角平分线的性质练习题

合集下载

角的平分线的性质(含例题)

角的平分线的性质(含例题)

1.作已知角的平分线用尺规作已知角的平分线.已知:∠AOB,求作:∠AOB的平分线.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于__________的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC.射线OC即为所求.如图所示:★作图依据:构造△OMC≌△ONC(SSS).2.角的平分线的性质内容:角的平分线上的点到角的两边的距离__________.【提示】(1)这里的距离指的是点到角的两边垂线段的长;(2)该性质可以独立作为证明两条线段相等的依据,不需要再用全等三角形;(3)使用该结论的前提条件是图中有角平分线、有垂直;(4)运用角的平分线时常添加的辅助线:由角的平分线上的已知点向两边作垂线段,利用其相等来推导其他结论.3.证明几何命题的一般步骤一般情况下,我们要证明一个几何命题时,可以按照以下的步骤进行:(1)明确命题中的已知和求证;(2)根据题意,画出图形,并用符号表示已知和求证;(3)经过分析,找出由已知推出要证的结论的途径,写出证明过程.4.角的平分线的判定(1)内容:角的内部到角的两边的距离__________的点在角的平分线上.(2)角的平分线的判定的前提条件是指在角的内部的点到角两边的距离相等时,它才是在角的平分线上,角的外部的点不会在角的平分线上.K知识参考答案:1.(2)12MN 2.相等3.相等K—重点尺规作图作角的平分线,角的平分线的性质和判定K—难点证明几何命题的一般步骤K—易错角的平分线的判定一、角的平分线的性质遇到已知一个点在某个角的平分线上时,一般过该点向角的两边作垂线,运用角的平分线上的点到角两边的距离相等寻找线段的相等关系,有时可结合全等三角形建立未知线段与已知线段的关系,从而求出待求线段.【例1】如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3 cm,则点D到AB的距离DE是A.5 cm B.4 cmC.3 cm D.2 cm【答案】C【解析】如图,过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3 cm,∴DE=3 cm.故选C.【例2】如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是A.PA=PB B.PO平分∠AOBC.OA=OB D.AB垂直平分OP【答案】D二、角的平分线的判定1.当题目中出现角内的一点到角两边的距离相等时,可以考虑应用角的平分线的判定方法证明两个角相等.2.角的平分线的性质和判定恰好是条件和结论互换,即点在角平分线上的一点到角两边的距离相等.【例3】如图,PA=PB,∠1+∠2=180°.求证:OP平分∠AOB.三、角的平分线的性质的应用证明角平分线的方法:只需从要证的线上的某一点向角的两边作垂线段,再证明垂线段相等即可.这样把证“某线是角的平分线”的问题转化为证“垂线段相等”的问题,体现了转化思想.【例4】如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有A.1处B.2处C.3处D.4处【答案】D【解析】如图,A、B、C、D为三条直线组成的三角形内角和外角的角平分线的交点,由角平分线上的点到角两边距离相等可得在这四点处,货物中转站到三条公路距离相等.故选D.【例5】如图,两条笔直的公路l1、l2相交于点O,公路的旁边建三个加工厂A、B、D,已知AB=AD=5.2 km,CB=CD=5 km,村庄C到公路l1的距离为4 km,则C村到公路l2的距离是A.3 km B.4 km C.5 km D.5.2 km【答案】B。

角的平分线的性质同步练习含答案解析

角的平分线的性质同步练习含答案解析

角的平分线的性质同步练习含答案解析一、填空题1.如图,∠B=∠D=90゜,依照角平分线性质填空:(1)若∠1=∠2,则______=______.(2)若∠3=∠4,则______=______.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD=______.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于______.4.如图,AD是△ABC的角平分线,若AB=2AC.则S△ABD :S△ACD=______.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.258.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S=90,AB=18,BC=12,求DE的长.△ABC13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.《12.3 角的平分线的性质》参考答案与试题解析一、填空题1.如图,∠B=∠D=90゜,依照角平分线性质填空:(1)若∠1=∠2,则BC = DC .(2)若∠3=∠4,则AB = AD .【考点】角平分线的性质.【分析】(1)依照角平分线性质推出即可;(2)依照角平分线性质推出即可.【解答】解:(1)∵∠B=∠D=90°,∴AB⊥BC,AD⊥DC,∵∠1=∠2,∴BC=CD,故答案为:BC,DC.(2)∵AB⊥BC,AD⊥DC,∵∠3=∠4,∴AB=AD,故答案为:AB,AD.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边距离相等.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD= 45 .【考点】角平分线的性质.【分析】第一依照△ABD的面积运算出DE的长,再依照角平分线上的点到角两边的距离相等可得DE=DF,然后运算出DF的长,再利用三角形的面积公式运算出△BCD的面积即可.【解答】解:∵S△ABD=36,∴•AB•ED=36,×12×ED=36,解得:DE=6,∵BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,∴DE=DF,∴DF=6,∵BC=15,∴S△BCD=•CB•DF=×15×6=45,故答案为:45.【点评】此题要紧考查了角平分线的性质,关键是把握角平分线上的点到角两边的距离相等.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于2:3:4 .【考点】角平分线的性质;三角形的面积.【专题】常规题型.【分析】由角平分线的性质可得,点O到三角形三边的距离相等,即三个三角形的AB、BC、CA的高相等,利用面积公式即可求解.【解答】解:过点O 作OD ⊥AC 于D ,OE ⊥AB 于E ,OF ⊥BC 于F ,∵O 是三角形三条角平分线的交点,∴OD=OE=OF ,∵AB=20,BC=30,AC=40,∴S △ABO :S △BCO :S △CAO =2:3:4.故答案为:2:3:4.【点评】此题要紧考查角平分线的性质和三角形面积的求法,难度不大,作辅助线专门关键.4.如图,AD 是△ABC 的角平分线,若AB=2AC .则S △ABD :S △ACD = 2 .【考点】角平分线的性质.【分析】过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,依照角平分线性质得出DM=DN ,依照三角形面积公式求出即可.【解答】解:过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,∵AD 是△ABC 的角平分线,∴DM=DN ,∴S △ABD :S △ACD =(AB ×DN ):(AC ×DM )=AB :AC=2AC :AC=2,故答案为:2.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个【考点】角平分线的性质.【分析】直截了当依照角平分线的性质进行解答即可.【解答】解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选B.【点评】本题考查的是角平分线的性质,即角平分线上的点到角两边的距离相等.6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm【考点】角平分线的性质.【分析】依照角平分线的性质得出CD长,代入BC=BD+DC求出即可.【解答】解:∵∠ACB=90°,∴AC⊥BC,∵DE⊥AB,AD平分∠BAC,∴DE=DC=1.5cm,∵BD=3cm,∴BC=BD+DC=3cm+1.5cm=4.5cm,故选D.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.25【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,依照角平分线上的点到角的两边的距离相等可得DC=DE,然后求出BD的长,再依照BC=BD+DE代入数据进行运算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵点D到AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC交BC于D,∴DC=DE=6,∵BD:DC=3:2,∴BD=×3=9,∴BC=BD+DE=9+6=15.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.8.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定【考点】角平分线的性质.【分析】依照三角形的角平分线相交于一点,连接AO,则AO平分∠BAC,然后依照角平分线上的点到角的两边的距离相等解答.【解答】解:如图,连接AO,∵∠B、∠C的角平分线交于点0,∴AO平分∠BAC,∵OD⊥AB,OE⊥AC,∴OD=OE.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,依照三角形的角平分线相交于一点作辅助线并判定出AO平分∠BAC是解题的关键.三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)依照角平分线上的点到角的两边的距离相等证明即可;(2)利用“边角边”证明△BDE和△FDC全等,再依照全等三角形对应边相等证明即可.【解答】证明:(1)∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DE=DC;(2)在△BDE和△FDC中,,∴△BDE≌△FDC(SAS),∴BD=DF.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,是基础题,熟记性质是解题的关键.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】依照“SSS”可得到△ABC≌△ADC,则∠BCA=∠DCA,再利用角平分线的性质即可得到结论.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,∵PE⊥BC于E,PF⊥CD于F,∴PE=PF.【点评】本题考查了全等三角形的判定与性质:三边都对应相等的两三角形全等;全等三角形的对应边相等,对应角相等.角平分线的性质:角的平分线上的点到角的两边的距离相等.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】依照角平分线的性质以及已知条件证得△ABD≌△CBD(SAS),然后由全等三角形的对应角相等推知∠ADB=∠CDB;再由垂直的性质和全等三角形的判定定理AAS判定△PMD≌△PND,最后依照全等三角形的对应边相等推知PM=PN.【解答】证明:在△ABD和△CBD中,AB=BC(已知),∠ABD=∠CBD(角平分线的性质),BD=BD(公共边),∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB(全等三角形的对应角相等);∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°;又∵PD=PD(公共边),∴△PMD≌△PND(AAS),∴PM=PN(全等三角形的对应边相等).【点评】本题考查了角平分线的性质、全等三角形的判定与性质.由已知证明△ABD≌△CBD是解决的关键.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S=90,AB=18,BC=12,求DE的长.△ABC【考点】角平分线的性质.【分析】过点D作DF⊥BC于F,依照角平分线上的点到角的两边的距离相等可得DE=DF,然后依照三角形的面积列出方程求解即可.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,=AB•DE+BC•DF=90,∴S△ABC即×18•DE+×12•DE=90,解得DE=6.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,熟记性质并作出辅助线是解题的关键.13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.【考点】角平分线的性质;全等三角形的判定与性质.【分析】(1)依照角平分线性质得出OR=OQ=OP,依照勾股定理起床AR=AQ,CQ=CP,BR=BP,得出方程组,求出即可;(2)过O作OM⊥AC于肘,ON⊥AB于N,求出OM=ON,证出△FON≌△EOM即可.【解答】解:连接AO,OB,OC,∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,∴OR=OQ,OR=OP,∴由勾股定理得:AR2=OA2﹣OR2,AQ2=AO2﹣OQ2,∴AR=AQ,同理BR=BP,CQ=CP,即O在∠ACB角平分线上,设BP=BR=x,CP=CQ=y,AQ=AR=z,则x=3,y=5,z=4,∴BP=3,CQ=5,AR=4.(2)过O作OM⊥AC于M,ON⊥AB于N,∵O在∠A的平分线,∴OM=ON,∠ANO=∠AMO=90°,∵∠A=60°,∴∠NOM=120°,∵O在∠ACB、∠ABC的角平分线上,∴∠EBC+∠FCB=(∠ABC+∠ACB)=×(180°﹣∠A)=60°,∴∠FON=∠EOM,在△FON和△EOM中∴△FON≌△EOM,∴OE=OF.【点评】本题考查了角平分线性质和全等三角形的性质和判定的应用,注意:角平分线上的点到角两边的距离相等.。

角平分线的性质练习题

角平分线的性质练习题

角平分线的性质练习题一、选择题1. 在三角形ABC中,BD是角B的平分线,若AB=5,BC=7,AC=6,那么BD的长度为:A. 4B. 6C. 8D. 无法确定2. 如果角平分线将三角形分成两个面积相等的部分,那么这两个部分的底边分别是:A. 相等B. 不相等C. 一个底边是另一个的两倍D. 底边长度无法确定3. 在三角形ABC中,角A的平分线与BC相交于点D,若AD=4,AC=8,那么AB的长度可能是:A. 6B. 8C. 10D. 12二、填空题4. 在三角形ABC中,如果角A的平分线将BC分为BD和DC两段,BD=DC,那么三角形ABD与三角形ACD的面积之比为________。

5. 若角平分线定理告诉我们,在三角形ABC中,如果BD是角B的平分线,则AB:AC=______:______。

6. 在三角形ABC中,如果角A的平分线与BC相交于点D,且AD垂直于BC,那么角B和角C的度数之和为________。

三、简答题7. 描述角平分线定理的内容,并给出一个应用此定理的几何问题。

8. 解释为什么在三角形中,角平分线可以将对边分成的两段长度与相邻两边成比例。

四、计算题9. 在三角形ABC中,已知角A的平分线AD与BC相交于点D,且BD=3,DC=4,AB=6,求AC的长度。

10. 在三角形ABC中,角B的平分线BE与AC相交于点E,已知AE=4,EC=6,AB=5,求BC的长度。

五、证明题11. 证明:在三角形ABC中,如果BD是角B的平分线,那么AB/AC = BD/DC。

12. 证明:如果点D在三角形ABC的边BC上,且AD是角A的平分线,那么三角形ABD与三角形ACD的面积相等。

六、综合题13. 在三角形ABC中,已知角A的平分线AD与BC相交于点D,且AD=2,BD=3,DC=4,AB=5,求BC的长度,并证明你的结论。

14. 给定三角形ABC,其中角A的平分线AD与BC相交于点D,角B的平分线BE与AC相交于点E。

角平分线的性质和判定----专项练习

角平分线的性质和判定----专项练习

⊙ 学校: 班级: 姓名: 考号 ⊙⊙……………⊙……………装…⊙……………订……⊙………线………⊙……………装…⊙……………订……⊙………线…………⊙……………⊙角平分线的性质和判定专项练习八 年 级 数 学 组1、如图C 、D 是∠AOB 平分线上的点,CE⊥OA 于E ,CF⊥OB 于F . 求证:∠CDE=∠CDF.2、如图,BD 是∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M , PN ⊥CD 于N 。

求证:PM=PN 。

PN M DCBA3、如图,在△ABC 中,AD 平分∠BAC ,EF 是线段AD 的垂直平分线, 求证:∠CAF =∠ABDABCE F4、如图所示AD ⊥DC ,BC ⊥DC ,E 是DC 上一点,AE 平分∠DAB ,BE 平分∠ABC , 求证:AB=AD+BC。

5、如图,已知△ABC 中,BC =AC ,∠C =90°,∠A 的平分线交BC 于D , 求证:AC +CD =AB6、如图,在△ABC 中, AD 平分∠BAC ,∠C =90°,DE ⊥AB 于E ,BD =DF , 求证:CF =EBABC DEACBDABCDEF角 平 分 线 的 判 定1、如图,凹四边形ABOC 中,OB=OC, ∠B =∠C ,求证:AO 平分∠BAC.2、如图,在△ABC 中,∠C =90º,∠BAC= 2∠B ,DE ⊥AB 于E ,DE=DC .求证:AD=BD .3、如图BE ⊥AC 于E ,CF ⊥AB 于F ,BE,CF 相交于点D ,且CE=BF , 求证:点D 在∠BAC 的平分线上OCBAAB DCEBA4、如图,已知BF是∠DBC的平分线,CF是∠ECB的平分线,求证:点F在∠BAC的平分线上。

5、如图,OD平分∠AOB, OA=OB,点P在OD求证:PM=PN6、在∠AOB的两边O A,OB上分别取OM=ON,OD=求证:点C在∠AOB的平分线上.。

七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题

七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题

七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题(含答案解析)学校:___________姓名:___________班级:___________一、填空题1.如图,点C 在AOB ∠的平分线上,CD OA ⊥于点D ,且1CD =,如果E 是射线OB 上一点,那么CE 长度的最小值是______.2.如图,点P 在AOB ∠内,因为PM OA ⊥,PN OB ⊥,垂足分别是M 、N ,PM PN =,所以OP 平分AOB ∠,理由是______.3.如图,ABC 的三边AB ,BC ,CA 的长分别是10,15,20,其三条角平分线相交于点O ,连接OA ,OB ,OC ,将ABC 分成三个三角形,则::ABO BCO CAO S S S 等于__________.4.如图所示,点O 在一块直角三角板ABC 上(其中30ABC ∠=︒),OM AB ⊥于点M ,ON BC ⊥于点N ,若OM ON =,则ABO ∠=_________度.5.如图,BE、CF都是ABC的角平分线,且110∠=︒,则ABDC∠=___________.二、单选题6.如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个.就能使DOE≅FOE,你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE =∠OED D.∠ODE=∠OFE<,将ABC以点A为中心逆时针旋转得到ADE,点D在BC边上,DE交7.如图,在ABC∆中,AB AC∠=∠,其中所有正确结论的AC于点F.下列结论:∠AFE DFC△△;∠DA平分BDE∠;∠CDF BAD序号是()A.∠∠B.∠∠C.∠∠D.∠∠∠8.如图,三条公路两两相交,现计划在∠ABC中内部修建一个探照灯,要求探照灯的位置到这三条公路的距离都相等,则探照灯位置是∠ABC()的交点.A.三条角平分线B.三条中线C .三条高的交点D .三条垂直平分线9.如图,Rt∠ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,则CD 的长为( )A .2B .3C .4D .5三、解答题10.已知40AOB ∠=︒.(1)用直尺和圆规作出AOB ∠的平分线OD (不写作法,但保留作图痕迹,写出结论);(2)已知AOB ∠与BOC ∠互为补角,画出符合条件的所有可能的图形,并求出COD ∠的度数.11.如图,在由边长为1的小正方形组成的正方形网格中,一段圆弧经过网格的格点A 、B 、C .(1)请完成如下操作:∠以点O 为原点,竖直和水平方向所在的直线为坐标轴,小正方形的边长为单位长,建立平面直角坐标系; ∠用直尺和圆规画出该圆弧所在圆的圆心D 的位置,不写作法,保留作图痕迹,并连接AD 、CD .(2)请在(1)的基础上,解答下列问题:∠写出点的坐标:C ______、D ______;∠D 的半径为______(结果保留根号);∠若扇形DAC 是一个圆锥的侧面展开图,则该圆锥的底面积为______(结果保留π);∠若点E 的坐标为()7,0,试判断直线EC 与D 的位置关系,并说明理由.12.如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.13.如图,∠ABC 中,∠ACB =90°,AB =10,BC =6,若点P 从点A 出发,以每秒1个单位长度的速度沿折线A -C -B -A 运动,设运动时间为t 秒(t >0).(1)若点P 在AC 上,且满足P A =PB 时,求此时t 的值;(2)若点P 恰好在∠BAC 的平分线上,求t 的值.14.如图,在∠ABC 中,AD 是它的角平分线,且BD =CD ,DE ∠AB ,DF ∠AC ,垂足分别为E 、F ,求证:AB =AC参考答案:1.1【分析】过点C 作CE ∠OB 于点E ,根据角平分线的性质解答即可.【详解】解:过点C 作CE ∠OB 于点E ,∠点C 在∠AOB 的平分线上,CD ∠OA 于点D ,且CD =1,∠CE =CD =1,即CE 长度的最小值是1,故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.2.角的内部到角两边距离相等的点在角的角平分线上【分析】根据角平分线判定定理即可得到结果.【详解】解:∠PM∠OA ,PN∠OB ,PM=PN∠OP 平分∠AOB (在角的内部,到角的两边距离相等的点在这个角的平分线上)故答案为:角的内部到角两边距离相等的点在角的角平分线上.【点睛】本题考查角平分线判定定理,掌握角平分线判定定理的内容是解题的关键.3.2:3:4【分析】过点O 分别向三边作垂线段,通过角平分线的性质得到三条垂线段长度相等,再通过面积比等于底边长度之比得到答案.【详解】解:过点O 分别向BC 、BA 、AC 作垂线段交于D 、E 、F 三点.∠CO 、BO 、AO 分别平分、、ACB CBA BAC ∠∠∠∠OD OE OF == ∠12ABO SAB OE =,12△BCO S BC OD =,12△CAO S AC OF = ∠::::10:15:202:3:4ABO BCO CAO S S S AB BC AC ===故答案为:2:3:4【点睛】本题考查了角平分线的性质,往三角形的三边作垂线段并得到面积之比等于底之比是解题关键.4.15【分析】根据ON BC ⊥,OM AB ⊥,OM ON =判断OB 是ABC ∠的角平分线,即可求解.【详解】解:由题意,ON BC ⊥,OM AB ⊥,OM ON =,即点O 到BC 、AB 的距离相等,∠ OB 是ABC ∠的角平分线,∠ 30ABC ∠=︒, ∠1152ABO ABC ∠=∠=︒. 故答案为:15.【点睛】本题考查角平分线的定义及判定,熟练掌握“到一个角的两边距离相等的点在这个角的平分线上”是解题的关键.5.40°##40度【分析】根据三角形的内角和定理以及角平分线的定义,列出算式计算即可.【详解】解:∠BE 、CF 都是∠ABC 的角平分线,∠∠A =180°−(∠ABC +∠ACB ),=180°−2(∠DBC +∠BCD )∠∠BDC =180°−(∠DBC +∠BCD ),∠∠A =180°−2(180°−∠BDC )∠∠BDC =90°+12∠A ,∠∠A =2(110°−90°)=40°.【点睛】本题考查的是三角形内角和定理和角平分线的定义,用已知角表示出所求的角是解题的关键.6.D【分析】根据OB 平分∠AOC 得∠AOB =∠BOC ,又因为OE 是公共边,根据全等三角形的判断即可得出结果.【详解】解:∠OB 平分∠AOC∠∠AOB =∠BOC当∠DOE ∠∠FOE 时,可得以下结论:OD =OF ,DE =EF ,∠ODE =∠OFE ,∠OED =∠OEF .A 答案中OD 与OE 不是∠DOE ∠∠FOE 的对应边,A 不正确;B 答案中OE 与OF 不是∠DOE ∠∠FOE 的对应边,B 不正确;C 答案中,∠ODE 与∠OED 不是∠DOE ∠∠FOE 的对应角,C 不正确;D 答案中,若∠ODE =∠OFE ,在∠DOE 和∠FOE 中,DOE FOE OE OEODE OFE =⎧⎪=⎨⎪=⎩∠∠∠∠ ∠∠DOE ∠∠FOE (AAS )∠D 答案正确.故选:D .【点睛】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键.7.D【分析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.【详解】解:∠将ABC 以点A 为中心逆时针旋转得到ADE ,∠ADE ABC ≌,E C ∴∠=∠,AFE DFC ∠=∠,∴AFE DFC △△,故∠正确;ADE ABC ≌,AB AD ∴=,ABD ADB ∴∠=∠,ADE ABC ∠=∠,ADB ADE ∴∠=∠,∴DA 平分BDE ∠,故∠正确;ADE ABC ≌,BAC DAE ∴∠=∠,BAD CAE ∴∠=∠,AFE DFC△△,CAE CDF∴∠=∠,CDF BAD∠=∠∴,故∠正确故选D【点睛】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.8.A【分析】根据角平分线的性质即可得到探照灯的位置在角平分线的交点处,即可得到结论.【详解】解:∠探照灯的位置到这三条公路的距离都相等,∠探照灯位置是∠ABC的三条角平分线上,故选:A.【点睛】此题考查了角平分线的性质,数据角平分线的性质定理是解题的关键.9.B【分析】过点D作DE∠AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用∠ABD 的面积列式计算即可得解.【详解】解:如图,过点D作DE∠AB于E,∠∠C=90°,AD平分∠BAC,∠DE=CD,∠S△ABD=12AB•DE=12×10•DE=15,解得:DE=3,∠CD=3.故选:B.【点睛】本题考查了三角形的面积和角平分线的性质,能熟记角平分线上的点到角两边的距离相等是解此题的关键.10.(1)见解析(2)图见解析,60°或120°【分析】(1 )根据角平分线的定义作出图形即可;(2)分两种情形,分别画出图形求解即可.(1)解:如图,射线OD即为所求.(2)解:如图,∠BOC与∠AOB、∠BOC'与∠AOB都互为补角,∠∠AOB=40°,且OD平分∠AOB,∠∠BOC=140°,∠BOC'=140°,∠AOD=∠BOD=12∠AOB=20°,当射线OA在∠BOC的外侧时,∠COD=∠BOC+∠BOD=140°+20°=160°;当射线OA在∠BOC'内部时,∠C'OD=∠BOC'-∠BOD=140°-20°=120°.综上,∠COD的度数为60°或120°.【点睛】本题考查作图 复杂作图,角平分线的定义,补角的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.11.(1)答案见详解(2)∠62(,);20(,);∠∠54π;∠相切,理由见详解 【分析】(1)∠根据叙述,利用正方形的网格即可作出坐标轴;∠利用过三点的圆可得圆心为圆上任意两条弦的垂直平分线的交点,即可得到D .(2)∠利用(1)中所作的坐标系,即可表示出点的坐标;∠在Rt OAD 中,利用勾股定理即可求得半径长;∠理由直角三角形全等可证得∠ADC =90°,则可求得AC 的长度,AC 的长就是圆锥的底面圆的周长,在利用圆的周长公式即可求得答案;∠利用勾股定理逆定理证明DCE 为直角三角形即可证得DC CE ⊥,从而即可得出结论.(1)∠如图,建立平面直角坐标系;∠利用过三点的圆可得圆心为圆上任意两条弦的垂直平分线的交点,即可得到D ,如图所示:(2)∠根据平面直角坐标系可得C (6,2);D (2,0);故答案为:C (6,2);D (2,0);∠在Rt AOD △中,90AOD ∠=︒,4AO =,2OD =,AD =故答案为:∠由∠得AD =在Rt DCF △中,90DFC ∠=︒,4DF =,2CF =,DC ∴在Rt AOD △和Rt DFC 中,AD DC OA DF=⎧⎨=⎩, ()Rt AOD Rt DFC HL ≅,DAO CDF ∴∠=∠,90DAO ADO ∠+∠=︒,90CDF ADO ∴∠+∠=︒,18090ADC ADO CDF ∴∠=︒-∠-∠=︒,AC ∴==,由2r π=,解得r =2254S r πππ∴===⎝⎭, ∴该圆锥的底面积为54π, 故答案为:54π. ∠直线EC 与D 相切,由图可知,在Rt CEF 中,90CFE ∠=︒,1EF =,2CF =,22222125CE EF CF ∴=+=+=,又由∠得DC =2220DC ==,2220525DC CE +=+=,22525DE ==,222DC CE DE ∴+=,∴DCE 为直角三角形,90DCE ∠=︒,DC CE ∴⊥,∴直线EC 与D 相切.【点睛】本题考查了不共线的三点确定圆心的方法、直线与圆相切的判定、根据平面直角坐标系写出点的坐标、勾股定理和圆锥的侧面展开图的弧长即为圆锥的底面圆的周长,垂径定理,圆锥的计算,正确求出弧长是难点.12.见解析【分析】根据角平分线的性质得PD PE =,再用HL 证明OPD OPE ≌.【详解】证明:∠AOC BOC ∠=∠,∠OC 为AOB ∠的角平分线,又∠点P 在OC 上,PD OA ⊥,PE OB ⊥,∠PD PE =,90PDO PEO ∠=∠=︒,又∠PO PO =(公共边),∠()HL OPD OPE ≌.【点睛】本题考查角平分线的性质,全等三角形的判定,利用合适的条件证明三角形全等是本题的关键. 13.(1)254 (2)323【分析】(1)连接PB ,在Rt ∠ABC 中,根据勾股定理得AC =6,由于AP =PB =t ,则PC =8-t ,在Rt ∠PCB 中,根据勾股定理得222PC BC PB +=,进行计算即可得;(2)由题意得,PC =t -8 , PB =14-t ,过点P 作PE ∠AB ,由于AP 平分∠BAC ,且∠ACB =90°得PC =PE ,根据HL 得Rt ∠ACP ∠Rt ∠AEP ,即可得AC =AE =8, BE =2,在 Rt ∠PEB 中,根据勾股定理得222PE BE PB +=,进行计算即可得.(1)解:如图所示,连接PB ,∠在Rt ∠ABC 中,AB =10,BC =6,∠8AC =由于AP =PB =t ,则PC =8-t ,在Rt ∠PCB 中,根据勾股定理得:222PC BC PB +=222(8)6t t -+= 解得254t =, 即此时t 的值为254. (2)解:由题意得,PC =t -8 , PB =14-t ,如图所示,过点P 作PE ∠AB ,由于AP 平分∠BAC ,且∠ACB =90°,∠ PC =PE ,在Rt ∠ACP 与Rt ∠AEP 中,PC PE AP AP =⎧⎨=⎩∠Rt ∠ACP ∠Rt ∠AEP (HL ),∠AC =AE =8, BE =2,在 Rt ∠PEB 中,根据勾股定理得,222PE BE PB +=,222(8)2(14)t t -+=- 解得:323t =, ∠当点P 在∠BAC 的平分线上时,t 的值为323. 【点睛】本题考查了勾股定理,角平分线的性质,全等三角形的判定和性质,解题的关键是掌握这些知识点.14.证明见解析【分析】根据角平分线的性质得到DE=DF,证明Rt∠BDE≅Rt∠CDF(HL),根据全等三角形的性质得到结论.【详解】证明:∠AD是∠ABC的角平分线又∠DE∠AB于E,DF∠AC于F∠DE=DF,∠BED=∠CFD=90°又∠BD=CD∠Rt∠BED∠Rt∠CFD(HL)∠∠B=∠C∠AB=AC.【点睛】本题考查全等三角形的性质和判定,角平分线的性质,解题的关键是掌握这些性质定理进行证明.。

12.3 角的平分线的性质(基础训练)(解析版)

12.3 角的平分线的性质(基础训练)(解析版)

12.3 角的平分线的性质【基础训练】一、单选题1.如图,在ABC 中,90ACB ∠=︒,BE 平分ABC ∠,ED AB ⊥于D ,3DE cm =,那么CE 等于() A cmB .2 cmC .3 cmD .4 cm【答案】C【分析】根据角平分线到两边的距离相等得出DE =CE ,即可得出CE 的值.【详解】解:∵ED AB ⊥,90ACB ∠=︒,BE 平分∵ABC ,∵DE CE =,∵3DE cm =∵3CE cm =;故选:C .【点睛】此题考查了角平分线的性质,熟练掌握角平分线性质是解本题的关键.2.如图,点P 是∵AOB 平分线OC 上一点,PD ∵OB ,垂足为D ,若PD =2,则点P 到边OA 的距离是()A .1B .2CD .4【答案】B【分析】根据角平分线的性质直接可得.【详解】如图,过点P 作PG OA ⊥,垂足为点G ,根据角平分线上的点到角的两边距离相等可得,2PG PD ==. 故选B .【点睛】本题考查了角平分线的性质;掌握好有关角平分线的基础知识是关键.3.如图,已知在ABC 中,CD 是AB 边上的高线,BE 平分ABC ∠,交CD 于点,E P 是BC 上一动点,5CD =,则CE EP +的最小值是( )A .10B .7C .5D .4【答案】C【分析】 CE 的值固定,所以要求CE EP +的最小值,只要求出EP 的最小值即可,P 是BC 上一动点,过点E 作BC 的垂线,设垂足为F ,则垂线段EF 的长度即为EP 的最小值,再结合题意可得DE=EF ,故CE EP +的最小值即可求得.【详解】解:过点E 作EF∵BC ,垂足为F ,如图,∵P 是BC 上一动点,∵垂线段EF 的长度即为EP 的最小值,又∵CD 是AB 边上的高线,BE 平分ABC ∠,∵EF=DE,∵CE EP +的最小值为CE EF +=CE+DE=CD,∵5CD =,∵CE EP +的最小值为5.故选:C .【点睛】本题考查了点到直线的距离,角平分线的性质,解题的关键是作出点E 到直线BC 的距离.4.下列命题中是假命题的是( )A .全等三角形的对应角相等B .三角形的外角大于任何一个内角C .等边对等角D .角平分线上的点到角两边的距离相等【答案】B【分析】直接利用全等三角形的性质以及三角形的外角、角平分线的性质分别分析得出答案.【详解】解:A 、全等三角形的对应角相等,是真命题,不合题意;B 、三角形的外角大于任何一个与它不相邻的内角,钝角三角形钝角的外角比与它相邻的内角小,故原命题是假命题,符合题意;C 、等边对等角,是真命题,不合题意;D 、角平分线上的点到角两边的距离相等,是真命题,不合题意;故选:B .【点睛】本题主要考查全等三角形的性质,三角形的外角的性质,角平分线的性质,利用性质选出正确选项即可,属于基础问题.5.如图,已知BD AE ⊥于点B ,DC AF ⊥于点C ,且DB DC =,40BAC ︒∠=,130ADG ︒∠=,则CDG ∠的度数为( )A .30︒B .40︒C .50︒D .60︒【答案】D【分析】 先根据到角的两边距离相等的点在角的平分线上得到AD 是∵BAC 的平分线,求出∵CAD 的度数,再根据直角三角形的两锐角互余求出∵CDA 的度数,即可求解.【详解】解:∵BD∵AE 于B ,DC∵AF 于C ,且DB=DC ,∵AD 是∵BAC 的平分线,∵∵BAC=40°, ∵∵CAD=12∵BAC=20°, ∵∵CDA=90°-20°=70°,∵130ADG ︒∠=,∵∵CDG=∵ADG -∵CDA=130°-70°=60°.故选:D .【点睛】本题考查了角平分线的判定与直角三角形的两锐角互余的性质,仔细分析图形是解题的关键.6.如图,在ABC 中,90C ∠=︒,AD 是ABC 的角平分线,若3CD =,则点D 到AB 边的距离为( )A .3B .32C .2D .3【答案】A【分析】根据角平分线的性质即可知点D 到AB 边的距离等于CD 长,即可选择.【详解】∵AD 是BAC ∠的角平分线,∵点D 到AB 边的距离等于CD=3.故选:A .【点睛】本题考查角平分线的性质.熟知角平分线上的点到角两边的距离相等是解答本题的关键.7.如图,在ABC 中,90B ∠=︒,AD 平分BAC ∠,10BC =,6CD =,则点D 到AC 的距离为( )A .4B .6C .8D .10【答案】A【分析】 由D 在∵BAC 的平分线AD 上得,点D 到AC 的距离与点D 到AB 的距离BD 相等,因此求得BD 的长即可.【详解】解:∵BC=10,CD=6,∵BD=4.∵∵B=90°,AD 平分∵BAC .由角平分线的性质,得点D 到AC 的距离等于BD=4.故选:A .【点睛】本题主要考查角平分线的性质,由已知能够注意到D 到AC 的距离即为BD 长是解决问题的关键. 8.三角形中,到三边距离相等的点是( )A .三条高线的交点B .三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点【答案】C【分析】根据角平分线的性质:角平分线上的点到角两边的距离相等,即可得出结论.【详解】解:三角形中,到三边距离相等的点是三条角平分线的交点故选C.【点睛】此题考查的是角平分线的性质,掌握角平分线的性质是解题关键.9.如图所示,在∵ABC中,∵ACB=90°,BE平分∵ABC,DE∵AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm【答案】B【分析】直接利用角平分线的性质得出DE=EC,进而得出答案.【详解】解:∵∵ABC中,∵ACB=90°,BE平分∵ABC,DE∵AB于点D,∵EC=DE,∵AE+DE=AE+EC=3cm.故选:B.【点睛】此题主要考查了角平分线的性质,得出EC=DE是解题关键.10.如图,在∵ABC中,∵C=90°,AC=BC,D为BC上一点,且DE∵AB于E,若DE=CD,AB=8cm,则∵DEB的周长为()A .4cmB .8cmC .10cmD .14cm【答案】B【分析】 因为DE 和CD 相等,DE∵AB ,∵C=90°,所以AD 平分CAB ,可证得∵ACD∵∵AED ,得到AC=AE ,再根据∵BDE 为等腰直角三角形得出DE=BE ,从而可得∵DEB 的周长.【详解】解:∵∵C=90°,DE∵AB ,DE=CD ,∵∵C=∵AED=90°,∵CAD=∵EAD ,在Rt∵ACD 和Rt∵AED 中,=CD ED AD AD ⎧⎨=⎩, ∵∵ACD∵∵AED (HL ),∵AC=AE ,又∵∵AED=90°,∵B=45°,可得∵EDB 为等腰直角三角形,DE=EB=CD ,∵∵DEB 的周长=DE+ BE +DB=CD+DB+ BE=CB+ BE=AC+BE=AE+BE=AB=8,故选:B .【点睛】本题考查了角平分线的判定,全等三角形的判定与性质,熟记性质并求出∵BED 的周长=AB 是解题的关键. 11.角平分线的作法(尺规作图)∵以点O 为圆心,任意长为半径画弧,交OA 、OB 于C 、D 两点;∵分别以C 、D 为圆心,大于CD 长为半径画弧,两弧交于点P ;∵过点P 作射线OP ,射线OP 即为所求.角平分线的作法依据的是( )A .SSSB .SASC .AASD .ASA【答案】A【分析】根据角平分线的作法步骤,连接CP 、DP ,由作图可证∵OCP ∵∵ODP ,则∵COP =∵DOP ,而证明∵OCP ∵∵ODP 的条件就是作图的依据.【详解】解:如下图所示:连接CP 、DP在∵OCP 与∵ODP 中,由作图可知:OC ODCP DP OP OP=⎧⎪=⎨⎪=⎩∵∵OCP ∵∵ODP (SSS )故选:A .【点睛】本题考查了角平分线的求证过程,从角平分线的作法中寻找证明三角形全等的条件是解决本题的关键。

角平分线性质练习题

角平分线性质练习题

一、选择题1. 在三角形ABC中,AD是∠BAC的角平分线,若∠BAD = 30°,则∠CAD的度数是()A. 30°B. 60°C. 45°D. 90°A. BD=CDB. BD=BCC. AD=BDD. AD=CD3. 在三角形ABC中,AD是∠BAC的角平分线,若AB=6cm,AC=8cm,BD=4cm,则CD的长度是()A. 3cmB. 4cmC. 5cmD. 6cm二、填空题1. 在三角形ABC中,AD是∠BAC的角平分线,若∠B=50°,∠C=60°,则∠BAD=______°。

2. 在等边三角形ABC中,AD是∠BAC的角平分线,则∠ADB=______°。

3. 在三角形ABC中,AD是∠BAC的角平分线,若AB=5cm,AC=7cm,BD=3cm,则CD=______cm。

三、解答题1. 在三角形ABC中,AD是∠BAC的角平分线,已知∠B=40°,∠C=60°,求∠BAD和∠CAD的度数。

2. 在等腰三角形ABC中,AB=AC,AD是∠BAC的角平分线,已知BD=6cm,求AD的长度。

3. 在三角形ABC中,AD是∠BAC的角平分线,已知AB=8cm,AC=12cm,BD=5cm,求CD的长度。

4. 在三角形ABC中,AD是∠BAC的角平分线,已知∠B=30°,∠C=45°,求∠BAD和∠CAD的度数。

5. 在等边三角形ABC中,AD是∠BAC的角平分线,求∠ADB的度数。

四、判断题1. 在三角形ABC中,如果AD是∠BAC的角平分线,那么AB和AC的长度一定相等。

()2. 在三角形ABC中,AD是∠BAC的角平分线,若∠BAD = ∠CAD,则三角形ABC一定是等腰三角形。

()3. 在三角形ABC中,AD是∠BAC的角平分线,若BD=CD,则∠B=∠C。

角平分线性质练习题

角平分线性质练习题

角平分线性质练习题一、选择题1. 在三角形ABC中,角A的平分线交BC于点D,以下哪个说法是正确的?A. AD是角A的角平分线B. 角BAD等于角CADC. 角BAC等于角DACD. AD是BC的垂直平分线2. 如果在三角形ABC中,角A的平分线和边BC的垂直平分线重合,那么三角形ABC是什么三角形?A. 等腰三角形B. 等边三角形C. 直角三角形D. 不规则三角形3. 在三角形ABC中,角A的平分线交BC于点D,若角B等于角C,那么角BAD和角CAD的大小关系是什么?A. 相等B. 角BAD大于角CADC. 角BAD小于角CADD. 不能确定二、填空题4. 在三角形ABC中,若角A的平分线将角A平分为两个相等的角,那么角BAD等于______。

5. 如果角A的平分线AD交BC于点D,且BD等于DC,那么三角形ABC是一个______三角形。

6. 在三角形ABC中,角A的平分线交BC于点D,若角A等于60度,角B等于40度,则角ADC等于______度。

三、计算题7. 在三角形ABC中,已知角A的平分线AD交BC于点D,且BD等于3厘米,DC等于4厘米,求BC的长度。

8. 在三角形ABC中,角A的平分线AD交BC于点D,已知角A等于70度,角B等于50度,求角BAD的度数。

四、证明题9. 证明:在三角形ABC中,如果角A的平分线AD交BC于点D,那么角BAD等于角CAD。

10. 证明:如果三角形ABC中角A的平分线AD交BC于点D,并且AB 等于AC,那么三角形ABC是一个等腰三角形。

五、应用题11. 在三角形ABC中,已知角A的平分线AD交BC于点D,且角A等于60度,角B等于角C,求角B和角C的度数。

12. 在三角形ABC中,角A的平分线AD交BC于点D,已知BD等于2厘米,DC等于3厘米,且角A等于40度,求AD的长度。

六、开放性问题13. 如果在三角形ABC中,角A的平分线AD交BC于点D,且角A等于90度,讨论三角形ABC的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
C
A
E
B
角平分线(1)
课前预习
1. 已知:△ABC 中,∠B =90°, ∠A 、∠C 的平分线交于点O ,则∠AOC 的度数为 . 2.角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________.
3.∠AOB 的平分线上一点M ,M 到 OA 的距离为1.5 cm ,则M 到OB 的距离为_________. 4.如图,∠AOB =60°,CD ⊥OA 于D ,CE ⊥OB 于E ,且CD =CE ,则∠DOC =_________. 课堂练习
5.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,则BC =_____cm .
6.如图,CD 为Rt △ABC 斜边上的高,∠BAC 的平分线分别交CD 、CB 于点E 、F ,FG ⊥AB ,垂足为G ,则CF ______FG ,CE ________CF .
7.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为( )
A 、4㎝
B 、6㎝
C 、10㎝
D 、不能确定 课后作业
8.如图,已知OE 、OD 分别平分∠AOB 和∠BOC ,若∠AOB =90°,∠EOD =70°,求∠BOC 的度数.
9. 如图,已知△ABC 中,AB =AC ,D 是BC 的中点,求证:D 到AB 、AC 的距离相等.
D C
B
A
第4题
第5题
第6题
角平分线(2)
课前预习
8.三角形的三条角平分线相交于一点,并且这一点到________________相等.
9.点O 是△ABC 内一点,且点O 到三边的距离相等,∠A =60°,则∠BOC 的度数为_____________. 12.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( )
A 、PD =PE
B 、OD =OE
C 、∠DPO =∠EPO
D 、PD =OD 课堂练习
13.如图,直线l 1,l 2,l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )
A 、1处
B 、2处
C 、3处
D 、4处
2
1
D
A
P
O
E
B
l 2
l 1
l 3
第12题 第13题
15.如图,MP ⊥NP ,MQ 为△MNP 的角平分线,MT =MP ,连接TQ ,则下列结论中不正确的是( )
A 、TQ =PQ
B 、∠MQT =∠MQP
C 、∠QTN =90°
D 、∠NQT =∠MQT
N
T
Q
P
M
E
D
C
B A
E
D
C B
A
F
第15题 第16题 第17题
16.如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( )
A .2 cm
B .3 cm
C .4 cm
D .5 cm
17.如图,已知AB =AC ,AE =AF ,BE 与CF 交于点D ,则对于下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③D 在∠BAC 的平分线上.其中正确的是( )
A.①B.②C.①和②D.①②③
22.如图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若BD=CD.求证:AD平分∠BAC.
26.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,求证:AM平分∠DAB.。

相关文档
最新文档