质谱基础知识

合集下载

GCMS气相色谱质谱联用仪基础知识和培训教材

GCMS气相色谱质谱联用仪基础知识和培训教材

(OCI-mode)
2.
玻璃衬管 (Glass Insert)
(PTV-mode)
注意事项-样品气化不完全
❖ 进样口温度过低,将导致高分子量化合物气化不完全 ,并且不能有效转移到色谱柱中。
进样口温度:200℃
进样口温度:300℃
注意事项-样品分解
❖ 进样口温度过高,导致热稳定性差的化合物分解。
进样口温度:280℃
1mL/min 初始柱温:溶剂沸点-10度
溶剂聚焦效应
进样口 溶剂在柱头重新冷凝
初始柱温:溶剂沸点-10度
溶剂聚焦对峰形的影响
色谱柱:Rtx-5 30m×0.25mm×0.25um 进样量:1.0µL 样品:5ug/mL农药混标 (溶剂为正己烷) 柱温程序:150°C to 275°C @ 4°C/min.
如样品有强吸附性,最好不加石英棉。 ・必须使用程序升温方式,初始温度低于溶剂沸点10~20度 ・建议使用高压进样方式 ・不适合气体样品和低沸点溶剂类样品的分析 ・不适合分析在溶剂峰之前出峰的组分
WBI进样口
用于: 宽孔径毛细管柱 填充柱
OCI/PTV进样口
载气 毛细柱
隔垫吹扫出口 分流出口
1.
Column Sleeve/Guide
GCMS气相色谱/质谱联用仪 基础知识和培训教材
第一部分
GCMS基本构成
GCMS : 气相色谱/质谱联用仪
GC:气相色谱(Gas chromatograph) MS:质 谱 (Mass spectrometer )
GC组成
目的 :分离样品组分
载气
样品 进样口 ( 样品气化)
检测器 (FID, MS,···)
什么是不分流进样?(II)

质谱基础知识飞行时间质谱仪原理及应用

质谱基础知识飞行时间质谱仪原理及应用
营养成分和功能成分分析
飞行时间质谱仪能够检测食品中的营养成分和功能成分,为食品的 营养评价和功能研究提供依据。
04
质谱技术的发展趋势
高灵敏度质谱技术的发展
灵敏度提升
随着技术的不断进步,质谱仪的 灵敏度不断提高,能够检测到更 低浓度的物质,为痕量物质的分 析提供了可能。
选择性增强
高灵敏度质谱技术通过改进离子 化方法和分离技术,提高了对复 杂样品的选择性,降低了干扰物 质的影响。
质谱的应用领域
01
02
03
04
生物医药
用于蛋白质、核酸等生物大分 子的检测和鉴定。
环境监测
检测空气、水体中的有害物质 和污染物。
食品安全
检测食品中的添加剂、农药残 留等。
化学分析
对有机化合物进行定性和定量 分析,用于化学反应机理研究
等。
02
飞行时间质谱仪原理
飞行时间质谱仪的结构
电离源
用于将样品分子转化为带电离 子,常见电离源有电子轰击、 化学电离、电喷雾等。
飞行管
离子在其中进行无散射的飞行 ,通常由真空密封的管子组成 。
ቤተ መጻሕፍቲ ባይዱ
进样系统
用于将样品引入质谱仪中,通 常采用气相色谱或直接进样方 式。
加速电场
用于加速离子,使其获得足够 的能量进入飞行管。
检测器
用于检测到达终端的离子,通 常采用电子倍增器或微通道板 。
飞行时间质谱仪的工作原理
01
02
03
04
进样系统将样品引入电离源, 电离源将样品分子转化为带电
在化学领域的应用
在化学领域,质谱技术用于研究化合物的结构、组成、反应机理等,可以用于合成路线的确定、反应条件的优化等。

质谱基础知识及分析

质谱基础知识及分析
Br有79Br、81Br两种同位素,丰度比为1 :1,仅含一个 溴原子,出现M,M+2峰,其强度比为1:1
21
根据相对相对强度判断分子式: 对于分子只含有同一种卤原子时,其同位素离子峰的
强度比等于二项式(a+b)n展开式各项值之比。 n为分子中同种卤原子的个数, a为轻质量同位素的丰度比, b为重质量同位素的丰度比 判断分子中同位素原子数目
①分子离子m/e数值等于化合物的相对分子量,必位于谱图的最
右边,这在谱图解析中具有特殊意义分子离子峰的强度与假定的分子结构必须相适应;例如: 芳香族化合物和共轭链烯有利于正电荷的分散,分子离子比较稳定, 因此分子离子峰较强,有时分子离子峰就是基峰。
4
④分子离子是奇电子离子;
M M+2 M+4 M+6
以相对强度表示 33.3% 100% 100% 33.3%
如果化合物中含有多个氯或溴原子时,我们可以用二项式 (a+b)n来计算其M+2,M+4,M+6,……同位素峰的强度。
22
例如:计算CHBr3的同位素峰强度。 应为79Br相对丰度:81Br相对丰度=100:98≈1:1 即a=1,b=1,n=3 (a+b)n=a3+3a2b+3ab2+b3 =1 + 3 + 3 + 1
5
2、碎片离子峰
1)、饱和烷烃—σ键断裂 当化合物分子中没有π电子和n电子时,σ键的断裂成为主要的断裂方 法。通过半异裂形成一个偶电子离子,同时脱去一个中性自由基。 如烷烃分子离子的断裂。断裂的产物越稳定,就越易断裂。
碳正离子的稳定顺序为叔>仲>伯(诱导效应所致),所以异构 烷烃最容易从分支处断裂。支链大的易以自由基脱去(Stevenson规 则:较大的烷基比较容易丢失)。

有机化学基础知识点有机物的质谱和核磁共振谱

有机化学基础知识点有机物的质谱和核磁共振谱

有机化学基础知识点有机物的质谱和核磁共振谱有机化学基础知识点 - 有机物的质谱和核磁共振谱一. 引言在有机化学领域中,质谱和核磁共振谱是两种重要的分析技术,它们可以提供有机物分子结构的丰富信息。

本文将详细介绍有机物的质谱和核磁共振谱的基本原理、仪器设备以及应用。

二. 有机物的质谱原理和方法1. 质谱的基本原理质谱是通过测量有机物分子中离子的质量和相对丰度来分析有机物的技术。

其基本原理为:(1)电离:将有机物分子转化为带电粒子,一般使用电子轰击、电子喷射等方法。

(2)分离:离子根据质量-电荷比在磁场中进行分离。

(3)检测:测量离子的质量和相对丰度。

2. 质谱仪器设备质谱的仪器设备主要由以下几个部分组成:(1)离子源:用于产生离子。

(2)质谱仪:包括质量分析器、检测器等。

(3)数据处理系统:用于采集和分析数据。

3. 质谱的应用质谱在有机化学中有广泛的应用,包括:(1)质谱图谱解析:通过分析质谱图谱,确定有机物的分子式、分子结构等信息。

(2)质谱定性分析:通过比较样品的质谱图谱与数据库中的标准质谱图,鉴定有机物的种类。

(3)质谱定量分析:通过测量质谱图谱中特定离子峰的强度,确定样品中有机物的含量。

三. 有机物的核磁共振(NMR)原理和方法1. 核磁共振的基本原理核磁共振是通过测量有机物分子中核自旋的行为来提供有机物分子结构信息的技术。

其基本原理为:(1)核自旋:原子核具有自旋,每种核素的自旋数是固定的。

(2)共振:核自旋在磁场中被激发,并在不同频率下共振吸收或发射能量。

(3)检测:测量吸收或发射能量的频率和强度。

2. 核磁共振仪器设备核磁共振的仪器设备主要由以下几个部分组成:(1)磁场系统:用于产生强磁场。

(2)射频系统:用于激发和检测核自旋的共振吸收或发射能量。

(3)探头:用于容纳样品和与样品进行相互作用。

3. 核磁共振的应用核磁共振在有机化学中有广泛的应用,包括:(1)1H核磁共振:通过测量样品中氢原子核的共振吸收能量,获得有机物的结构信息。

质谱基础知识-飞行时间质谱仪原理及应用 PPT

质谱基础知识-飞行时间质谱仪原理及应用 PPT

直线式VS反射式
直线型飞行时间质谱仪的 主要缺点:分辨率低。
离子初始能量不同,使得 具有相同质荷比的离子达 到检测器的时间有一定分 布,造成分辨能力下降。
改进的方法
在线性检测器前面的加上 一组静电场反射镜,将自 由飞行中的离子反推回去, 初始能量大的离子由于初 始速度快,进入静电场反 射镜的距离长,返回时的 路程也就长,初始能量小 的离子返回时的路程短, 这样就会在返回路程的一 定位置聚焦,从而改善了 仪器的分辨能力。
质量精度(mass accuracy):衡量质谱仪器测量物质 成分的准确度;ppm
质量范围(mass range ):质谱仪器测量物质成分的 质量大小范围;1~ ∞
灵敏度(sensitivity):质谱仪器所能测量物质成分 的最低含量;单分子检测
飞行时间质谱仪TOF-MS的构成
离子源:
电喷雾电离源(ESI)
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
飞行时间质谱仪TOF-MS的构成
质量分析器
TOF-MS分辨率低的原因
时间分散 空间分散 能量分散
改进方法
脉冲电离 离子延迟引出 反射器技术
目前, TOF -MS大都装有反射器,使离子 经过多电极组成的反射器后沿V型或W 型路线飞行到达检测器,使得分辨率可 达20 000 以上, 最高检测质量可超过 300 000 Da,且具有很高的灵敏度。
+ +

++ + ++
+
+++ +++
+++ +++
+

质谱解析基础

质谱解析基础

上式中
是单箭头,表示单电子转移,Y为杂原子。
(1)游离基引发的断裂(α断裂)
因为α断裂比较容易发生,因此,在乙醇质谱中,m/z 31的峰比较强。
Mr:74
Mr:87
(1)游离基引发的断裂(α断裂)
B.含不饱和杂原子
•酮也易发生α-断裂,其断裂与其相连的基团有密切关系
以丙酮为例,说明断裂产生机理:
分子离子峰的判别
• 1)在质谱中最高质量数的质谱峰有时反映的是同位素 离子峰,但它一般较弱。醚、酯、胺、酰胺、氰化物、 氨基酸酯、胺醇等的[M+1]+峰可能明显强于M+峰,芳 醛、某些醇或某些含氮化合物则可能[M-1]+峰强于M+峰 • 2)分子不够稳定,在质谱上不出现分子离子峰。当分 子具有大的共轭体系时,分子离子稳定性高,含有π键 的分子离子稳定性也较高 • 在各类化合物EI质谱中M+ 稳定性次序大致如下 芳香环(包括芳香杂环)>共轭烯 > 烯 > 脂环 > 硫醚, 硫酮 > 酰胺 > 酮 > 醛 >直链烷烃 > 醚 > 酯 > 胺 > 羧酸 > 腈 > 伯醇 > 仲醇 > 叔醇 > 高度支链烃 • 胺、醇等化合物的EI质谱中往往得不到分子离子峰。所 以在测EI谱之后,最好能再测软电离质谱,以确认分子 量
分子离子峰的判别
碎片离子和假分子离子
• 分子离子在离子源中获得过剩的能量转变为分子内能而发 生进一步断裂生成的离子称为碎片离子。质谱图中低于分 子离子m/z 的离子都是碎片离子,碎片离子提供提供品的 分子结构信息,对于结构鉴定具有重要的意义。 • 在离子源中,分子离子处于多种可能裂解反应的竞争之中, 结果形成一系列丰度不等的碎片离子。值得注意的是,分 子离子发生的占优势的一级裂解,不一定是质谱图上丰度 最高的碎片峰,因为它还可能进一步发生二级、三 级、……裂解。各种不同结构的有机化合物断裂的方式不 同,产生碎片离子的种类和丰度也不相同。在一定能量的 电轰击下,每一种化合物都有自己特定的质谱,为质谱用 于有机结构鉴定提供信息,是核对标准质谱图并使用计算 机贮存和解析的基础。

GCMS谱图解析基础

GCMS谱图解析基础
从mm1的总量中除去08可知碳同位素对m1的贡献为82102那么它可能含8个碳原子分别计算它们的m1峰及m2总共为140amu而有机化合物的组成不可能为的质量数为12814012812这样也就排除了含氧的可能其余下这12amu应用a元素补是a元素中fp碘的原子量大于12所以分子了式只能为c决定化合化合物的级成及分子式beynon表中记载了元素组成不同分子量不同的各种离子的mm1m2的比值fbeywon表节录的一部分
2、化学电离等软电离技术:
在化学电离条件下,样品分子与“反应气”离子在离子源中发生离子—分子反应。通常,样品分子得到一个氢或失去一个氢,得到质荷比为[M±1]的偶电子离子(OE)+,这些偶电子离了一般具有较低的内能。因此用EI得不到分子离子的化合物,大多数在CI条件下,可以产生能指明分子量的离子。除CI外,常用的软电离技术还有FI(场电离)FD(场解吸)及FAB(快原子轰去)等。
式中a:轻同位素相对丰度
b:重同位素相对丰度
n:分子中该元素的原子数目
例如:含一个氯原子的化合物CH3CL,由CH335CL(M=50)及CH337CL(M+2=52)组成,其中35CL与37CL的丰度比为3:1,则上式为
(3+1)1=3+1
CH335CL与CH337CL的丰度比,即m/m+2=3:1
M-15(.CH3), M-16(O), M-17(.OH,NH3), M-18(H2O),
M-26(CN,HCCH), M-27(CHNH2.CHCH2), M-28(CO,CH2CH2),
M-29(CHO,C2H5), M-30(CH2O,NO), M-31(OCH3,CH2OH),
M-32(CH3OH,S,O2), M-33(CH3+H2O), M-34(H2S), M-35(CL),

液相色谱质谱基础介绍

液相色谱质谱基础介绍
干燥气作用:加热的干燥氮气反向流动,带走液滴中的 中性溶剂分子,从而收缩液滴,直到排斥的静电力超过液滴表 面张力,引起库仑爆炸。 这个过程不断重复,直到待分析物离 子最终变成气态分子离子进入毛细管。 注:①被测物质离子化过程在进入离子源前已经完成!!
21
质谱的调谐和校正
调谐:通过把一系列已知质荷比的标准物引入 三级四极杆并产生离子,利用这些已知离子,调整 离子光学组件上的仪器参数(电压值),以期在全质量范围获得最大传输效率,获得理想信号强度。 调谐包括控制skimmer,八极杆,透镜,四极杆和检测器等的参数。
APCI
分析物的极性
极性 25
LC-MS分析条件的选择
2. 正负离子模式的选择
正离子模式(ESI+): *适合碱性样品分析,可用乙酸(pH=3~4)或甲酸(pH=2~3)对样品加以酸化,降低pH *流动相酸性环境: 容易加合质子
负离子模式(ESI-): * 适应于酸性样品,含氯、含溴和多个羟基时可尝试使用 * 流动相碱性环境:易失去质子 * 可用氨水或三乙胺(因产生顽固性背景102峰 [M+H],慎用!)对样品进行碱化,增加pH
缺点:没有商品化的谱库可对比查询,只能自己建库或自己解析谱图。
2
培训目的
认识和了解液相色谱三重四级杆质谱(1290II-6460) 掌握MussHunter Data Acquisition参数设定,学会数据采集 掌握利用Qualitative Analysis进行数据分析的基本操作
3
• 不过滤离子,所有的带电离子全都通过
B → 扫描(SCAN)
• 指在给定的质荷比范围内,依次采集每个质量数的信号
C → 选择离子监测(SIM)
• 只是采集指定的某个或某几个质荷比的离子信号
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
到质谱图。 分子离子:样品分子失去一个电子后形
成的质量与分子量相等的离子,M+。 碎片离子:由样品分子或分子离子发生
化学键断裂后形成的各种离子。
质谱图
质谱常用术语
母离子:可进一步电离产生更小碎片的 离子,与子离子对应。
子离子:由母离子裂解而来的小碎片离 子。
同位素离子:由样品中元素的同位素产 生的离子。如12C/13C=1.11
作用:将检测器检测到的电信号记录并 储存,同时控制各部分电子元件的操作 参数。
质谱仪结构组成 数据处理系统
质谱仪结构组成 真空系统
质谱仪结构组成 真空系统的作用
提供足够的平均自由程 提供无碰撞的离子轨道 减少离子-分子反应 减少背景干扰 延长灯丝寿命 消除放电 增加灵敏度
质量分析器类型 四极杆
质量分析器类型 离子阱
质量分析器类型 飞行时间
质量分析器类型 扇形磁场
质谱仪结构组成 检测器
作用:将通过质量分析器的离子转变成 电信号输出。
类型:直接测量;电子倍增器。
质谱仪结构组成 检测器
质谱仪结构组成 检测器
质谱仪结构组成 检测器
质谱仪结构组成 数据处理系统
高真空泵:油扩散泵或涡轮分子泵,将 真空抽到10-4——10-5 Pa。油扩散泵较 便宜,但会产生一定的本底,并可能造 成反油,污染离子源和质量分析器。涡 轮分子泵可以克服油扩散泵的缺点,但 价格较贵。
质谱仪结构组成 供电系统
作用:为系统提供能量,使仪器按照确 定的电磁参数正常运行。
质谱基础知识
离子源 结构与离子轨道
离子源
电子轰击电离方式
离子源
化学电离方式
离子源
化学电离方式
离子源 大气压电喷雾电离方式ຫໍສະໝຸດ 离子源 大气压电喷雾电离方式
离子源 大气压电喷雾电离过程
离子源 大气压化学电离方式
离子源 大气压化学电离过程
质谱常用术语
质荷比:离子质量与所带电荷的比值。 质谱图:离子碎片丰度对质荷比作图得
质谱仪结构组成 质量分析器
质谱仪结构组成 质量分析器类型
射频:四极杆、离子阱 飞行时间 扇形磁场 傅立叶变换 其它
质量分析器类型 四极杆
四极杆质量分析器:有两组对称的电极 组成,每对电极上分别施加高频电压, 改变高频电压(电压扫描或频率扫描) 可以选择性使不同质量(质荷比)的离 子通过,到达检测器产生质谱信号。
有机物电离举例 甲基异丁基酮
有机物电离举例 癸烷
有机物电离举例 6-环己基十一烷
质谱仪结构组成 质量分析器
作用:使进入的具有不同质荷比(m/e) 的正离子(或负离子)进行分离,顺序 到达检测器。
原理:质谱方程式m/e=H2R2/2V 。
意义:离子在磁场内的运动半径R与离子 的质荷比m/e、外加磁场强度H、加速 电压V有关。只有在一定的V及H条件下, 具有一定质荷比的离子才能以运动半径 为R的轨道到达检测器
用N规则判断:由C、H、O组成的有机 化合物,分子离子的质量一定是偶数; 由C、H、O、N组成的有机化合物,含 奇数个N,分子离子的质量是奇数,含偶 数个N,分子离子的质量是偶数。
分子离子峰
确定分子量
看分子离子峰与临近峰质量差应合理。 分子离子峰的左面不可能出现比分子离 子峰质量小3-14个质量单位的峰。
质谱仪结构组成 离子源
作用:用某种电离方式将待测样品分子 (或原子)电离成离子(正离子、负离 子、分子离子、碎片离子、单电荷离子、 多电荷离子),并将离子加速、聚焦成 为离子束,送进质量分析器。
质谱仪结构组成 离子源
离子源 电离方式
电子轰击(EI) 化学电离(CI) 场致电离与场解析(FI、FD) 电喷雾电离(ESI) 大气压化学电离(APCI) 快原子轰击(FAB) 其它很多种
质谱仪结构组成 质量分析器
方程应用:(1)若固定H、R,则m/e 与V成反比,只要连续改变加速电压V (电压扫描),就可使具有不同m/e的 离子按顺序到达检测器,得到不同的质 谱图。(2)若固定V、R,则m/e与H2 成正比,只要连续改变磁场强度H(磁场 扫描),就可使具有不同m/e的离子按 顺序到达检测器,得到不同的质谱图。
质谱仪分类(按用途)
同位素质谱仪:用于测定同位素丰度。 对测量准确度、精密度和丰度灵敏度的 要求较高。
无机质谱仪:用于进行无机物分析。如 气体质谱分析仪、质谱检漏仪等。
有机质谱仪:用于进行有机物结构分析。 多数仪器可与色谱联用。
利用M+1峰的信息。某些化合物如醚、 酯、胺、酰胺等的分子离子不稳定,但 M+1(捕获•H)峰却很大。
分子离子峰
确定分子量
利用M-1峰的信息。有些化合物特别是 醛类没有分子离子峰,但M-1(失去•H)峰 却较大。
降低电子轰击源的能量,观察炙谱峰的 变化情况。逐渐降低电子流的能量,减 少分子离子的裂解。
质谱常用术语
M+1离子:分子离子在电离室内捕获一 个氢形成的离子或同位素分子离子。
重排离子:分子离子裂解为碎片离子时, 某些碎片不仅仅通过键的简单断裂,而 是经过原子或基团重排后形成的离子。
分子离子峰
确定分子量
掌握分子离子峰稳定性规律:芳香环>共 轭链烯>脂环化合物>直链烷烃类>硫醇> 酮>胺>酯>醚>分支较多的烷烃类>醇。
质谱基本原理
黑箱与弹弓 碎片重组——考古
质谱仪结构组成 框图
进样系统
离子源
质量分析器
检测器
真空系统
供电系统
数据处理系 统
质谱仪结构组成 原理图
质谱仪结构组成 进样系统
作用:将样品引入离子源 方式1:直接进样(气体、液体、固体) 方式2:利用GC进样
质谱仪结构组成 进样系统
真空系统的作用 自由程与压力的关系
Pressure (Torr) 760
1
10-3 10-5 10-7 10-9
Mean Free Path (meters) 6.0x10-8 4.5x10-5 4.5x10-2 4.5x100 4.5x102 4.5x104
真空系统 高真空的实现
前级泵(粗抽泵):机械泵先将体系抽 到10-1——10-2 Pa。
相关文档
最新文档