d()()()()()22n ad bc K a b a c c d b d -=++++ (其中n =a +b +c +d 为样本容量),可利用独立性检验判断表来判断“x 与y 的关系”.这种利用随机变量K 2来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验. 两个规律(1)函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系. (2)当K 2≥3.841时,则有95%的把握说事A 与B 有关; 当K 2≥6.635时,则有99%的把握说事件A 与B 有关; 当K 2≤2.706时,则认为事件A 与B 无关. 三个注意(1)回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义.(2)线性回归方程中的截距和斜率都是通过样本数据估计而来的,存在误差,这种误差会导致预报结果的偏差;而且回归方程只适用于我们所研究的样本总体.(3)独立性检验的随机变量K 2=3.841是判断是否有关系的临界值,K 2≤3.841应判断为没有充分证据显示事件A 与B 有关系,而不能作为小于95%的量化值来判断.1.下面哪些变量是相关关系( ). A .出租车车费与行驶的里程 B .房屋面积与房屋价格 C .身高与体重D .铁块的大小与质量解析 A ,B ,D 都是函数关系,其中A 一般是分段函数,只有C 是相关关系. 答案 C2.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图(1);对变量u ,v 有观测数据(u i 、v i )(i =1,2,…,10),得散点图(2).由这两个散点图可以判断( ).A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关解析 由题图(1)可知,各点整体呈递减趋势,x 与y 负相关;由题图(2)可知,各点整体呈递增趋势,u 与v 正相关. 答案 C3.(2012·南昌模拟)某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( ). A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200D.y ^=10x -200解析 因为销量与价格负相关,由函数关系考虑为减函数,又因为x ,y 不能为负数,再排除C ,故选A. 答案 A4.(2012·枣庄模拟)下面是2×2列联表:y 1 y 2 合计 x 1a2173x2222547合计 b 46120则表中a,b的值分别为().A.94,72 B.52,50 C.52,74 D.74,52解析∵a+21=73,∴a=52,又a+22=b,∴b=74.答案 C5.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算K2的观测值k=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的(有关,无关).解析由观测值k=27.63与临界值比较,我们有99%的把握说打鼾与患心脏病有关.答案有关考向一相关关系的判断【例1】山东鲁洁棉业公司的科研人员在7块并排、形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg):施化肥量x 15202530354045棉花产量y 330345365405445450455(1)画出散点图;(2)判断是否具有相关关系.[审题视点] (1)用x轴表示化肥施用量,y轴表示棉花产量,逐一画点.(2)根据散点图,分析两个变量是否存在相关关系.解(1)散点图如图所示(2)由散点图知,各组数据对应点大致都在一条直线附近,所以施化肥量x与产量y具有线性相关关系.【反思与悟】利用散点图判断两个变量是否有相关关系是比较简便的方法.在散点图中如果所有的样本点都落在某一函数的曲线上,就用该函数来描述变量之间的关系.即变量之间具有函数关系.如果所有的样本点落在某一函数的曲线附近,变量之间就有相关关系;如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.【变式1-1】 根据两个变量x ,y 之间的观测数据画成散点图如图所示,这两个变量是否具有线性相关关系________(填“是”与“否”).解析 从散点图看,散点图的分布成团状,无任何规律,所以两个变量不具有线性相关关系. 答案 否考向二 独立性检验【例2】(2010·全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别是否需要志愿者男女需要 40 30 不需要160270(1)(2)能否有99%的把握认为该地区老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区老年人中,需要志愿者提供帮助的老年人的比例?说明理由. 附:P (K 2≥k ) 0.050 0.010 0.001 k3.8416.63510.828()()()()()2n ad bc K a b a c c d b d -=++++ [审题视点] 第(2)问由a =40,b =30,c =160,d =270,代入公式可求K 2,由K 2的值与6.635比较断定.第(3)问从抽样方法说明.解 (1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要志愿者提供帮助的老年人的比例的估计值为70500=14%.(2) ()2250040270301609.96770430200300K ⨯⨯-⨯=≈⨯⨯⨯.由于9.967>6.635,所以有99%的把握认为该地区老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层,采用分层抽样方法,这要比采用简单随机抽样方法更好. 【反思与悟】 独立性检验的步骤: (1)根据样本数据制成2×2列联表;(2)根据公式()()()()()22n ad bc K a b a c c d b d -=++++计算K 2的观测值;(3)比较K 2与临界值的大小关系作统计推断.【变式2-1】 某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表: 甲厂:分组 [29.86, 29.90) [29.90, 29.94) [29.94, 29.98) [29.98, 30.02) [30.02, 30.06) [30.06, 30.10) [30.10, 30.14) 频数 12638618292614分组 [29.86, 29.90) [29.90, 29.94) [29.94, 29.98) [29.98, 30.02) [30.02, 30.06) [30.06, 30.10) [30.10, 30.14) 频数297185159766218(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.甲 厂 乙 厂 合 计 优质品 非优质品 合 计附 ()()()()()2n ad bc K a b a c c d b d -=++++,P (K 2≥k ) 0.05 0.01 k3.8416.635解 (1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500×100%=72%;乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500×100%=64%.(2)甲 厂 乙 厂 合 计 优质品 360 320 680 非优质品 140 180 320 合 计5005001 000()2210003601801403207.35 6.635500500680320K ⨯⨯-⨯=≈>⨯⨯⨯所以有99%的把握认为“两个分厂生产的零件的质量有差异”.考向三 线性回归方程【例3】(2012·菏泽模拟)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.x 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)已知该厂技改前生产100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程.预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)[审题视点] (2)问利用公式求a ^、b ^,即可求出线性回归方程. (3)问将x =100代入回归直线方程即可. 解 (1)由题设所给数据,可得散点图如图所示.(2)由对照数据,计算得:∑i =14x 2i =86,x =3+4+5+64=4.5(吨),y =2.5+3+4+4.54=3.5(吨). 已知∑i =14x i y i =66.5, 所以,由最小二乘法确定的回归方程的系数为:4142221466.54 4.5 3.50.7864 4.543.50.7 4.50.35i i i i i x y x y b x x a y bx ==⎧-⎪-⨯⨯⎪====⎪-⨯⎨-⎪⎪=-=-⨯=⎪⎩∑∑ 因此,所求的线性回归方程为y ^=0.7x +0.35.(3)由(2)的回归方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为: 90-(0.7×100+0.35)=19.65(吨标准煤).【反思与悟】 在解决具体问题时,要先进行相关性检验,通过检验确认两个变量是否具有线性相关关系,若它们之间有线性相关关系,再求回归直线方程.【变式3-1】 (2011·江西)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高x /cm 174 176 176 176 178 儿子身高y /cm175175176177177则y 对x 的线性回归方程为( ). A .y =x -1 B .y =x +1 C .y =88+12xD .y =176解析 由题意得x =174+176+176+176+1785=176(cm),y =175+175+176+177+1775=176(cm),由于(x ,y )一定满足线性回归方程,经验证知选C.答案 C数据处理不当导致计算错误而失分【问题诊断】 由于大多数省市高考要求不准使用计算器,而线性回归问题和独立性检验问题仍是近几年新课标高考的常考点,并且大多是考查考生的计算能力,就计算方面常有不少考生因计算出错而失分.【防范措施】 平时训练时首先养成勤于动手的习惯,亲自动手计算,再者考场上要保持心态放松,做题时细心认真,最终可减少错误的发生.【示例】(2011·安徽)某地最近十年粮食需求量逐年上升,下表是部分统计数据:年份 2002 2004 2006 2008 2010 需求量(万吨)236246257276286(1)利用所给数据求年需求量与年份之间的回归直线方程y =bx +a ; (2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.解 (1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来配回归直线方程,为此对数据预处理如下:年份-2006 -4 -2 0 2 4 需求量-257-21-111929x =0,y =3.2,()()()()222242121121942942242606.5, 3.240b a y bx -⨯-+-⨯-+⨯+⨯=+++===-=由上述计算结果,知所求回归直线方程为y -257=b (x -2 006)+a =6.5(x -2 006)+3.2, 即y ^=6.5(x -2 006)+260.2.①(2)利用直线方程①,可预测2012年的粮食需求量为 6.5(2 012-2 006)+260.2=6.5×6+260.2=299.2(万吨).。

相关文档
最新文档