《数字电子技术基础》课后习题答案
数字电子技术基础课后答案

数字电子技术基础课后答案第一篇:数字电子技术基础1. 什么是布尔代数?布尔代数是一种数学运算,用于解释数字电子技术中的逻辑运算。
它由乔治·布尔发明,以处理逻辑思维,并用于数字电路的设计和分析。
2. 什么是逻辑门?举例说明。
逻辑门是一种数字电路,执行布尔逻辑运算操作。
在逻辑门中,输入和输出都是数字信号。
常见的逻辑门有与门(AND)、或门(OR)和非门(NOT)等。
例如,一个与门的输出只有在所有输入都是 1 的时候才为 1。
3. 什么是触发器?举例说明。
触发器是一种数字电路,用于存储二进制位。
它可以在两个状态之间切换,称为 set(1)和 reset(0)。
触发器通常用于存储数据或构建计数器和时序器。
例如,D 触发器可以用于存储单个比特数据。
4. 什么是计数器?举例说明。
计数器是一种数字电路,用于计数。
它可以用预设值计数或者递增计数。
计数器在时序电路和数字信号处理中应用广泛。
例如,一个简单的四位二进制计数器可能从 0000 开始,递增到 1111。
5. 什么是编码器?举例说明。
编码器是一种数字电路,用于将一个符号编码转换为另一个符号编码。
编码器通常用于数字信号压缩和传输中,并且可以用于键盘编码,控制器设计和其他数字信号处理应用。
例如,使用二进制输入,BCD 编码器可以将四个输入位转换为十进制数字。
6. 什么是译码器?举例说明。
译码器是一种数字电路,用于将一种编码转换为另一种编码。
它可以将数字信号从一种格式(如二进制)转换为另一种格式(如 BCD)。
译码器也可以用于输出数字信号的选择性控制,如一个多路选择器或一个Demux。
例如, 4-16 译码器将 4 个输入线路变为 16 个输出线路。
7. 什么是多路复用器?举例说明。
多路复用器(MUX)是一种数字电路,将多个输入值选择性地转移到一个单独的输出通道。
它通常用于数字信号处理和通信应用中,例如在多路转接和数字电视中。
例如,一个 4 通道 MUX 可以选择 4 个输入通道中的一个在其单个输出通道上输出。
数字电子技术基础课后答案(李雪飞)

电路如下图
当M=0时,
当M=1时,
[题3.19]
[题3.20]
解:设两个5位二进制数分别为A( )和B( )。依据题意,将两个5位二进制数的高4位,即 和 分别接入比较器的数据输入端,将 和 比较的结果 , 和 分别接入级联输入的 , 和 端,其函数表达式为
[题3.21]
解:由电路写出输出Y的逻辑函数式为
因此, 的取值应满足0.57kΩ≤ ≤1.75 kΩ。
[题2.8]
0.47kΩ≤R≤4.39 kΩ
[题2.9]
这时相当于 端经过一个20 kΩ的电阻接地。假定与非门输入端多发射极三极管每个发射结的导通压降均为0.7V,则有
(1) ≈1.4V
(2) ≈0.2V
(3) ≈1.4V
(4) ≈0V
(5) ≈1.4V
[题3.5]答案见阎石数字电子技术第四版137页。
[题3.6]
真值表为
A
B
C
D
F1
F2
A
B
C
D
F1
F2
0
0
0
0
φ
φ
1
0
0
0
1
0
0
0
0
1
1
0
1
0
0
1
0
1
0
0
1
0
1
0
1
0
1
0
0
1
0
0
1
1
0ቤተ መጻሕፍቲ ባይዱ
1
1
0
1
1
1
1
0
1
0
0
1
0
1
(全)数字电子技术基础课后答案解析夏路易

《数字电子技术基础教程》习题与参考答案(2010.1)第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。
(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101 解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。
(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
《数字电子技术基础》课后习题及参考答案

第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1);(2);(3);(4)解:(1)=177(2)=170(3)=241(4)=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=()2(3)(B1)16=(1011 0001)2(4)(AF)16=()2【题1-5】将下列二进制数转换为十进制数。
(1);(2);(3);(4)解:(1)()2=(2)()2=(3)()2=【题1-6】将下列十进制数转换为二进制数。
(1);(2);(3);(4)解:(1)=()2(2)=()2(3)=()2(4)=()2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
(1)01101100;(2);(3);(4)解:(1)01101100是正数,所以其反码、补码与原码相同,为01101100(2)反码为,补码为(3)反码为,补码为(4)反码为,补码为【题1-8】将下列自然二进制码转换成格雷码。
000;001;010;011;100;101;110;111解:格雷码:000、001、011、010、110、111、101、100【题1-9】将下列十进制数转换成BCD码。
数字电子技术基础. 第四版. 课后习题答案详解

(1)Y=A+B
(2)YABCABC
解:BCABCCABC(A+A=)
(5)Y=0
(2)(1101101)2=(6D)16=(109)10
(4)(11.001)2=(3.2)16=(3.125)10
(2)(127)10=(1111111)2=(7F)16
(4) (25.7)10(11001.1011 0011)2(19.B3)16
1.12
将下列各函数式化为最大项之积的形式
(1)Y(ABC)(ABC)(ABC)
(3)YM0⋅M3⋅M4⋅M6⋅M7
(5)YM0⋅M3⋅M5
(2)Y(ABC)(ABC)(ABC)
(4)YM0⋅M4⋅M6⋅M9⋅M12⋅M13
1.13
用卡诺图化简法将下列函数化为最简与或形式:
(3)Y(AB)(AC)ACBC
(2)Y
ACD
解:(AB)(AC)ACBC[(AB)(AC)AC]⋅BC
(ABACBCAC)(BC)BC
(5)YADACBCDC
解:Y(AD)(AC)(BCD)CAC(AD)(BCD)
ACD(BCD)ABCD
(4)YABC
(6)Y0
1.11
将函数化简为最小项之和的形式
(3)Y=1
(4)YAB CDABDAC D
解:YAD(B CBC)AD(BCC)AD
(7)Y=A+CD
(6)YAC(C DA B)BC(BADCE)
解:YBC(B⋅ADCE)BC(BAD)⋅CEABCD(CE)ABCDE
(8)YA(BC)(ABC)(ABC)
解:YA(B⋅C)(ABC)(ABC)A(AB CB C)(ABC)
数字电子技术基础(第4版)_课后习题答案

第一章1.1二进制到十六进制、十进制(1)(10010111)2=(97)16=(151)10 (2)(1101101)2=(6D)16=(109)10(3)(0.01011111)2=(0.5F)16=(0.37109375)10 (4)(11.001)2=(3.2)16=(3.125)10 1.2十进制到二进制、十六进制(1)(17)10=(10001)2=(11)16 (2)(127)10=(1111111)2=(7F)161621016210)3.19()1010 1(11001.101(25.7)(4))A D7030.6()0101 0000 0111 1101 0110 (0.0110(0.39)(3) B ====1.8用公式化简逻辑函数(1)Y=A+B (3)Y=1)=+(解:1A A 1)2(=+++=+++=+++=C B A C C B A C B Y CB AC B A Y ADC C B AD C B C B AD DC A ABD CD B A Y =++=++=++=)()(Y )4(解:(5)Y=0 (7)Y=A+CDE ABCD E C ABCD CE AD B BC CE AD B BC Y CE AD B BC B A D C AC Y =+=⋅+=+⋅=++++=)()()()()()6(解:CB AC B C B A A C B A C B A C B A C B C B A A C B A C B A C B A Y C B A C B A C B A Y +=++=+++=++++=++++⋅+=++++++=)())(())()(())()((8解:)(D A D A C B Y ++=)9(E BD E D BF E A AD AC Y ++++=)10(1.9 (a) C B C B A Y += (b) C B A ABC Y +=(c) ACD D C A D C A B A Y D AC B A Y +++=+=21,(d) C B A ABC C B A C B A Y BC AC AB Y +++=++=21, 1.10 求下列函数的反函数并化简为最简与或式(1)C B C A Y += (2)DC A Y++=CB C B AC C B AC B A BC AC C A B A BC AC C A B A Y BCAC C A B A Y +=++++=⋅+++=+++=+++=))((]))([())(())(()3(解: (4)C B A Y ++=DC ABD C B D C A D C B D A C A C D C B C A D A Y CD C B C A D A Y =++=+++=++++=+++=)())(())()(()5(解: (6)0=Y1.11 将函数化简为最小项之和的形式CB AC B A ABC BC A C B A C B A C B A ABC BC A CB A AC B B A BC A C B AC BC A Y CB AC BC A Y +++=++++=++++=++=++=)()()1(解:D C B A CD B A D C B A ABCD BCD A D C B A Y +++++=)(2)13()()()(3CD B A BCD A D BC A D C B A D C B A ABCD D ABC D C AB D C AB CD B A D C B A D C B A D C B A CD AB B A B A B A ACD D AC D C A D C A CD A D C A D C A D C A B BCD D BC D C B D C B CD B D C B D C B D C B A Y CDB A Y ++++++++++++=+++++++++++++++++++=++=解:)((4)CD B A D ABC D BC A D C AB D C AB CD B A ABCD BCD A Y +++++++= (5)MN L N M L N LM N M L N M L N M L Y +++++=1.12 将下列各函数式化为最大项之积的形式(1)))()((C B A C B A C B A Y ++++++= (2)))()((C B A C B A C B A Y ++++++= (3)76430M M M M M Y ⋅⋅⋅⋅= (4)13129640M M M M M M Y ⋅⋅⋅⋅⋅= (5)530M M M Y ⋅⋅=1.13 用卡诺图化简法将下列函数化为最简与或形式:(1)D A Y +=(3)1=Y (2)D C BC C A B A Y +++= (4)B AC B A Y ++=B A DC Y ++=AC B A Y +=(5)D C B Y ++= (6)C B AC B A Y ++=(7)C Y = (9)D C A C B D A D B Y +++=(8))14,11,10,9,8,6,4,3,2,1,0(),,,(m D C B A Y ∑= (10)),,(),,(741m m m C B A Y ∑=D A D C B Y ++=ABC C B A C B A Y ++=1.14化简下列逻辑函数(1)D C B A Y +++= (2)D C A D C Y += (3)C A D AB Y ++= (4)D B C B Y += (5)E D C A D A E BD CE E D B A Y +++++=1.20将下列函数化为最简与或式(1)AD D C B D C A Y ++= (2)AC D A B Y ++= (3)C B A Y ++= (4)D B A Y +=第二章2.1解:Vv v V V v T I mA I mA Vv T V v a o B o B BS B o B 10T 3.0~0(2.017.0230103.0207.101.57.05I V 5v 1021.5201.510V 0v )(i i ≈≈∴<=×≈=−≈∴−=×+−=截止,负值,悬空时,都行)饱和-=时,=当截止时,=当都行)=饱和,,-=悬空时,都行)饱和。
(全)数字电子技术基础学习知识课后规范标准答案夏路易

《数字电子技术基础教程》习题与参考答案(2010.1)第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。
(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101 解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。
(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
全版《数字电子技术基础》课后习题答案.docx

00
01
11
10
0
0
1
0
1
1
1
0
1
0
另有开关S,只有S=1时,Y才有效,所以
4.14、解:根据题意,画卡诺图如下:
BC
A
00
01
11
10
0
0
0
0
0
1
0
1
1
1
所以逻辑表达式为:Y=AC+AB
(1)使用与非门设计:
逻辑电路如下:
(2)使用或非门设计:
4.15、
(2)解:
1、写出逻辑函数的最小项表达式
2、将逻辑函数Y和CT74LS138的输出表达式进行比较
(45.36)10=(0100 0101.0011 0110)8421BCD=(0111 1000.0110 1001)余3BCD
(136.45)10=(0001 0011 0110.0100 0101)8421BCD=(0100 0110 1001.0111 1000)余3BCD
(374.51)10=(0011 0111 0100.0101 0001)8421BCD=(0110 1010 0111.1000 0100)余3BCD
二、
3、√
4、√
三、
5、A
7、C
练习题:
4.1;解:(a) ,所以电路为与门。
(b) ,所以电路为同或门
4.5、解:当M=0时, ,同理可推:
,
所以此时电路输出反码。
当M=1时, ,同理可推:
,
所以此时电路输出原码。
4.7、
4.9、解:设三个开关分别对应变量A、B、C,输出Y’,列出卡诺图如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BC A
00
01
11
10
0
0
0
0
0
1
0
1
1
1
则表达结果 Y 的表达式为:
逻辑电路如下:
技能题:
3.20:解:根据题意,A、B、C、D 变量的卡诺图如下:
CD AB
00
01
11
10
00
0
0
0
0
编辑版 word
01
0
0
0
0
11
0
1
1
1
10
0
0
0
0
电路图如下:
编辑版 word
第四章:
自测题:
一、 2、输入信号,优先级别最高的输入信号 7、用以比较两组二进制数的大小或相等的电路,A>B 二、 3、√ 4、√ 三、 5、A 7、C
第六章:
自测题:
一、 1、存储,组合逻辑,存储 3、时钟 CP,时钟 CP,时钟 CP,时钟 CP 9、4,4
二、 2、√ 9、×
三、 3、C 8、D
练习题:
6.2、
(1)输出方程
Y Q2n
(2)驱动方程
n
J0 Q2
J1 K1 Q0n
K0 1
J 2 Q1nQ0n
(3)状态方程
K2 1
Q0n1
练习题:
4.1;解:(a) (b)
,所以电路为同或门
,所以电路为与门。
4.5、解:当 M=0 时,
, 所以此时电路输出反码。
,同理可推:
当 M=1 时,
, 所以此时电路输出原码。
,同理可推:
4.7、Y ABC D ABCD ABC ABC D ABCD ABC D BD ABC BC D
1
0
0
0
1
0
0
1
1
0
0
1
1
1
0
0
0
1
0
0
0
0
0
1
1
0
1
0
1
0
1
1
1
0
0
1
0
1
1
1
1
0
0
0
1
(5)状态转换真值表
000 /0 001 /0 010 /1 101
/0
/1
/1
111
100 /0 011
110
(6)时序图
(7)根据状态转换图可知,该电路具备自启动功能。 6.5、解: (1)输出方程
Y XQ1nQ0n
(2)驱动方程
编辑版 word
J0 K0 X J1 K1 XQ0n
(3)状态方程
Q n1 0
n
X Q0
X Q0n
X
Q0n
Q n1 1
XQ0n
n
Q1
X Q0n Q1n
( XQ0n ) Q1n
(4)设电路的初始状态为 Q1nQ0n 00 ,列出状态转换真值表如下表所示
X
Q
n 1
Q
n 0
6.10、解: (1)输出方程
Y Q2n
(2)驱动方程
编辑版 word
J0 D J1 Q0n J 2 Q1n
N OH
I OH I IH
400 20
20
G 可带 20 个同类反相器
输出低电平时,带负载的个数
N OL
I OL I IL
8 0.45
17.78
编辑版 word
G 反相器可带 17 个同类反相器 3.12 EN=1 时, EN=0 时,
3.17
根据题意,设 A 为具有否决权的股东,其余两位股东为 B、C,画卡诺图如下,
(2) 十六进制转二进制: 6
D
E
. C8
0110 1101 1110 . 1100 1000
二进制转八进制:
011 011 011 110 . 110 010 000
3336
. 62
十六进制转十进制:(6DE.C8)16=6*162+13*161+14*160+13*16-1+8*16-2=(1758.78125)10 所以:(6DE.C8)16=(011011011110. 11001000)2=(3336.62)8=(1758.78125)10
编辑版 word
(3) 十六进制转二进制: 8
F
E
.F
D
1000 1111 1110 . 1111 1101
二进制转八进制:100 011 111 110 . 111 111 010
4
3
7
6
.7
72
十六进制转十进制:
(8FE.FD)16=8*162+15*161+14*160+15*16-1+13*16-2=(2302.98828125)10
编辑版 word
和 D3 1, D0 0
(5)画出逻辑图 根据(4)中的变量对应关系画出逻辑接线图,如下图所示
4.25
解:(1)Y AC BC 当取 A=1、B=1 时,则Y C C 故Y AC BC 存在 0 冒险现象。
技能题:
4.26;
解:(1)分析设计要求并列出真值表
两台电动机为 A、B,工作时用 1 表示,出故障时用 0 表示。三个指示灯分别为 Y 绿、Y 黄、Y 红,灯 亮用 1 表示,灯灭用 0 表示。根据题意可列出表:
A
B
Y绿
Y黄
Y红
0
0
0
0
1
0
1
0
1
0
1
0
0
1
0
1
1
1
0
0
(2)根据真值表写出输出逻辑表达式
Y绿 AB Y黄 AB AB Y红 AB A B
(3)根据上式可画出如下图。
编辑版 word
编辑版 word
第五章:
自测题:
一、 1、0,1,Q
6、置 0,置 1,保持,计数(翻转), 二、 3、× 5、√ 三、 4、B 5、B
4.9、解:设三个开关分别对应变量 A、B、C,输出 Y’,列出卡诺图如下:
BC A
00
01
11
10
0
0
1
0
1
1
1
0
1
0
编辑版 word
另有开关 S,只有 S=1 时,Y 才有效,所以
4.14、解:根据题意,画卡诺图如下:
BC A
00
01
11
10
0
0
0
0
0
1
0
1
1
1
所以逻辑表达式为:Y=AC+AB
2.5 (3) 2.6:
(1)
2.7:
(1)
卡诺图如下:
BC A
00
01
11
10
0
1
1
1
1
1
1
所以,
2.8:
(2)画卡诺图如下:
BC 00 A
01
11
10
0
1
1
0
1
1
1
1
1
1
编辑版 word
2.9:
(1)画
CD AB
00
01
11
10
00
1
1
1
1
01
1
1
11
×
×
×
10
1
×
×
2.10:
如下:
(3)解:化简最小项式: 最大项式: 2.13:
Y ABC ABC ABC ABC ABC ABC AB
(3)写出 4 选 1 数据选择器的输出逻辑表达式Y
Y A1 A0 D0 A1 A0 D1 A1 A0 D2 A1 A0 D3 (4)将逻辑表达式Y 和 Y 进行比较
设Y Y , A A1, B A0
以及 D1 D2 C
练习题:
5.1
,1,1,0,0,1,0,0,1
5.5 5.8:
编辑版 word
5.9 (a)、(e)
5.14 解:由图 P5.14(a)可知
Qn1 0
Q1n
Q
n 0
(CP
下降沿有效)
Qn1 1
Q
n 0
(CP
上升沿有效)
根据给定的 CP 电压波形可画出 Q0 和 Q1 的电压波形图,如下图所示:
编辑版 word
(1)使用与非门设计:
逻辑电路如下:
(2)使用或非门设计:
编辑版 word
4.15、 (2)解: 1、写出逻辑函数的最小项表达式
YB (AB AB )C (AB A B )C AB C ABC ABC A BC m1 m2 m4 m7
2、将逻辑函数 Y 和 CT74LS138 的输出表达式进行比较
《数字电路与逻辑设计》作业
教材:《数字电子技术基础》
(高等教育出版社,第 2 版,2012 年第 7 次印刷)
第一章:
自测题:
一、 1、小规模集成电路,中规模集成电路,大规模集成电路,超大规模集成电路 5、各位权系数之和,179 9、01100101,01100101,01100110;
11100101,10011010,10011011 二、 1、× 8、√ 10、× 三、 1、A 4、B
设地址变量为 A1、A0,则
Y A1 A0 D0 A1 A0 D1 A1 A0 D2 A1 A0 D3 ③比较逻辑函数Y 和Y 式中变量的对应关系使得Y Y