贴片三极管几种放大电路的基本特性

合集下载

贴片三极管引脚_三极管的识别分类及测量

贴片三极管引脚_三极管的识别分类及测量

贴片三极管引脚三极管的识别分类及测量符号:“Q、VT”三极管有三个电极,即b、c、e,其中c为集电极(输入极)、b为基极(控制极)、e为发射极(输出极)三极管实物图:贴片三极管功率三极管普通三极管金属壳三极管二、三级管的分类:按极性划分为两种:一种是NPN型三极管,是目前最常用的一种,另一种是PNP型三极管。

按材料分为两种:一种是硅三极管,目前是最常用的一种,另一种是锗三极管,以前这种三极管用的多。

三极按工作频率划分为两种:一种是低频三极管,主要用于工作频率比较低的地方;另一种是高频三极管,主要用于工作频率比较高的地方。

按功率分为三种:一种是小功率三极管,它的输出功率小些;一种是中功率三极管,它的输出功率大些;另一种是大功率三极管,它的输出功率可以很大,主要用于大功率输出场合。

按用途分为:放大管和开关管。

三、三极管的组成:三极管由三块半导体构成,对于NPN型三极管由两块N型和一块P型半导体构成,如图A所示,P型半导体在中间,两块N型半导体在两侧,各半导体所引出的电极见图中所示。

在P型和N型半导体的交界面形成两个PN结,在基极与集电极之间的PN结称为集电结,在基极与发射极之间的PN结称为发射结。

图B是PNP型三极管结构示意图,它用两块P型半导体和一块N型半导体构成。

AB四、三极管在电路中的工作状态:三极管有三种工作状态:截止状态、放大状态、饱和状态。

当三极管用于不同目的时,它的工作状态是不同的。

1、截止状态:当三极管的工作电流为零或很小时,即IB=0时,IC和IE也为零或很小,三极管处于截止状态。

2、放大状态:在放大状态下,IC=βIB,其中β(放大倍数)的大小是基本不变的(放大区的特征)。

有一个基极电流就有一个与之相对应的集电极电流。

3、饮和状态:在饮和状态下,当基极电流增大时,集电极电流不再增大许多,当基极电流进一步增大时,集电极电流几乎不再增大。

工作状态定义电流特征解流截止状态集电极与发射极之间电阻很大IB=0或很小,IC或IE为零或很小因为IC=βIB利用电流为零或很小特征,可以判断三极管已处于截止状态放大状态集电极与发射极之间内阻受基极电流大小控制,基极电流大,其内阻小IC=βIBIE=(1+β)IB有一个基极电流就有一个对应的集电极电流和发射极电流,基极电流能有效地控制集电极电流和发射极电流饱和状态集电极与发射之间内阻很小各电极电流均很大,基极电流已无法控制集电极电流和发射极电流电流放大倍数β已很小,甚至小于1(用直流电控制信号的一种方式)五、三极管的作用:放大、调制、谐振、开关1、电流放大:三极管是一个电流控制器件,它用基极电流IB来控制集电极电流IC和发射极电流IE,没有IB就没有IC和IE,只要有一个很小的IB,就有一个很大的IC。

三极管主要特性-电流放大和控制特性

三极管主要特性-电流放大和控制特性

三极管主要特性-电流放大和控制特性分析三极管电路工作原理,需要掌握三极管的重要特性,这样才能轻松自如的分析三极管电路三极管式一个电流控制器件,它用基极电流来控制集电极电流和发射极电流,没有基极电流就没有及电机电流和发射极电流。

1、三极管电流放大特性只要有一个很小的基极电流,三极管就会有一个很大的集电极电流和发射极电流,这是由三极管特性所决定的,不同的三极管有不同的电流放大倍数,所以不同三极管对基极电流的放大能力是不同的。

基极电流是信号输入电流,集电极电流和发射极电流是信号输出电流,信号输出电流远大于信号输入电流,说明三极管能够对输入电流进行放大。

在各种放大器电路中,就是用三极管的这一特性来放大信号的。

三极管在正常工作时,它的基极电流、集电极电流和发射极电流同时存在,同时消失。

2、三极管基极电流控制集电极电流特性当三极管在放大状态时,三极管集电极电流和发射极电流由直流电源提供,三极管本身并不能放大电流,只是用基极电流去控制由直流电源为集电极和发射极提供的电流,这样等效理解成三极管放大了基极输入电流。

下图所示电路可以说明三极管基极电流控制集电极电流的过程。

电路中的R2为三级管VT1集电极提供电流通路,流过VT1集电极的电流回路是:直流工作电压+V-集电极电阻R2-VT1集电极-VT1发射极-地线。

构成回路。

集电极电流由直流工作电压+V提供,但是集电极电流的大小受基极电流的控制,基极电流大则集电极电流大,基极电流小,则集电极电流小。

所以基极电流只是控制了直流电源+V为VT1集电极所提供电流的大小。

综上所述,三极管能将直流电源的电流按照基极输入电流的要求转换成集电极电流和发射极电流,从这个角度说明三极管是一个电流转换器件。

所谓电流放大,就是将直流电源的电流,按照基极输入电流的变化规律转换成集电极电流和发射极电流。

晶体三极管及其基本放大电路

晶体三极管及其基本放大电路

22
2.4、三极管的主要参数
• 1、电流放大系数 • i)共射极电流放大系数
直流电流放大系数 IC
IB
交流电流放大系 数 Vic
Vib
h( fe 高频)
一般工作电流不十分大的情况下,可认为
Ma Liming
Electronic Technique
23
ii)共基极电流放大系数
共基极直流电流放大系数
3
6
9
IB=0 12 vCE(V)
区时, 有:VB>VC Rb
+

UBB
Ma Liming
+ 对于PNP型三极管,工作在饱和区 UCC 时, 有:VB<VC<VE

Electronic Technique
13
例:如图,已知三极管工作在放大状态, 求:1).是NPN结构还是PNP结构?
Ma Liming
Electronic Technique
20
方法二:用万用表的 hFE档检测 值
1. 拨到 hFE挡。
2.将被测晶体管的三个引脚分别插入相应的插孔 中(TO-3封装的大功率管,可将其3个电极接 出3根引线,再插入插孔),三个引脚反过来 再插一次,读数大的为正确的引脚。
3.从表头或显示屏读出该管的电流放大系数。
N
b
c PV
Rb
eN
+

UBB
Ma Liming
+
UCC 对于PNP型三极管,工作在放大区 - 时, 有:VC<VB<VE
Electronic Technique
10
iC(mA ) 4 3
2 1

三极管特性

三极管特性

三极管特性
三极管是一种可以在电力技术中被广泛应用的一种半导体器件,它具有很强的控制和放大能力,因此在电路中有着重要的应用。

本文主要介绍三极管的特性及其电路运用。

一、三极管特性
1.三极管主要由三个极份构成,即正极(P)、负极(N)和控制极(C)。

正极和负极之间构成PN结,它的特性是具有一个可控的双极性,具
有一个控制尖峰,被称为控制极。

2.PN结在通电时,将会发生电流传导,当控制极连接地线时,
由于电场的作用,将产生放大的效果,从而影响PN结的电流传导。

3.三极管有npn和pnp两种类型,当控制极与正极相连时,为npn类型,当控制极与负极相连时,为pnp类型。

4.三极管具有较强的放大能力,可以放大信号,并能控制和调节信号的大小。

二、三极管的电路运用
1.电源放大器:三极管可以用来当作电源放大器,可以放大电源的电压,从而改变电源的电压等级,实现电源放大。

2.稳压器:三极管还可以作为一种稳压器,可以用来调整电路内的电压大小,以便电路在较低稳定电压下工作,使其能够稳定地运行。

3.电流放大器:三极管还可以用作电流放大器,可以把小电流放大为大电流,从而满足电路工作要求。

4.衰减器:三极管还可以用作衰减器,可以使电路的输出信号大
小衰减,从而满足工作要求。

三、总结
三极管是一种常用的半导体器件,它具有强大的控制和放大能力,因此在电路中可以实现电源放大、稳压、电流放大和衰减器等功能。

因此,三极管在电技术中有着广泛的应用。

(整理)贴片三极管引脚三极管的识别分类及测量

(整理)贴片三极管引脚三极管的识别分类及测量

贴片三极管引脚三极管的识别分类及测量符号:“Q、VT”三极管有三个电极,即b、c、e,其中c为集电极(输入极)、b为基极(控制极)、e为发射极(输出极)三极管实物图:贴片三极管功率三极管普通三极管金属壳三极管二、三级管的分类:按极性划分为两种:一种是NPN型三极管,是目前最常用的一种,另一种是PNP型三极管。

按材料分为两种:一种是硅三极管,目前是最常用的一种,另一种是锗三极管,以前这种三极管用的多。

三极按工作频率划分为两种:一种是低频三极管,主要用于工作频率比较低的地方;另一种是高频三极管,主要用于工作频率比较高的地方。

按功率分为三种:一种是小功率三极管,它的输出功率小些;一种是中功率三极管,它的输出功率大些;另一种是大功率三极管,它的输出功率可以很大,主要用于大功率输出场合。

按用途分为:放大管和开关管。

三、三极管的组成:三极管由三块半导体构成,对于NPN型三极管由两块N型和一块P型半导体构成,如图A所示,P型半导体在中间,两块N型半导体在两侧,各半导体所引出的电极见图中所示。

在P型和N型半导体的交界面形成两个PN结,在基极与集电极之间的PN结称为集电结,在基极与发射极之间的PN结称为发射结。

图B是PNP型三极管结构示意图,它用两块P型半导体和一块N型半导体构成。

AB四、三极管在电路中的工作状态:三极管有三种工作状态:截止状态、放大状态、饱和状态。

当三极管用于不同目的时,它的工作状态是不同的。

1、截止状态:当三极管的工作电流为零或很小时,即IB=0时,IC和IE也为零或很小,三极管处于截止状态。

2、放大状态:在放大状态下,IC=βIB,其中β(放大倍数)的大小是基本不变的(放大区的特征)。

有一个基极电流就有一个与之相对应的集电极电流。

3、饮和状态:在饮和状态下,当基极电流增大时,集电极电流不再增大许多,当基极电流进一步增大时,集电极电流几乎不再增大。

工作状态定义电流特征解流截止状态集电极与发射极之间电阻很大IB=0或很小,IC或IE为零或很小因为IC=βIB利用电流为零或很小特征,可以判断三极管已处于截止状态放大状态集电极与发射极之间内阻受基极电流大小控制,基极电流大,其内阻小IC=βIBIE=(1+β)IB有一个基极电流就有一个对应的集电极电流和发射极电流,基极电流能有效地控制集电极电流和发射极电流饱和状态集电极与发射之间内阻很小各电极电流均很大,基极电流已无法控制集电极电流和发射极电流电流放大倍数β已很小,甚至小于1(用直流电控制信号的一种方式)五、三极管的作用:放大、调制、谐振、开关1、电流放大:三极管是一个电流控制器件,它用基极电流IB来控制集电极电流IC和发射极电流IE,没有IB就没有IC和IE,只要有一个很小的IB,就有一个很大的IC。

贴片三极管bcp56最大电流_概述说明以及解释

贴片三极管bcp56最大电流_概述说明以及解释

贴片三极管bcp56最大电流概述说明以及解释1. 引言1.1 概述贴片三极管BCP56是一种常用的电子元件,它具有广泛的应用领域。

在实际应用中,BCP56的最大电流是一个重要参数,它决定了三极管能够承受的最大电流值。

本文旨在对BCP56的最大电流进行全面的概述和解释,并探讨其与其他参数之间的关系。

1.2 文章结构本文将按照以下结构进行论述:首先介绍贴片三极管BCP56的基本特性,包括其构造、材料以及工作原理;接着重点阐述最大电流对BCP56的影响和重要性,包括最大电流参数说明、正确选择最大电流值以及最大电流对性能的影响和限制;随后分析BCP56最大电流与其他参数之间的关系,并给出相应实验结果解释;最后总结研究结果并展望贴片三极管BCP56最大电流在未来的应用前景。

1.3 目的通过本文对贴片三极管BCP56最大电流进行概述说明和解释,我们旨在提供读者对该参数重要性和应用价值的充分认识,并帮助读者正确选择适合的最大电流值。

同时,通过分析BCP56最大电流与其他参数之间的关系,我们希望为进一步研究和应用贴片三极管BCP56提供参考和启示。

注意:以上内容为普通文本格式,请根据需要进行排版和格式调整。

2. 贴片三极管BCP56的基本特性:2.1 构造和材料:贴片三极管BCP56是一种由半导体材料构成的电子元件。

它通常由硅制成,具有三个电极:发射极、基极和集电极。

这些电极之间通过不同材料的层层堆叠和掺杂而形成。

2.2 工作原理:BCP56贴片三极管通过控制基极的信号,调节发射区的电流,从而实现放大和开关功能。

当正向偏置应用到基极时,使得发射结与基结反偏以打开了PNP型晶体管,电流可以从集电结流入拍平的绝缘衬底中。

2.3 典型应用场景:BCP56贴片三极管在很多领域都有广泛的应用。

它可以作为功率放大器、开关、稳压器等组件使用。

在通信设备、音频放大器、自动化系统和移动设备等领域也被广泛采用。

以上就是贴片三极管BCP56的基本特性部分的内容。

三极管的三种放大电路

三极管的三种放大电路

三极管的三种放大电路三极管是一种常用的电子元件,广泛应用于各种电路中。

它具有放大电压和电流的功能,因此被广泛应用于放大电路中。

本文将介绍三极管的三种常见放大电路:共射、共集和共基电路。

一、共射放大电路共射放大电路是最常见的三极管放大电路之一。

它的特点是输入信号与输出信号均通过三极管的集电极。

其工作原理是:当输入信号施加在基极上时,三极管的基极电流发生变化,进而控制集电极电流的变化。

这种变化通过负载电阻产生的电压变化,即为输出信号。

共射放大电路具有电压增益大、输入电阻高、输出电阻低等特点。

因此,它常被用于需要电压放大的场合,如音频放大器等。

二、共集放大电路共集放大电路是另一种常见的三极管放大电路。

它的特点是输入信号与输出信号均通过三极管的发射极。

其工作原理是:当输入信号施加在基极上时,三极管的基极电流发生变化,进而控制发射极电流的变化。

输出信号即为负载电阻处的电压变化。

共集放大电路具有电流放大特性,且输入输出之间具有相位相反的特点,因此常被用于需要电流放大的场合,如电压稳压器等。

三、共基放大电路共基放大电路是三极管放大电路中最不常见的一种。

它的特点是输入信号通过三极管的发射极,输出信号通过三极管的集电极。

其工作原理是:当输入信号施加在基极上时,三极管的基极电流发生变化,进而控制发射极电流的变化。

输出信号即为负载电阻处的电压变化。

共基放大电路具有电压放大特性,且输入输出之间具有相位相同的特点,因此常被用于需要频率放大的场合,如射频放大器等。

三极管的三种放大电路分别为共射、共集和共基电路。

它们分别具有不同的特点和应用场合。

共射放大电路适用于需要电压放大的场合,共集放大电路适用于需要电流放大的场合,共基放大电路适用于需要频率放大的场合。

了解和掌握这些放大电路的特点和工作原理,对于电子工程师和电子爱好者来说是非常重要的。

希望本文能够对读者有所启发和帮助。

晶体三极管及其基本放大电路

晶体三极管及其基本放大电路

共基极交流电流放大系数
ic ie
一般可认为
h fe h fe 1
24

Ma Liming
1

Electronic Technique
2、极间反向电流 ICBO为发射极开路时,集电极和基极之间的反向 饱和电流,室温下小功率硅管的ICBO小于1μA,锗管 约为几微安到几十微安。
26
2.5、放大电路基础
2.5.1、放大电路的组成 信 号 源 放大电路
负 载
直流电源 放大电路电路结构示意图 信号输入 第一级 第二级 多级放大电路
Ma Liming Electronic Technique 27
第三级
信号输出
2.5.2、放大的概念
电子学中放大的目的是将微弱的变化信号放 大成较大的信号。即用能量较小的输入信号控制 另一个能源,从而使输出端的负载上得到能量较
20A IB=0 12 vCE(V)
b Rb + - UBB
Ma Liming
c V e
+ UCC -
对于PNP型三极管,工作在饱和区 时, 有:VB<VC<VE
Electronic Technique 13
例:如图,已知三极管工作在放大状态, 求:1).是NPN结构还是PNP结构? 2).是Si还是Ge材料? 3).X ,Y ,Z分别对应 什么电极?
方法三:从外观上 半球型的三极管管脚识别方法:平面对着自己,
引脚朝下,从左至右依次是E、B 、C。
常用的三极管9011~9018系列为高频小功率 管,除9012和9015为PNP型管外,其余均为NPN
型管。
Ma Liming
Electronic Technique
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

片三极管反向电压任务状况,所以有较高的输入
阻抗而输出阻抗很低.使得共集电极的电压扩大 倍数总小于 1。
一个女孩子说:“说不定他也和你一样呢,你为什么不和他说话呢
更多
1cr0f8c9c
以它的输入阻抗是很低的、而输出端的集电结是 处于反向电压任务状况,它的输出阻抗是很大 的。由于共发射极电路的电流扩大倍数较大,输
出电流就会在输出端发生较大的输出电压,因此
共发射极电路的电压扩大倍数较大。 共基极电路的电流扩大倍数固然小于 1,但 可以挑选较大的集电极负载电阻 RL 和适宜的集
电极电源 EC,使 RL 的阻值增大后 IC 不变,那么 在 RL 上仍可以得到较大的输出电压..使电压扩 大倍数远大于 1。 共集电极电路的输入端是集电站,它处于贴
通信号而言的。它们的差异在于:共发射极电路
管子的发射极是公共端,信号从基极与发射极之
间输入,而从集电极和发射极之间输出;共基极
电路则以基极作为输入、输出端的公共端;共集
电极电路则以集电极作为输入、输出的共公端,
一个女孩子说:“说不定他也和你一样呢,你为什么不和他说话呢
由于它的输出信号是从发射极引出的.所以又把 共集电极扩大电路称为 射极输出器。 下面从几个方面对贴片三极管这三个电路 的特性进行比拟。 1.功率扩大倍数
贴片三极管的几种放大电路的基本特性,放 大电路在放大信号时,总有两个电极作为信号的 输入端,还也应有两个电极作为输出端。依据半
导体三极管三个电极与输入、输出端子的衔接方
法,可概括为三种:共发射极电路、共基极电路
以及共集电极电路。图 15-8 所示就是这三种电
路的接法。
这三种电路的一起特点是,它们各有两个回 路,其间一个是输入回路,另一个是输出回路, 而且这两个回路有一个公共端,而公共端是对沟
频率范围内其放大倍数随频率改变的特性。在共 发射极的电路中,由于电流放大倍数&beta;=△ IC/△ ,当频率升高时, IB 添加而IB IC 却削
减.所以使&beta;下落。当&beta;值下落到低频
时的 0.707 倍时.所对应的频率,叫做共发射极
电路的截止频率 f&beta;。 在共基极的电路中,由于电流放大倍数 a=
共集电极的输入电流是基极电流 lB,输出电 流是发射极电流 IE,电流扩大倍数 K=△IE/△ IB=(△IB+△IC)/△IB=1+&beta;,可见其电流扩
大倍数也是较大的。
4.电压扩大倍数 共发射极电路的输入端实际上是三极管的 发射结,由于三极管处于正向电压任务状况,所
一个女孩子说:“说不定他也和你一样呢,你为什么不和他说话呢
共发射极电路的输入电流是基极电流 IB,输 出电流是集电极电流 IC,电流扩大倍数&beta;= △IC/IB ,一般&beta;值是较大的。 共基极电路的输入电流是发射极电流 IE,贴
片三极管输出电流是集电极电流 IC,电流扩大倍
数&alpha;=△IC/△ 。由于 IC 小于IE IE,所
以&al ,当频率升高时,△IE 不变而IC 却 削减,所以使&alpha;下落。但与共发射极电路 比较,&alpha;下落的速度比&beta;下落的速度
要慢多了。相同,当&alpha;值下落到低频时的
0.707 倍时,所对应的频率叫做共基极电路的截
止频率 fa。 3.电流放大倍数
一个女孩子说:“说不定他也和你一样呢,你为什么不和他说话呢
这三种电路都有功率扩大的才能已对于共 基极电路来说,固然它的电流放大倍数 &alpha;&lt;1,但电压扩大倍数较大,所以仍有
功率放大倍数。在这三种电路中,共发射极电路
的功率放大倍数最高。 2.频率特性 放大电路的频率特性是指放大电路在任务
一个女孩子说:“说不定他也和你一样呢,你为什么不和他说话呢
相关文档
最新文档