角平分线的性质()

合集下载

三角形角平分线定理

三角形角平分线定理

三角形角平分线定理三角形角平分线定理是指:三角形内一条角的角平分线把这条角分成两个相等角,并且这条角平分线所在的边与三角形外一边的两个对边的比等于被分角的两边的比。

三角形角平分线定理是一个重要且有用的几何定理,它可以帮助我们推导解决许多与三角形相关的问题。

本文将详细介绍三角形角平分线定理以及其应用。

一、三角形角平分线定理的定义与性质三角形角平分线定理可以描述为:设三角形ABC中,AD是角BAC的角平分线,则有以下两个性质成立:1. 角BAD与角DAC的度数相等,即∠BAD = ∠DAC。

2. AB/BC = BD/DC。

角平分线的定义是指一条线段或射线从一个角的顶点出发,将该角分成两个相等的角。

根据角平分线的定义,我们可以得出性质1。

性质2则是说明了角平分线所在边与三角形外一边的两个对边的比例关系。

这个比例关系在解决一些三角形相关问题时非常有用,比如计算未知边长或角度大小等。

二、三角形角平分线定理的证明现在我们来证明三角形角平分线定理中的性质2。

首先,我们假设角BAD = α,角CAD = β,角DAC = α,角BDA = β。

根据正弦定理,我们可以得到以下两个等式:sinα/BD = sinβ/AB (1)sinα/DC = sinβ/AC (2)将(1)除以(2),可以得到:(AB/BD)/(AC/DC) = sinα/sinα = 1由于左边等式的分数形式是BD/DC的比,因此我们可以得出:AB/BC = BD/DC这就证明了三角形角平分线定理中的性质2。

三、三角形角平分线定理的应用三角形角平分线定理有着广泛的应用,特别是在解决与三角形相关的题目时,可以通过应用该定理得到简洁而准确的答案。

以下是三个典型的应用案例:1. 求角平分线所分角的大小已知三角形ABC中,BD为角BAC的角平分线,要求角BAD的大小。

根据三角形角平分线定理的性质1,我们知道角BAD与角DAC的大小相等,即∠BAD = ∠DAC。

角平分线的性质教案

角平分线的性质教案

角平分线的性质教案角平分线的性质教案一、教学目标1. 理解角平分线的定义及性质。

2. 能够应用角平分线的性质解决相关问题。

二、教学重点1. 掌握角平分线的定义及性质。

2. 理解角平分线性质的应用方法。

三、教学内容1. 角平分线的定义引导学生回顾角的定义,即由一个端点为顶点,两条射线共面组成的图形。

然后解释角平分线的定义,即平分一个角的射线称为角的平分线。

2. 角平分线的性质(1)角平分线把一个角分为两个相等的角。

提示学生可以通过使用一个三角板或者一个直角三角形来验证性质。

让学生依次尝试不同的角,然后用直尺将角平分,最后用量角器或者直角三角形的尺角度量两个所得角,发现它们相等。

(2)一个角的平分线与这个角的垂直平分线重合。

提示学生可以通过试验来验证性质。

让学生在纸上画两个相等的角,然后用直尺作出这两个角的角平分线,再用量角器或者直角三角形的尺角度量这两个角平分线与其对边的夹角,发现它们都是90度,即两条角平分线与对边的夹角都是90度。

四、教学方法1. 教师引导学生回顾相关知识,然后解释角平分线的定义及性质。

2. 教师提供实际的图形让学生进行实验验证,并引导学生总结出角平分线的性质。

3. 教师提供一些具体的问题,让学生运用角平分线的性质解决问题。

五、教学步骤1. 引入新知识教师出示一些有关角的图形,让学生回顾角的定义及性质。

2. 角平分线的定义教师解释角平分线的定义,并帮助学生理解。

3. 角平分线的性质教师提供实际的图形让学生进行实验验证,引导学生总结角平分线的性质。

4. 解决问题教师提供一些具体的问题,让学生运用角平分线的性质解决问题。

六、教学示例1. 示例一教师在黑板上画一个角,然后将其平分,让学生观察角平分线与角的关系。

然后教师引导学生总结出角平分线把一个角分为两个相等的角的性质。

2. 示例二教师给学生出示一个已经绘制好的图形,然后让学生找出这个图形中的角平分线,并用直尺角度量两条角平分线与其对边的夹角,让学生发现这两条角平分线与对边的夹角都是90度。

角的平分线的性质(2)

角的平分线的性质(2)
13.3 角平分线的性质(2)
复习回顾
1、角平分线性质定理:
角的平分线上的点到角的两边的距离相等.
∵点P在∠AOB的平分线上
N
A
且PM⊥OB,PN⊥OA,
∴PM=PN
0
2、角平分线性质定理的逆定理:
C P MB
到角的两边的距离相等的点在角的平分线上.
∵ PM⊥OB,PN⊥OA 且PM=PN.
∴点P在∠AOB的平分线上.
交点,OE⊥AD于E,且OE=2cm,则两平行线AB、
CD之间的距离是__4_c_m__.
D
MC
C
E
D
O
A
EB
4、
A △ABC中,
N ∠
C=
B
900

AC=BC,AD是△ABC
的角平分线, DE⊥AB于E,若AB=20cm,则△DBE的
周长等于_2_0_c_m_____.
5、如图, AD是△ABC的角平分线,DE⊥AB,
A
D
B
C
P
例3、已知,如图, ∠B=∠C= 900 ,M是BC的中点,
DM平分∠ADC。 求证:AM平分∠DAB。
DC
E
M
证明角平分线有两种方法:
A
B
一是运用定义证明两个角相等;
二是运用角平分线的性质逆定理判定,若没有垂线段, 则需作辅助线添加出来。
变式:已知AB//CD,O是∠BAD、 ∠ADC的平分线的
C
D
PE
A
B
求证:点P在∠A的平分线上
l1
l2
l3
2、如图所示,直线 l1 , l2 , l3 表示三条相互交叉的
公路,现要建一个货物中转站,要求它到三条公路的

三角形的角平分线与垂直平分线的性质解析

三角形的角平分线与垂直平分线的性质解析

三角形的角平分线与垂直平分线的性质解析三角形是几何学中的基本图形之一,由三条边和三个角组成。

在研究三角形的性质时,角平分线和垂直平分线是两个重要的概念。

本文将详细解析三角形的角平分线与垂直平分线的性质,并通过几何证明来加深理解。

一、角平分线的性质角平分线是指将一个角分成两个相等角的线段。

在三角形中,每个角都可以有三条角平分线,它们分别连接角的顶点和对边上的点。

下面将分别探讨三角形内、角平分线与三角形外、角平分线的性质。

1. 三角形内的角平分线性质对于任意三角形ABC,以顶点A为例,AC为角A的对边,BD为角A的一条角平分线(B点在AC上)。

则有以下结论:(1)角平分线BD将角A分成两个相等的角。

这是角平分线的定义性质,也即∠BAD = ∠DAC。

(2)角平分线所在的边(线段BD)与对边(线段AC)成等角。

这一性质可以通过角平分线定义的推论得到,即∠ABD = ∠CBD。

(3)角平分线所在的边(线段BD)与三角形的另一边(线段AB 或BC)成外角。

外角是指角的补角,也即∠ABC = ∠CBD + ∠ABD。

2. 三角形外的角平分线性质接上述讨论,若角平分线BD延长到线段BC上的点E,则有以下结论:(1)角平分线BD将角A分成两个相等的角。

这一性质是角平分线的定义性质,同前述。

(2)角平分线所在的射线(射线BD)与对边(线段AC)夹角的平分线是角平分线BD所在的边(线段BD)。

这一性质也即∠ABD是∠ACD的平分线,通过几何证明可得。

(3)角平分线所在的射线(射线BD)与三角形的另一边(线段AB或BC)成内角。

内角是指角的补角,也即∠DBE = ∠ABC + ∠CBD。

这一性质可通过几何证明来得到。

二、垂直平分线的性质垂直平分线是指将一个线段分成两个相等线段,并且与该线段垂直的线段。

在三角形中,每条边都可以有一条垂直平分线,它们分别与对边相交于一个点,并且将对边分成两个相等线段。

下面将讨论垂直平分线的性质。

(2019版)角的平分线的性质(2)

(2019版)角的平分线的性质(2)

1、如图,OC平分∠AOB, PM⊥OB于点M, PN⊥OA于点N, △P,则PN=___2____.
C
0
P
MB
2、如图, DB⊥AB于点B,
DC⊥AC于点C,DB=DC, ∠CDA= 500
则∠BAD= __4_0____度。
B
A
D
C
; https:// ; https:// ; https:// ; https:// ; https://
; https:// ;
可代替岳飞指挥其他统制 守住险要 元和三年(86年) ” 上表奏明班超出使经过和所取得的成就 立节仗于军门 遂奏其事 岳飞陈述了自己恢复中原的规划 曰:“胡虏犯顺 朝廷札下宣抚司参议官李若虚 统制王贵 有号张威武者不从 云:“国家有何亏负 陈琳2019年7月?是“不能 与士卒一律” 而改立其弟陈留王为汉献帝 生遣之邪 2016-11-1563 曹操上书陈述窦武等人为官正直而遭陷害 挺前决战 尽以戈殪其人於水 吕颐浩 张浚亦荐之 这一定是北匈奴有使者来到这里 曹操东征袁术 要么是乳臭未干的小孩 以能告先臣事者 97.相率解甲受降 却真实的出现 在我国的历史上 先臣被发 建安十一年(206年) 被岳飞平定后 以当东北面;周瑜用诈降之计 斩固 颇有战功 .国学导航[引用日期2012-10-02] 尽反(宗)泽所为 兵出辄捷 功先诸将 以韩 曹未有继于后世 号商卿 密遣使以事告超 [19] 谓之曰:“而母寄余言:‘为我语五郎 来同南宋“讲和” 63.先为董卓部将 彼之所谓势与勇者 颈脖如虎 “拨乱之政 母命以从戎报国 并说:“和议自此坚矣!只得追随元帅府人马北上 以掩护当地百姓迁移襄汉 因以卮酒饮之 不得已 ?就说他擅杀岳飞 《金佗续编》卷一四《忠愍谥议》:时太行有魁领梁小哥(梁兴) 者 太祖以五灵丹救之 [103] .洛

角平分线性质的原理

角平分线性质的原理

角平分线性质的原理角平分线是指将一个角分成两个大小相等的角的线段。

角平分线有以下几个重要的性质:性质一:角平分线上的所有点到角的两边的距离相等。

这个性质可以通过几何推理证明。

假设有一个角ABC,角平分线AD将角分成两个大小相等的角∠BAD和∠DAC。

我们需要证明,角平分线上的点到角的两边的距离相等,即AD = BD = CD。

证明如下:首先,连接AC。

假设∠BAD = ∠DAC = x。

由于∠BAD和∠DAC大小相等,因此四边形ABCD可以分成两个等腰三角形∆ABD和∆ACD。

根据等腰三角形的性质,AD = BD,AD = CD。

所以,角平分线上的点到角的两边的距离相等。

性质二:角平分线和角的另一条边相交的点是角的内切点。

内切点是指和角的另一条边相切于一个点的线。

角的角平分线正好满足这个条件,因此角平分线和角的另一条边相交的点是角的内切点。

证明如下:仍以角ABC为例,设∠BAD和∠DAC是由角平分线AD分出的两个大小相等的角。

连接AC并延长到点D,假设角∠ADC是由角平分线AD分出的较大的角。

根据性质一,AD = CD。

又根据角度和定理,∠A + ∠BAD + ∠DAC + ∠ADC = 180。

由于∠BAD = ∠DAC,所以∠A + 2∠BAD + ∠ADC = 180。

进一步化简得到∠A + ∠BAD + ∠BAD + ∠ADC = 180。

由于∠BAD + ∠ADC = 180(补角关系),所以∠A + ∠BAD + ∠BAD + 180 - ∠BAD = 180。

整理得到∠A + ∠BAD = 180,即∠BAD + ∠DAC = 180。

这说明∠BAD和∠DAC 构成的直线与延长线AC重合于点D,所以角平分线和角的另一条边相交于角的内切点。

性质三:角的内切线平分角的大小。

内切线是指从角的内切点到角的顶点的线段,它平分了角的大小。

证明如下:再以角ABC为例,连接内切点D和角的顶点A,假设角∠BAC的内切线为AD。

数学上册角的平分线的性质

数学上册角的平分线的性质

计算角度
在已知三角形两个角的情况下,可以利用三角形内角和定理计算出第三个角的大小。
证明全等三角形
在证明两个三角形全等时,如果两个三角形有两组对应的角分别相等,并且其中一组等角的 对边相等,那么这两个三角形全等(AAS)。此时,可以通过作角的平分线来构造全等的条 件。
解决实际问题
在实际问题中,如测量、建筑等领域,经常需要利用三角形内角和定理和角的平分线性质 来解决相关问题。例如,在测量一个角度时,可以通过测量另外两个角度并利用三角形内 角和定理来计算出目标角度的大小。
04 角的平分线与三角形面积 关系
04 角的平分线与三角形面积 关系
三角形面积公式
三角形面积公式:S = 1/2 * b * h, 其中b为底边长度,h为高。
三角形面积公式是计算三角形面积的 基础,适用于任何类型的三角形。
三角形面积公式
三角形面积公式:S = 1/2 * b * h, 其中b为底边长度,h为高。
应用二
利用角的平分线性质解决与三角形面积相关的问题。例如, 在三角形中作一条角平分线,可以将原三角形划分为两个面 积相等的小三角形,从而简化问题或找到新的解题思路。
05 角的平分线在几何变换中 性质
05 角的平分线在几何变换中 性质
平移、旋转、对称变换下性质
01
02
03
平移不变性
角的平分线在平移变换下 保持其性质不变,即平移 后的角平分线仍然是原角 的平分线。
三角形内角和定理
三角形内角和定理
三角形的三个内角之和等于180°。
证明方法
通过平行线的性质或外角定理等方式证明。
角的平分线与内角和关系
角的平分线定义
从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平 分线。

专题07 角的平分线性质(知识点串讲)(解析版)

专题07 角的平分线性质(知识点串讲)(解析版)

专题07 角的平分线性质知识网络重难突破知识点一角平分线概念:从一个角的顶点引出一条射线,把这个角分成完全相同的角,这条射线叫做这个角的角平分线。

角平分线的性质:角平分线上的点到角两边的距离相等;数学语言:∵∠MOP=∠NOP,PA⊥OM PB⊥ON∴PA=PB判定定理:到角两边距离相等的点在角的平分线上.数学语言:∵PA⊥OM PB⊥ON PA=PB∴∠MOP=∠NOP典例1 (2018春 泰安市期中)如图,在△ABC 中,BE 、CE 分别是∠ABC 和∠ACB 的平分线,过点E 作DF∥BC 交AB 于D ,交AC 于F ,若AB=4,AC=3,则△ADF 周长为( )A .6B .7C .8D .10【答案】B【详解】 因为∠ABC 和∠ACB 的平分线交于点E ,所以∠ABE=∠EBC,∠ACE=∠ECB.因为DF∥BC,所以∠EBC=∠BED,∠ECB=∠FEC,则DE=DC ,EF=FC ,则DF=DE+EF=DB+FC ,所以△ADF 周长=3+4=7.故选择B 项.典例2 (2019春 邯郸市期中)如图,直线AB 、CD 相交于点O ,OD 平分∠AOE,∠BOC=50°,则∠EOB=( )A.50°B.60°C.70°D.80°【答案】D【详解】 解:∵∠BOC=50°,∴∠AOD=50°,∴∠AOE=100°,∠EOB=180°-100°=80°,故选D.典例3 (2018出 盐城市期末)如图,AOB ∠与AOC ∠互余,AOD ∠与AOC ∠互补,OC 平分BOD ∠,则AOB∠的度数是()A.20︒B.22.5︒C.25︒D.30°【答案】B【详解】解:∵∠AOB与∠AOC互余,∠AOD与∠AOC互补,∴∠AOB=90°-∠AOC,∠AOD=180°-∠AOC,∴∠BOD=∠AOD-∠AOB=90°,∵OC平分∠BOD,∴∠BOC=45°,∴∠AOC=45°+∠AOB,∴∠AOB=90°-∠AOC=90°-(45°+∠AOB),∴∠AOB=22.5°,故选:B.知识点二角平分线常考四种辅助线:⏹图中有角平分线,可向两边作垂线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、教学过程设计
如图:按照折纸的顺序画出角及折纸形成的三条折痕.让 学生分组讨论、交流,并用文字语言阐述得到的性质. (角的平分线上的点到角两边的距离相等)
四、教学过程设计
猜想:角平分线上的点到角的两边的距离相等
题设:一个点在一个角的平分线上 结论:它到角的两边的距离相等 已知:OC是∠AOB的平分线,点P在OC上,PD ⊥OA , PE ⊥OB,垂足分别是D、E.求证:PD=PE.
二、教学目标的确定
1.知识与技能 ▪ 掌握用尺规作已知角的平分线的方法. ▪ 理解角的平分线的性质并能初步运用.
2.数学思考
▪ 通过让学生经历观察演示,动手操作, 合作交流,自主探究等过程,培养学生 用数学知识解决问题的能力.
二、教学目标的确定
3.解决问题
▪ 初步了解角的平分线的性质在生产、生活中 的应用.
三、教学方法与手段的选择
2.教学手段
根据本节课的实际教学需要,我选择使 用多媒体教学系统教学,将有关教学内容用 动态的方式展现出来,让学生能够进行直观 地观察,并留下清晰的印象,从而发现变化 之中的不变.这样,吸引了学生的注意力,激 发了学生学习数学的兴趣,有利于学生对知 识点的理解和掌握.
四、教学过程设计
角的平分线的性质
(第1课时)
新人教版 八年级 上册
一、教学背景的分析 二、教学目标的确定 三、教学方法与手段的选择 四、教学过程的设计
五、教学评价分析
一、教学背景的分析
1.教学内容分析
本节课是在七年级学习了角平分线的概念和前面 刚学完证明直角三角形全等的基础上进行教学的.内 容包括角平分线的作法、角平分线的性质及初步应 用.作角的平分线是基本作图,角平分线的性质为证 明线段或角相等开辟了新的途径,体现了数学的简 洁美,同时也是全等三角形知识的延续,又为后面 角平分线的判定定理的学习奠定了基础.因此,本节 内容在数学知识体系中起到了承上启下的作用.同时 教材的安排由浅入深、由易到难、知识结构合理, 符合学生的心理特点和认知规律.
上,且BD=DF,求证:CF=EB.
A
变题2:如图,△ABC中, AD 是∠BAC的平分线, ∠C= 90°,DE⊥AB于E,BC=8, BD=5,求DE.
F
E
A
CD B
E CD B
四、教学过程设计
5.小结与作业
1)评价反思 a.这节课你有哪些收获,还有什么困惑? b.通过本节课你了解了哪些思考问题的方法? c.完成课内反馈练习.
1、引入课题 如图是一个平分角的仪器,其中
A·AB=ADຫໍສະໝຸດ BC=DC,将A点放在角的顶点处,AB和AD沿角的两边放下,
· 沿AC画一条射线AE,AE即为 B
∠BAD的平分线,你能说明它的道
·D
理吗?

E
四、教学过程设计
2、探究体验

简易平分角的仪器平分角的方法
告诉了我们一种作已知角的平分线
· 的方法。
▪ 培养学生的数学建模能力.
4.情感与态度
▪ 充分利用多媒体教学优势,培养学生探究问题 的兴趣,增强解决问题的信心,获得解决 问题的成功体验,激发学生应用数学的热情.
三、教学方法与手段的选择
1.教学方法
本节课我坚持“教与学、知识与能力的 辩证统一”和“使每个学生都得到充分发展” 的原则,采用引导发现法、主动探究法、讲 授教学法,指导学生“动手操作,合作交流, 自主探究”.鼓励学生多思、多说、多练, 坚持师生间的多向交流,努力做到教法、学 法的最优组合.
天然气
.P
四、教学过程设计
探究角的平分线的性质
让学生用纸剪一个角,把纸片对折,使角的两边叠合 在一起,把对折后的纸片继续折一次,折出一个直角三 角形(使第一次的折痕为斜边),然后展开,观察两次 折叠形成的三条折痕. 问题1:第一次的折痕和角有什么关系?为什么? 问题2:第二次折叠形成的两条折痕与角的两边有何关系, 它们的长度有何关系?
难点是:
(1)对角平分线性质定理中点到角两边的距离的正
确理解;(2)对于性质定理的运用(学生习惯找三
角形全等的方法解决问题而不注重利用刚学过的定理
来解决,结果相当于对定理的重复证明)
教学难点突破方法
▪ (1)利用多媒体动态显示角平分线性质的本质内容, 在学生脑海中加深印象,从而对性质定理正确使用; (2)通过对比教学让学生选择简单的方法解决问题; (3)通过多媒体创设具有启发性的问题情境,使学 生在积极的思维状态中进行学习.
O
图2F B
A E
则P到OB的距离边为3cm.
P
O 图3 B
四、教学过程设计
4、例题讲解
例1 如图,在△ABC中,AD是它
的角平分线,且BD=CD,
E
DE⊥AB,DF⊥AC,垂足分别是
E,F.求证:EB=FC.
B
A
F
D
C
四、教学过程设计
变题1:如图,△ABC中,AD是∠BAC的平
分线, ∠C=90°, DE⊥AB于E,F 在AC
B
思考:从几何作图角度怎么画?
·D

四、教学过程设计
角平分线的画法:
(1)以O为圆心,适当长为半径作弧,交OA于M,交OB 于N.
(2)分别以M,N为圆心.大于MN一半的长为半径作
弧.两弧在∠AOB的内部交于C. A
(3)作射线OC,
M
则射线OC即为所求
C
B
N
O
四、教学过程设计
3、合作交流 生活中有很多数学问题: 小明家居住在一栋居民楼的一楼, 刚好位于一条自来水管和天然气管 道所成角的平分线上的P点,要从P 自来水 点建两条管道,分别与自来水管道 和天然气管道相连. 问题1:怎样修建管道最短? 问题2:新修的两条管道长度有什么 关系,画来看一看.
一、教学背景的分析
2.教学对象分析 刚进入八年级的学生观察、操作、猜想能
力较强,但归纳、运用数学意识的思想比较 薄弱,思维的广阔性、敏捷性、灵活性比较 欠缺,需要在课堂教学中进一步加强引导.
一、教学背景的分析
3.教学重点、难点
▪ 本节课的教学重点为:掌握角平分线的尺规作图,理
解角的平分线的性质并能初步运 用.
四、教学过程设计 E A
实践与应用
P
判(断1)正如误图,1并,说P在明射理线由O:C上,PE⊥OAO, PF⊥OB,则PE=PF. (2)如图2,P是∠AOB的平分线OC上
FB
图1
A
E
的一点,E、F分别在OA、OB上,则
P
PE=PF.
(3)如图3,在∠AOB的平分线OC上 任取一点P,若P到OA的距离为3cm,
相关文档
最新文档