高考数学复数习题及答案
高考数学《复数》专项练习(含答案)

【复数】专项练习参考答案1.〔2021全国Ⅰ卷,文2,5分〕设(12i)(i)a ++的实部与虚部相等,其中a 为实数,那么a =( )〔A 〕−3 〔B 〕−2 〔C 〕2 〔D 〕3 【答案】A【解析】(12i)(i)2(12)i a a a ++=-++,由,得a a 212+=-,解得3-=a ,选A .2.〔2021全国Ⅰ卷,理2,5分〕设(1i)1i x y +=+,其中x ,y 是实数,那么i =x y +( )〔A 〕1 〔B 〔C 〔D 〕2 【答案】B【解析】因为(1i)=1+i,x y +所以i=1+i,=1,1,|i |=|1+i |x x y x y x x y +==+=所以故应选B .3.〔2021全国Ⅱ卷,文2,5分〕设复数z 满足i 3i z +=-,那么z =( ) 〔A 〕12i -+ 〔B 〕12i - 〔C 〕32i + 〔D 〕32i - 【答案】C【解析】由i 3i z +=-得32i z =-,所以32i z =+,应选C .4.〔2021全国Ⅱ卷,理1,5分〕(3)(1)i z m m =++-在复平面内对应的点在第四象限,那么实数m 的取值范围是( )〔A 〕(31)-, 〔B 〕(13)-, 〔C 〕(1,)∞+ 〔D 〕(3)∞--,5.〔2021全国Ⅲ卷,文2,5分〕假设43i z =+,那么||zz =( ) 〔A 〕1 〔B 〕1- 〔C 〕43i 55+ 〔D 〕43i 55-【答案】D【解析】∵43i z =+,∴z =4-3i ,|z |=2234+.那么43i ||55z z ==-,应选D .6.〔2021全国Ⅲ卷,理2,5分〕假设z =1+2i ,那么4i1zz =-( ) (A)1 (B)−1 (C)i (D)−i 【答案】C【解析】∵z =1+2i ,∴z =1-2i ,那么4i 4ii (12i)(12i)11zz ==+---,应选C . 7.〔2021全国Ⅰ卷,文3,5分〕复数z 满足(z -1)i =1+i ,那么z =( )A .-2-iB .-2+iC .2-iD .2+i【答案】C【解析一】(z -1)i =1+i ⇒ zi -i =1+i ⇒ zi =1+2i ⇒ z =1+2i i=(1+2i)i i 2=2-i .应选C .【解析二】(z -1)i =1+i ⇒ z -1=1+i i⇒ z =1+i i+1 ⇒z =(1+i)i i 2+1=2-i .应选C .8.〔2021全国Ⅰ卷,理1,5分〕设复数z 满足1+z1z-=i ,那么|z|=( )〔A 〕1 〔B 〔C 〔D 〕2 【答案】A 【解析一】1+z1z-=i ⇒ 1+z =i(1-z) ⇒ 1+z =i -zi ⇒ z +zi =-1+i ⇒ (1+i)z =-1+i ⇒9.〔2021全国Ⅱ卷,文2,5分〕假设a 为实数,且2+ai 1+i=3+i ,那么a =( )A .-4B .-3C .3D .4 【答案】D【解析】由得2+ai =(1+i)(3+i)=2+4i ,所以a =4,应选D .10.〔2021全国Ⅱ卷,理2,5分〕假设a 为实数,且(2+ai)(a -2i)=-4i ,那么a =( )A .-1B .0C .1D .2 【答案】B【解析】(2+ai)(a -2i)=-4i ⇒ 2a -4i +a 2i +2a =-4i ⇒ 2a -4i +a 2i +2a +4i =0⇒ 4a +a 2i =0 ⇒ a =0.11.〔2021全国Ⅰ卷,文3,5分〕设z =11+i+i ,那么|z|=( )A .12 B .√22 C .√32 D .2 【答案】B 【解析】z =11+i+i =1-i 2+i =12+12i ,因此|z|=√(12)2+(12)2=√12=√22,应选B .12.(1+i )3(1-i )2=( )A .1+iB .1-iC .-1+iD .-1-i 【答案】D 【解析】(1+i )3(1-i )2=(1+i )2(1+i)(1-i )2·=(1+i 2+2i)(1+i)1+i 2-2i==2i(1+i)-2i=-(1+i)=-1-i ,应选D .13.〔2021全国Ⅱ卷,文2,5分〕1+3i 1-i=( )A .1+2iB .-1+2iC .1-2iD .-1-2i【答案】B 【解析】1+3i 1-i=(1+3i )(1+i )(1-i )(1+i )=-2+4i 2=-1+2i ,应选B .14.〔2021全国Ⅱ卷,理2,5分〕设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,那么z 1z 2=( )A .-5B .5C .-4+iD .-4-i【答案】A【解析】由题意得z 2=-2+i ,∴z 1z 2=(2+i)(-2+i)=-5,应选A .15.〔2021全国Ⅰ卷,文2,5分〕1+2i (1-i )2=( )A .-1-12i B .-1+12i C .1+12i D .1-12i 【答案】B 【解析】1+2i(1-i )2=1+2i -2i=(1+2i )i (-2i )i=-2+i 2=-1+12i ,应选B .16.〔2021全国Ⅰ卷,理2,5分〕假设复数z 满足(3-4i)z =|4+3i|,那么z 的虚部为( )A .-4B .-45 C .4 D .45 【答案】D【解析】∵|4+3i|=√42+32=5,∴(3-4i)z =5,∴z=53-4i=5(3+4i )25=35+45i ,虚部为45,应选D .17.〔2021全国Ⅱ卷,文2,5分〕|21+i|=( )A .2√2B .2C .√2D .1【答案】C 【解析】|21+i|=|2(1-i )2|=|1-i|=22)1(1-+=√2.选C .18〔2021全国Ⅱ卷,理2,5分〕设复数z 满足(1-i)z =2i ,那么z =( )A .-1+iB .-1-iC .1+iD .1-i 【答案】A【解析】由题意得z =2i1-i=2i ·(1+i )(1−i )(1+i)=2i +2i 22=2i−22=-1+i ,应选A .19.〔2021全国卷,文2,5分〕复数z =-3+i 2+i的共轭复数是( ) A .2+i B .2-I C .-1+iD .-1-i【答案】D【解析】z =-3+i 2+i=(-3+i )(2-i )(2+i )(2-i )=-5+5i 5=-1+i ,∴z =-1-i ,应选D .20.〔2021全国卷,文2,5分〕复数5i1-2i=( )A .2-iB .1-2iC .-2+iD .-1+2i【答案】C 【解析】5i 1-2i=5i (1+2i )(1-2i )(1+2i )=5(i -2)5=-2+i ,应选C .21.〔2021北京,文2,5分〕复数( ) 〔A 〕i 〔B 〕1+i 〔C 〕 〔D 〕【答案】A 【解析】,应选A .22.〔2021北京,理9,5分〕设,假设复数在复平面内对应的点位于实轴上,那么_____________. 【答案】-1【解析】(1+i)(a +i)=a +i +ai +i 2=a +i +ai -1=(a -1)+(1+a)i ,由题意得虚部为0,即(1+a)=0,解得a =-1. 23.〔2021江苏,文/理2,5分〕复数其中i 为虚数单位,那么z 的实部是____.【答案】524.〔2021山东,文2,5分〕假设复数21iz =-,其中i 为虚数单位,那么z =( ) 〔A 〕1+i〔B 〕1−i〔C 〕−1+i 〔D 〕−1−i【答案】B25.〔2021山东,理1,5分〕假设复数z 满足232i,z z +=- 其中i 为虚数单位,那么z =( )〔A 〕1+2i 〔B 〕1-2i 〔C 〕12i -+ 〔D 〕12i --【答案】B26.〔2021上海,文/理2,5分〕设32iiz +=,其中i 为虚数单位,那么z 的虚部等于_______. 【答案】-312i=2i+-i -1i -12i (12i)(2i)2i 4i 2i 2i (2i)(2i)5+++++-===--+a ∈R (1i)(i)a ++a =(12i)(3i),z =+-【解析】32i 23i,iz +==-故z 的虚部等于−3.27.〔2021四川,文1,5分〕设i 为虚数单位,那么复数(1+i)2=( )(A) 0 (B)2 (C)2i (D)2+2i 【答案】C【解析】22(1i)12i i 2i +=++=,应选C .28.〔2021天津,文9,5分〕i 是虚数单位,复数z 满足(1i)2z +=,那么z 的实部为_______.【答案】1【解析】2(1)211i i iz z +=⇒==-+,所以z 的实部为1.29.〔2021天津,理9,5分〕,a b ∈R ,i 是虚数单位,假设(1+i)(1-b i)=a ,那么ab的值为____.【答案】2【解析】由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩,2ab=,故答案为2.。
2022年山东新高考数学专项练习试题(含解析)——复数

一、单选题1.已知是虚数单位,复数,为z的共轭复数,则()A. B. C. D.2.复数()A. B. C. D.3.设复数,其中为虚数单位,则的虚部为()A. B. C. D.4.设复数满足,则()A. 1B.C.D.5.当时,复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.若复数(为虚数单位),则复数在复平面上对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.下列四个命题中是假命题的是()A. 若复数z满足,则z是虚数B. 若直线的倾斜率为,则直线的倾斜角为C. 若,,事件A,B相互独立和A,B相互互斥不能同时成立D. 若,,,为锐角,则实数m的取值范围是8.已知复数(i为虚数单位,),若,从M中任取一个元素,其模为1的概率为()A. B. C. D.9.已知复数,则()A. B. C. D.10.已知是虚数单位,则复数的虚部是()A.B.C.D.11.若z(1+i)=2i,则z=()A. -1-iB. -1+iC. 1-iD. 1+i12.设z= ,则|z|=()A. 2B.C.D. 113.设,则=()A. 0B.C. 1D.14.复数 (i为虚数单位)的共轭复数是()A. 1+iB. 1−iC. −1+iD. −1−i15.设z=-3+2i,则在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限16.设z=i(2+i),则=()A. 1+2iB. -1+2iC. 1-2iD. -1-2i17.设复数z满足,z在复平面内对应的点为(x,y),则()A. B. C. D.18.若,则z=()A. 1–iB. 1+iC. –iD. i19.在复平面内,复数的共轭复数对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限20.复平面内表示复数z=i(﹣2+i)的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限21.( )A. B. C. D.22.设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1= ;p4:若复数z∈R,则∈R.其中的真命题为()A. p1,p3B. p1,p4C. p2,p3D. p2,p423.i(2+3i)=()A. 3-2iB. 3+2iC. -3-2iD. -3+2i24.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A. ﹣5B. 5C. ﹣4+iD. ﹣4﹣i25.复数的虚部是()A. B. C. D.26.已知复数z=2+i,则=()A. B. C. 3 D. 527.设复数z满足(1+i)z=2i,则|z|=()A. B. C. D. 228.=()A. -3-iB. -3+iC. 3-iD. 3+i29.已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件30.已知复数z的模为2,则|z-i|的最大值为( )A. 1B. 2C.D. 331.下面是关于复数的四个命题:其中的真命题为()的共轭复数为的虚部为-1A.B.C.D.32.复数的共轭复数是()A.B.iC.D.33.若复数z满足,则z的共轭复数在复平面内对应的点在第()象限A.一B.二C.三D.四34.若虚数z满足,则()A.B.2C.4D.0或235.已知,则()A.B.C.D.36.复数(i为虚数单位)的共轭复数()A.B.C.D.37.已知复数满足,则复数的虚部为()A.1B.C.D.-138.已知为虚数单位,复数满足,则()A.B.C.D.39.复数,则()A.B.4C.D.40.已知复数(为虚数单位),则()A.1B.C.D.241.复数在复平面内对应点的坐标为()A.B.C.D.42.复平面内表示复数的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限43.设i为虚数单位,则()A. B. C. D.44.已知是关于x的方程()的一个根,则()A. -1B. 1C. -3D. 345.设是虚数单位,若复数满足,则复数对应的点位于复平面的()A. 第一象限B. 第二象限C. 第三象限D. 第四象限46.=()A. ﹣1B. ﹣iC. 1D. i47.已知复数,是z的共轭复数,,在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限48.设复数、在复平面内对应的点关于实轴对称,若,则()A. B. C. D.49.设i为虚数单位,则()A. B. C. D.答案解析部分一、单选题1.【答案】 D【解析】【解答】由题得,所以,故答案为:D【分析】首先由复数代数形式的运算性质整理,再由共轭复数的概念即可得出答案。
高考数学《复数》专项练习(含答案)

《复数》专项练习参考答案1.(2016全国Ⅰ卷,文2,5分)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a =( )(A )−3 (B )−2 (C)2 (D )3 【答案】A【解析】(12i)(i)2(12)i a a a ++=-++,由已知,得a a 212+=-,解得3-=a ,选A .2.(2016全国Ⅰ卷,理2,5分)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( )(A )1 (B)2 (C )3 (D )2 【答案】B【解析】因为(1i)=1+i,x y +所以i=1+i,=1,1,|i |=|1+i |2,x x y x y x x y +==+=所以故故选B .3.(2016全国Ⅱ卷,文2,5分)设复数z 满足i 3i z +=-,则z =( ) (A )12i -+ (B )12i - (C)32i + (D )32i - 【答案】C【解析】由i 3i z +=-得32i z =-,所以32i z =+,故选C . 4.(2016全国Ⅱ卷,理1,5分)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )(A )(31)-, (B)(13)-, (C )(1,)∞+ (D )(3)∞--,5.(2016全国Ⅲ卷,文2,5分)若43i z =+,则||zz =( )(A)1 (B)1- (C )43i 55+ (D )43i 55-【答案】D【解析】∵43i z =+,∴z =4-3i ,|z |=2234+.则2243i 43i ||5543z z -==-+,故选D .6.(2016全国Ⅲ卷,理2,5分)若z =1+2i ,则4i1zz =-( ) (A )1 (B )−1 (C)i (D)−i【答案】C【解析】∵z =1+2i ,∴z =1-2i ,则4i 4ii (12i)(12i)11zz ==+---,故选C . 7.(2015全国Ⅰ卷,文3,5分)已知复数z 满足(z -1)i =1+i ,则z =( )A .-2-iB .-2+iC .2-iD .2+i 【答案】C【解析一】(z -1)i =1+i ⇒ zi -i =1+i ⇒ zi =1+2i ⇒ z ===2-i .故选C .【解析二】(z -1)i =1+i ⇒ z -1=⇒ z =+1 ⇒z =+1=2-i .故选C.8.(2015全国Ⅰ卷,理1,5分)设复数z满足1+z1z-=i,则|z|=()(A)1(B)2(C)3(D)2 【答案】A【解析一】1+z1z-=i⇒1+z=i(1-z)⇒1+z=i-zi⇒z+zi=-1+i ⇒(1+i)z=-1+i⇒9.(2015全国Ⅱ卷,文2,5分)若a为实数,且=3+i,则a=()A.-4B.-3C.3D.4【答案】D【解析】由已知得2+ai=(1+i)(3+i)=2+4i,所以a=4,故选D.10.(2015全国Ⅱ卷,理2,5分)若a为实数,且(2+ai)(a-2i)=-4i,则a=()A.-1B.0C.1D.2【答案】B【解析】(2+ai)(a-2i)=-4i⇒2a-4i+a2i+2a=-4i⇒2a-4i+a2i+2a+4i =0⇒4a+a2i=0⇒a=0.11.(2014全国Ⅰ卷,文3,5分)设z=+i,则|z|=()A.B.C.D.2【答案】B【解析】z=+i=+i=i,因此|z|=,故选B.12.=()A.1+i B.1-i C.-1+i D.-1-i【答案】D【解析】·====-(1+i)=-1-i,故选D.13.(2014全国Ⅱ卷,文2,5分)=()A.1+2i B.-1+2i C.1-2i D.-1-2i【答案】B【解析】==-1+2i,故选B.14.(2014全国Ⅱ卷,理2,5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A .-5B .5C .-4+iD .-4-i 【答案】A【解析】由题意得z 2=-2+i ,∴z 1z 2=(2+i)(-2+i )=-5,故选A .15.(2013全国Ⅰ卷,文2,5分)=( )A .-1-B .-1+C .1+D .1-i【答案】B 【解析】=-1+i ,故选B .16.(2013全国Ⅰ卷,理2,5分)若复数z 满足(3-4i )z =|4+3i |,则z 的虚部为( )A .-4B .-C .4D . 【答案】D【解析】∵|4+3i |==5,∴(3-4i )z =5,∴z =i ,虚部为,故选D .17.(2013全国Ⅱ卷,文2,5分)=( )A .2B .2C .D .1 【答案】C【解析】=|1-i|=22)1(1-+=.选C .18(2013全国Ⅱ卷,理2,5分)设复数z 满足(1-i )z =2i,则z =( )A .-1+iB .-1-iC .1+iD .1-i 【答案】A【解析】由题意得z =====-1+i ,故选A .19.(2012全国卷,文2,5分)复数z =的共轭复数是( ) A .2+i B .2-I C .-1+i D .-1-i【答案】D【解析】z ==-1+i ,∴=-1-i ,故选D .20.(2011全国卷,文2,5分)复数=( )A .2-iB .1-2iC .-2+iD .-1+2i 【答案】C【解析】=-2+i ,故选C .21.(2016北京,文2,5分)复数12i=2i+-( )(A)i (B )1+i (C )i - (D )1i - 【答案】A 【解析】12i (12i)(2i)2i 4i 2i 2i (2i)(2i)5+++++-===--+,故选A .22.(2016北京,理9,5分)设a ∈R ,若复数(1i)(i)a ++在复平面内对应的点位于实轴上,则a =_____________. 【答案】-1【解析】(1+i )(a +i)=a +i +ai +i 2=a +i +ai -1=(a -1)+(1+a)i ,由题意得虚部为0,即(1+a )=0,解得a =-1. 23.(2016江苏,文/理2,5分)复数(12i)(3i),z =+-其中i 为虚数单位,则z 的实部是____.【答案】524.(2016山东,文2,5分)若复数21i z =-,其中i 为虚数单位,则z =( ) (A )1+i(B )1−i(C )−1+i (D )−1−i【答案】B25.(2016山东,理1,5分)若复数z 满足232i,z z +=- 其中i 为虚数单位,则z =( )(A)1+2i (B)1-2i (C )12i -+ (D )12i -- 【答案】B26.(2016上海,文/理2,5分)设32iiz +=,其中i 为虚数单位,则z 的虚部等于_______. 【答案】-3【解析】32i 23i,iz +==-故z 的虚部等于−3.27.(2016四川,文1,5分)设i 为虚数单位,则复数(1+i)2=( )(A) 0 (B )2 (C)2i (D )2+2i 【答案】C 【解析】22(1i)12i i 2i +=++=,故选C .28.(2016天津,文9,5分)i 是虚数单位,复数z 满足(1i)2z +=,则z 的实部为_______.【答案】1【解析】2(1)211i i iz z +=⇒==-+,所以z 的实部为1.29.(2016天津,理9,5分)已知,a b ∈R ,i 是虚数单位,若(1+i)(1-b i )=a ,则ab的值为____.【答案】2【解析】由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩,2ab=,故答案为2.。
2023届高考复习数学专项(复数及推理与证明)好题练习(附答案)

2023届高考复习数学专项(复数及推理与证明)好题练习1.若复数:::满足(l�i)z=3+i<其中i是虚数单位),则()A.二的实部是2B.=的虚部是2iC.乞=1-2i2.已知复数z=3-4i, 则下列命题中正确的为()A.l z l= 5B.z=3+4iC. z的虚部为-4iD.z在复平而上对应点在第四象限3.下面四个命题中的真命题为()1A.若复数z满足-ER,则zERB.若复数z满足/ER,则zERC.若复数Z1,Z2满足z亿2ER,则z1=D.若复数zE R,则豆ER Z2D.lzl=✓S4.已知复数二满足i2k+1z=2+i,-(kE z), 则z在复平面内对应的点可能位于()A.第一象限B.第二象限C.第三象限D.第四象限5.设z是复数,则下列命题中的真命题是()A.若z2�o.则z是实数B.若z2<o,则z是虚数C.若z是虚数,则z2�oo.若z是纯虚数,则z2<o6.已知Z1与Z-2是共枙虚数,以下四个命题一定正确的是()2 2A. Z l <i z2B. zi z2=z Z2C.z1+z2E Rz+l.7设复数z满足——=i,则下列说法错误的是()A.z为纯虚数B.z的虚部为一-i2C.在复平而内,z对应的点位千第二象限D.z=-—ZtD .• —ERZ28.某大学进行自主招生测试,盂要对逻辑思维和阅读表达进行能力测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如图所示,下列叙述正确的是( )A .甲同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前B .乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C .甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前D .甲同学的总成绩排名比丙同学的总成绩排名更靠前 9.在0,0a b >>的条件下,下列四个结论正确的是( ) A .22a b aba b+≥+B .2a b +≤C .22a b a b b a+≤+D .设,,a b c 都是正数,则三个数111,,a b c b c a+++至少有一个不小于2 10.如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是( )A.2018年3月至2019年3月全国居民消费价格同比均上涨B.2018年3月至2019年3月全国居民消费价格环比有涨有跌C.2019年3月全国居民消费价格同比涨幅最大D.2019年3月全国居民消费价格环比变化最快参考答案1.若复数:::满足(l�i)z=3+i<其中i是虚数单位),则()D.lzl=✓S A. 二的实部是2 B.=的虚部是2i C.乞=1-2i【参考答案】CD3 +i(3 +i)(l +i) 2 + 4i—= = = 1+2i,【答宋解析】z=l—1 2 2即二的实部是1,虚部是2'故A错误,B铅误,又亏=1—2i,121 =✓1三了-= Js'故C,D均正确故选CD2. 已知复数z=3-4i, 则下列命题中正确的为()A.l z l= 5B.z=3+4iC. z的虚部为-4iD. z在复平面上对应点在第四象限【参考答案】ABD【答案解析】:;=3-4i, 则仁l=F五二正=5.故A正确;�=3+4i, 故B正确;二的虚部为4,故C铅误;二在复平面上对应点的坐标为(3,-4), 在第四象限,故D正确.:.命题中正确的个数为3.故选ABD.3.下而四个命题中的真命题为()1A. 若复数z满足-E R,则zE RB.若复数z满足/E R,则zE RC. 若复数Z1,Z2满足z亿2R,则z=22D.若复数zE R,则�E R【参考答案】AD1【答案解析】若复数二满足-E R,则二E R,故命题A为真命题;复数z =i 满足z 2=﹣1∈R ,则z ∉R ,故命题B 为假命题; 若复数z 1=i ,z 2=2i 满足z 1z 2∈R ,但z 1≠,故命题C 为假命题;若复数z ∈R ,则=z ∈R ,故命题D 为真命题. 故选:AD .4.已知复数z 满足212k i z i +=+,()k z ∈,则z 在复平面内对应的点可能位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【参考答案】BD【答案解析】212k i z i +=+ ,212k iz i ++∴=15i i i === ,37i i i ===-当k 为奇数时 ()2122212k i ii i z i i i i i++++∴====-+--⨯ 在复平面上对应的点为()1,2-位于第二象限; 当k 为偶数时 ()2122212k i ii i z i i i i i++++∴====-⨯ 在复平面上对应的点为()1,2-位于第四象限;故复数z 在复平面内对应的点位于第二象限或第四象限. 故选BD5.设z 是复数,则下列命题中的真命题是( ) A .若z 2≥0,则z 是实数 B .若z 2<0,则z 是虚数C .若z 是虚数,则z 2≥0 D .若z 是纯虚数,则z 2<0 【参考答案】ABD【答案解析】设z =a +bi ,a ,b ∈R ,z 2=a 2﹣b 2+2abi , 对于A ,z 2≥0,则b =0,所以z 是实数,真命题;对于B ,z 2<0,则a =0,且b ≠0,⇒z 是虚数;所以B 为真命题; 对于C ,z 是虚数,则b ≠0,所以z 2≥0是假命题.对于D ,z 是纯虚数,则a =0,b ≠0,所以z 2<0是真命题;故选ABD.6.已知z1与z2是共轭虚数,以下四个命题一定正确的是( )A.z12<|z2|2B.z1z2=|z1z2| C.z1+z2∈R D.∈R【参考答案】BC【答案解析】解:z1与z2是共轭虚数,设z1=a+bi,z2=a﹣bi(a,b∈R).z12<|z2|2;=a2﹣b2+2abi,复数不能比较大小,因此A不正确;z1z2=|z1z2|=a2+b2,B正确;z1+z2=2a∈R,C正确;===+i不一定是实数,因此D不一定正确.故选:BC.7.设复数z满足,则下列说法错误的是( )A.z为纯虚数B.z的虚部为C.在复平面内,z对应的点位于第二象限D.|z|=【参考答案】ABC【答案解析】∵z+1=zi,设z=a+bi,则(a+1)+bi=﹣b+ai,∴,解得.∴z=.∴|z|=,复数z的虚部为,8.某大学进行自主招生测试,需要对逻辑思维和阅读表达进行能力测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如图所示,下列叙述正确的是()A .甲同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前B .乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C .甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前D .甲同学的总成绩排名比丙同学的总成绩排名更靠前 【参考答案】AC【答案解析】根据图示,可得甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前, 他的阅读表达成绩排名靠后.故选AC.9.在0,0a b >>的条件下,下列四个结论正确的是( )A .22a b aba b+≥+ B .2a b +≤C .22a b a b b a +≤+D .设,,a b c 都是正数,则三个数111,,a b c b c a+++至少有一个不小于2 【参考答案】ABD 【答案解析】选项A:222()4()22022()2()220,0a b ab a b ab a b a b ab a b aba b a b a b a b a b a b++--++-==∴-≥∴≥+++>+>+ ,故本选项是正确的;选项B:因为0,0a b >>,22222222()()02244a b a b a b ab a b ++++--=-=≥,所以2a b +≤,因此本选项是正确的; 选项C:222233222()()()()()a b a b ab a b a b a b a b a b b a a b b a ab ab ab +---+-+-+-+===-,因为0,0a b >>,所以22222()()()0a b b a b a a b a b a b b a ab b a+-+-+=-≤⇒+≥+,因此本选项是不正确的;选项D:根据本选项特征,用反证法来解答.假设三个数111,,a b c b c a+++至少有一个不小于2不成立,则三个数111,,a b c b c a+++都小于2,所以这三个数的和小于6,而111111()(()6a b c a b cb c a a b c+++++=+++++≥++=(当且仅当1a b c===时取等号),显然与这三个数的和小于6矛盾,故假设不成立,即三个数111,,a b cb c a+++至少有一个不小于2,故本选项是正确的.故选:ABD10.如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是()A.2018年3月至2019年3月全国居民消费价格同比均上涨B.2018年3月至2019年3月全国居民消费价格环比有涨有跌C.2019年3月全国居民消费价格同比涨幅最大D.2019年3月全国居民消费价格环比变化最快【参考答案】ABD【答案解析】对于选项A,从图可以看出同比涨跌幅均为正数,故A正确;对于选项B,从图可以看出环比涨跌幅有正数有负数,故B正确;对于选项C,从图可以看出同比涨幅最大的是2018年9月份和2018年10月份,故C错误;对于选项D,从图可以看出2019年3月全国居民消费价格环比变化最快,故D正确.故选ABD.。
高考数学专题《复数》习题含答案解析

专题10.2 复数1.(2020·全国高考真题(理))复数113i-的虚部是( )A .310-B .110-C .110D .310【答案】D 【解析】因为1131313(13)(13)1010i z i i i i +===+--+,所以复数113z i =-的虚部为310.故选:D.2.(2020·全国高考真题(文))(1–i )4=( )A .–4B .4C .–4i D .4i【答案】A 【解析】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-.故选:A.3.(2021·北京·高考真题)在复平面内,复数z 满足(1)2i z -=,则z =( )A .1i --B .1i-+C .1i-D .1i+【答案】D 【分析】由题意利用复数的运算法则整理计算即可求得最终结果.【详解】由题意可得:()()()()2121211112i i z i i i i ++====+--+.故选:D.4.(2021·全国·高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i-C .62i+D .42i+【答案】C 【分析】练基础利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i+=-+--=+故选:C.5.(2021·全国·高考真题(文))已知2(1)32i z i -=+,则z =( )A .312i--B .312i-+C .32i-+D .32i--【答案】B 【分析】由已知得322iz i+=-,根据复数除法运算法则,即可求解.【详解】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++⋅-+====-+--⋅.故选:B.6.(2021·全国·高考真题(理))设()()2346z z z z i ++-=+,则z =( )A .12i -B .12i+C .1i+D .1i-【答案】C 【分析】设z a bi =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【详解】设z a bi =+,则z a bi =-,则()()234646z z z z a bi i ++-=+=+,所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1z i =+.故选:C.7.(2021·全国·高考真题(文))设i 43i z =+,则z =( )A .–34i -B .34i-+C .34i-D .34i+【答案】C 【分析】由题意结合复数的运算法则即可求得z 的值.【详解】由题意可得:()2434343341i i i i z i i i ++-====--.故选:C.8.(2021·浙江·高考真题)已知a R ∈,()13ai i i +=+,(i 为虚数单位),则a =( )A .1-B .1C .3-D .3【答案】C 【分析】首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数a 的值.【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-.故选:C.9.(2019·北京高考真题(文))已知复数z =2+i ,则( )ABC .3D .5【答案】D 【解析】∵ 故选D.10.(2019·全国高考真题(文))设,则=( )A.2B CD .1【答案】C 【解析】因为,所以,所以,故选C .1.(2010·山东高考真题(文))已知 ,,其中 为虚数单位,则=( )A .-1B .1C .2D .3【答案】B 【解析】z z ⋅=z 2i,z z (2i)(2i)5=+⋅=+-=3i12iz -=+z 312iz i -=+(3)(12)17(12)(12)55i i z i i i --==-+-z ==2a ib i i+=+,a b ∈R i +a b 练提升因为 ,,所以,则,故选B.2.(全国高考真题(理))复数的共轭复数是( )A .B .iC .D .【答案】A 【解析】,故其共轭复数为.所以选A.3.(2018·全国高考真题(理))设,则( )A .B .C .D【答案】C 【解析】,则,故选c.4.(2009·重庆高考真题(理))已知复数的实部为,虚部为2,则的共轭复数是( )A .B .C .D .【答案】B 【解析】由题意得:所以,共轭负数为2+i 故选B5.(2017·山东高考真题(理))已知,是虚数单位,若,,22222a i ai i ai b i i i+--==-=+-,a b ∈R 2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩+1a b =212ii+-i -35i-35i()()()()2i 12i 5i i12i 12i 5++==-+i -1i2i 1iz -=++||z =0121()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+i 2i i =-+=1z =z 1-5iz2i -2i+2i--2i-+R a ∈i z a =4z z ⋅=则( )A .1或B或C .D【答案】A 【解析】由得,所以,故选A.6.(2021·广东龙岗·高三期中)已知复数z 满足()2i 34i z +=+(其中i 为虚数单位),则复数z =( )A .2i -B .2i-+C .2i+D .2i--【答案】C 【分析】根据复数除法运算求出z ,即可得出答案.【详解】()2i 35z +=+= ,()()()52i 52i 2i 2i 2i z -∴===-++-,则2i z =+.故选:C.7.(2021·安徽·合肥一六八中学高一期中)欧拉公式i s co in s i x e x x +=(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i 3e π表示的复数位于复平面中的( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】先由欧拉公式计算可得312e π=,然后根据复数的几何意义作出判断即可.【详解】根据题意i s co in s i xe x x +=,故i3is n 1cos 33i 2e πππ=+=,对应点12⎛ ⎝,在第一象限.故选:A .8.【多选题】(2021·全国·模拟预测)已知复数z =(i 为虚数单位),则下列说法正确的是()A .复数z 在复平面内对应的点坐标为()sin 3cos3,sin 3cos3+-a =1-,4z a z z =+⋅=234a +=1a =±B .z 的虚部为C .2z z ⋅=D .z ⋅为纯虚数【答案】CD 【分析】根据复数的概念、共轭复数的概念、复数的几何意义以及四则运算法则即可求解.【详解】复数3cos3i sin 3cos3z =++-.因为334ππ<<,所以sin 3cos3304π⎛⎫+=+< ⎪⎝⎭,sin 3cos30->,所以原式()()sin 3cos3i sin 3cos3=-++-,所以选项A 错误;复数z B错误;222z z ⋅=+=,所以选项C 正确;z ⋅=()i 1sin 61sin 62i⋅=++-=,所以选项D 正确.故选:CD.9.【多选题】(2021·河北武强中学高三月考)已知复数cos isin z θθ=+(其中i 为虚数单位),下列说法正确的是( )A .1z z ⋅=B .1z z+为实数C .若83πθ=,则复数z 在复平面上对应的点落在第一象限D .若(0,)θπ∈,复数z 是纯虚数,则2πθ=【答案】ABD 【分析】对选项A ,根据计算1z z ⋅=即可判断A 正确,对选项B ,根据12cos z zθ+=即可判断B 正确,对选项C ,根据88cosisin 33z ππ=+在复平面对应的点落在第二象限,即可判断C 错误,对选项D ,根据z 是纯虚数得到2πθ=即可判断D 正确.【详解】对选项A ,()()()2222cos isin cos isin cos isin cos sin 1z z θθθθθθθθ⋅=+-=-=+=,故A 正确.对选项B ,因为11cos isin cos isin z z θθθθ+=+++()()cos isin cos isin cos isin cos isin θθθθθθθθ-=+++-cos isin cos isin 2cos θθθθθ=++-=,所以1z z+为实数.故B 正确.对选项C ,因为83πθ=为第二象限角,所以8cos03π<,8sin 03π>,所以88cos isin 33z ππ=+在复平面对应的点落在第二象限.故C 错误.对选项D ,复数z 是纯虚数,则cos 0sin 0θθ=⎧⎨≠⎩,又因为(0,)θπ∈,所以2πθ=,故D 正确.故选:ABD10.(2021·福建·厦门一中模拟预测)在复平面内,复数(,)z a bi a b R =+∈对应向量OZ(O为坐标原点),设||OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则(cos sin )z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:1111(cos sin )z r i θθ=+,2222(cos sin )z r i θθ=+,则12121212[cos()sin()]z z rr i θθθθ=+++,由棣莫弗定理可以推导出复数乘方公式:[(cos sin )](cos sin )n n r i r n i n θθθθ+=+,已知4)z i =,则||z =______;若复数ω满足()*10n n ω-=∈N ,则称复数ω为n 次单位根,若复数ω是6次单位根,且ω∉R ,请写出一个满足条件的ω=______.【答案】16 ()22cossin 1,2,4,566k k i k ππ+= 【分析】2(cos sin )66i i ππ+=+,则4222(cos sin )33z i ππ=+,再由||||z z =求解,由题意知61ω=,设cos sin i ωθθ=+,即可取一个符合题意的θ,即可得解.【详解】解: 2(cos sin )66i i ππ=+,∴4422)2(cos sin )33z i i ππ==+,则4||||216z z ===.由题意知61ω=,设cos sin i ωθθ=+,则6cos 6sin 61i ωθθ=+=,所以sin 60cos 61θθ=⎧⎨=⎩,又ω∉R ,所以sin 0θ≠,故可取3πθ=,则cossin33i ππω=+故答案为:16,cossin33i ππω=+(答案不唯一).1.(2021·江苏·高考真题)若复数z 满足()1i 3i z +=-,则z 的虚部等于( )A .4B .2C .-2D .-4【答案】C 【分析】利用复数的运算性质,化简得出12z i =-.【详解】若复数z 满足()1i 3i z +=-,则()()()()3i 1i 3i 12i 1i 1i 1i z ---===-++-,所以z 的虚部等于2-.故选:C.2.(2021·全国·高考真题)复数2i13i--在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】利用复数的除法可化简2i13i--,从而可求对应的点的位置.【详解】()()2i 13i 2i 55i 1i13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫ ⎪⎝⎭,该点在第一象限,故选:A.3.(2020·全国高考真题(理))若z=1+i ,则|z 2–2z |=( )A .0B .1C D .2练真题【答案】D 【解析】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.4.(2020·全国高考真题(文))若312i i z =++,则||=z ( )A .0B .1CD .2【答案】C 【解析】因为31+21+21z i i i i i =+=-=+,所以z ==故选:C .5.(2019·全国高考真题(理))设z =-3+2i ,则在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】由得则对应点(-3,-2)位于第三象限.故选C .6.(2018·江苏高考真题)若复数满足,其中i 是虚数单位,则的实部为________.【答案】2【解析】因为,则,则的实部为.z 32,z i =-+32,z i =--32,z i =--z i 12i z ⋅=+z i 12i z ⋅=+12i2i iz +==-z 2。
2024年高考数学高频考点题型总结一轮复习 复数(精练:基础+重难点)

2024年高考数学高频考点题型归纳与方法总结第26练复数(精练)一、单选题1.(2022·全国·统考高考真题)(22i)(12i)+-=()A .24i -+B .24i --C .62i+D .62i-【答案】D【分析】利用复数的乘法可求()()22i 12i +-.【详解】()()22i 12i 244i 2i 62i +-=+-+=-,故选:D.2.(2021·全国·统考高考真题)已知2i z =-,则()i z z +=()A .62i -B .42i -C .62i+D .42i+【答案】C【分析】利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i+=-+--=+故选:C.3.(2021·全国·高考真题)已知()21i 32i z -=+,则z =()A .31i2--B .31i2-+C .3i2-+D .3i2--【答案】B【分析】由已知得32i2iz +=-,根据复数除法运算法则,即可求解.【详解】()21i 2i 32i z z -=-=+,()32i i 32i 23i 31i 2i 2i i 22z +⋅+-+====-+--⋅.故选:B.4.(2022·全国·统考高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则()A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-【答案】A【分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可【详解】12z i=-【A组在基础中考查功底】一、单选题根据复数模的几何意义可知,如图可知,i z +的最小值是点故选:B.26.(2022·全国·高三专题练习)设A .13i22-C .31i 22--【答案】C【分析】首先利用诱导公式将复数出其共轭复数;【详解】解:因为sin15z =+ 所以()22sin15i cos15z =+= 22sin 15cos 152sin15cos15=-+ cos30sin 30i =-+ 31i 22=-+所以2z 的共轭复数是3122--故选:C【B 组在综合中考查能力】一、单选题1.(2023春·安徽亳州·高三校考阶段练习)已知A .3±B .3【答案】C。
(完整版)高考数学复数习题及答案

(完好版)高考数学复数习题及答案高考复数训练题3- i(C )1. (2013 ·东山 )复数 1- i 等于A .1+ 2iB . 1-2iC . 2+ iD . 2-i3+ 2i - 3- 2i = ( D )2. (2013 宁·夏、海南 )复数 2- 3i 2+ 3iA .0B . 2C .- 2iD .2i3. (2013 陕·西 )已知 z 是纯虚数, z + 2是实数,那么 z 等于 (D) 1- i A .2i B . iC .- iD .- 2i4. (2013 武·汉市高三年级 2 月调研考试 )若 f(x)= x 3- x 2+ x - 1,则 f(i) = (B)A .2iB . 0C .- 2iD .-22- i5. (2013 北·京旭日 4 月 )复数 z = 1+ i (i 是虚数单位 )在复平面内对应的点位于 ( D ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6. (2013 北·京东城3 月 )若将复数 2+i 表示为 a + bi(a , b ∈ R , i 是虚数单位 )的形式,则 b的值为 ia( A ) ,°则 z 2等于 ( B ) 7. (2013 北·京西城 4 月 )设 i 是虚数单位,复数 z = tan45 -° i sin60· A. 7- 3i B. 1- 3i 44C. 7+ 3i D. 1+ 3i 4 48. (2013 黄·冈中学一模 )过原点和 3- i 在复平面内对应的直线的倾斜角为(D)π π A. 6B .- 6 25 C.3πD.6πa + bi为实数,则(C )9.设 a 、b 、 c 、 d ∈R ,若 c + diA .bc + ad ≠ 0B . bc - ad ≠0C . bc - ad = 0D . bc + ad = 010.已知复数 z = 1-2i ,那么1=(D)z5+ 255- 2 5A. 55 iB. 55 iC. 1+2iD. 1- 2i555511.已知复数12z 1是实数,则实数 b 的值为(A)z =3- bi , z = 1- 2i ,若 z 21A .6B .- 6C . 0D.612. (2013 广·东 )设 z 是复数, α(z)表示知足 z n = 1 的最小正整数 n ,则对虚数单位 i , α(i)=( B )A .2B . 4C . 6D . 813.若 z = 1+ 3 4= a 4+ a 3+ a 2+ a( B )2 2 i ,且 (x - z) 0x 1x 2x 3x + a 4,则 a 2 等于A .- 1+ 3iB .- 3+ 3 3i2 2 C . 6+3 3i D .- 3-3 3i 14.若△ ABC 是锐角三角形,则复数 z = (cosB - sinA)+ i(sinB - cosA)对应的点位于 ( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2- bi15.假如复数 1+ 2i (此中 i 为虚数单位, b 为实数 )的实部和虚部互为相反数,那么b 等于( C )(完好版)高考数学复数习题及答案2 2A.2B. 3C .- 3D . 21 + 3( C)16.设函数 f(x)=- x 5+5x 4- 10x 3+ 10x 2- 5x +1,则 f(2i )的值为2A .-1 + 3iB.312 22- i2 1 +3 iD .-3 1C. 22+ i2217.若 i 是虚数单位,则知足 (p +qi )2= q + pi 的实数 p , q 一共有( D)A .1 对B .2 对C .3对D .4 对18.已知 2 - x 6的睁开式中,不含 x 的项是 20,那么正数 p 的值是( C)( 2) 27 x pA .1B . 2C . 3D . 419.复数 z =- lg(x 2+2) -(2x + 2-x -1)i(x ∈ R)在复平面内对应的点位于( C )A .第一象限B .第二象限C .第三象限D .第四象限 20.设复数 z + i(z ∈C )在映照 f 下的象为复数为A .2B . 2- 2iC .- 2+ i1+ ai 21. (2013 海·淀 4 月 )在复平面内,复数 iz 的共轭复数与 i 的积,若复数( A ) D . 2+ i(a ∈ R)对应的点位于虚轴上,则ω 在映照 f 下的象为- 1+ 2i ,则相应的 ωa =____0____.1 2 2 3 3 4 4 5 56 6 = _-8i_______.22. (2013 安·徽宿州二中模拟考三)i 是虚数单位,则6 6 + C 6 + C 6 i + C 6i+ C 61+ C i + C i ii1 i 201123. i 为虚数单位,则1 iA. iB.1C.iD.124. 若 ( x i)iy 2i, x, y R ,则复数 x yi =( ) A.2 iB.2 iC.12i D.1 2iai25.设 i 是虚数单位,复数 i 为纯虚数,则实数 a为(A )2(B ) 2( C )(D )26.设复数z知足 i (z1)3 2i (i 是虚数单位),则 z 的实部是 _________27.复数 15 ( i 是虚数单位)的模等于 .2 i.已知 < < ,复数 z a i i 是虚数单位 ) ,则 | z 的取值范围是 28 0 a 2 = + ( | A . (1, 3 ) B . (1, 5 ) C .(1,3) D. (1,5)2 29.下边是对于复数 z的四个命题:此中的真命题为()1 ip 1 : z 2p 2 : z 2 2ip 3 : z 的共轭复数为 1 ip 4 : z 的虚部为 1( A) p 2, p 3(B) p 1, p 2(C ) p , p( D ) p , p。
高考数学复数典型例题附答案

1, 已知复数求k的值。
的值。
解:解:,∴由的表示形式得k=2 即所求k=2 点评:点评:(i) 对于两个复数、,只要它们不全是实数,就不能比较大小,因此,、能够比较大小,均为实数。
均为实数。
比较大小,更无正负之分,因此,(ii)虚数不能与0比较大小,更无正负之分,因此,对于任意复数z,且R;且R。
2, 若方程有实根,求实数m的值,并求出此实根。
的值,并求出此实根。
解:设为该方程的实根,将其代入方程得由两复数相等的定义得,消去m得,故得当时得,原方程的实根为;当时得,原方程的实根为。
点评:对于虚系数一元方程的实根问题,一般解题思路为:设出实根——代入方程——利用两复数相等的充要条件求解。
充要条件求解。
3, 已知复数z满足,且z的对应点在第二象限,求a的取值范围。
的取值范围。
解:设,。
由得①对应点在第二象限,故有对应点在第二象限,故有②又由①得③由③得,即,∴,∴④于是由②,④得 ,即于是由②,④得再注意到a<0,故得即所求a的取值范围为点评:为利用导出关于a的不等式,再次利用①式:由①式中两复数相等切入,导出关于与a的关系式:此为解决这一问题的关键。
此外,这里对于有选择的局部代入以及与的相互转化,都展示了解题的灵活与技巧,请同学们注意领悟,借鉴。
4, 求同时满足下列两个条件的所有复数:(1);的实部与虚部都是整数。
(2)z的实部与虚部都是整数。
,则解:设,则由题意,∴∴y=0或(Ⅰ)当y=0时,,,∴由 得①∴由注意到当x<0时,;当x>0时,,此时①式无解。
此时①式无解。
(Ⅱ)当时,由得∴又这里x,y均为整数均为整数∴x=1,或x=3,,∴或于是综合(Ⅰ)(Ⅱ)得所求复数z=1+3i,1-3i,3+i,3-i. 5, (1)关于x的方程在复数集中的一个根为-2i,求a+b的值。
的值。
(2)若一元二次方程有虚根,且,试判断a,b,c所成数列的特征。
特征。
解:解:(1)解法一:解法一:由于∴由解:由题意得1z的两个方程R∴=122ab2|=2∴4=4=1=41515i151zz z=02z,下同解法一这些都是解决复数问题的常用方法2的最小值|=11)i133=1时,上式取等号zz 2200220001452225x x x x x æö+++++ç÷èø455225+222z 224(4)4z a -+132(4)413a -+222AC ABz z w ()(03313333z z yi y x x - 33333x )33设直线上任意一点(),P x y 经过变换后得到的()3,3Q x y x y +-仍然在该直线上仍然在该直线上 ()()()33313x y k x y b k y k x b Þ-=++Þ-+=-+当0b ¹时,方程组()3113k k kì-+=ïíï-=î无解无解 当0b =时,()231333230313或k k k k k k-+-=Þ+-=Þ=-Þ存在这样的直线,其方程为333或y x y x ==-16, 判断下列命题是否正确 (1) (1)若若C z Î, , 则则02³z (2) (2)若若,,21C z z Î且021>-z z,则21z z > (3) (3)若若b a >,则i b i a +>+17, 满足条件512=++-z i z 的点的轨迹是(的点的轨迹是( ))A.A.椭圆椭圆椭圆B. B. B.直线直线直线C. C. C.线段线段线段D. D. D.圆圆 18,.211<<-+=w w 是实数,且是虚数,设z z z.的实部的取值范围的值及求z z 解析解析 是虚数z yix yi x z z +++=+=\1)(1w 可设 i yx y y y x x x y x yi x yix)()(222222+-+++=+-++=,0¹y 是实数,且w 1,0112222=+=+-\y x y x 即 ,1=\zx 2=w 此时22121<<-<<-x 得由w)1,21(,121-<<-\的实部的范围是即z x圆锥曲线圆锥曲线一、在椭圆中一般以选择题或填空题的形式考查考生对椭圆的两个定义、焦点坐标、准线方程等基础知识的掌握情况;以解答题的形式考查考生在求椭圆的方程、直线与椭圆的位置关系等涉及分析、探求的数学思想的掌握情况.数学思想的掌握情况.例1.从集合{1,2,3,,11,11}} 中任意取两个元素作为椭圆22221x y m n+=方程中的m 和n ,则能组成落在矩形区域(){},|||1111,,||9B x y x y =<<内的椭圆的个数是(内的椭圆的个数是( )A 、43B 43 B、、72C 72 C、、86D 、90解:解:根据题意,根据题意,m 是不大于10的正整数、n 是不大于8的正整数.的正整数.但是当但是当m n =时22221x y m n +=是圆而不是椭圆.先确定n ,n 有8种可能,对每一个确定的n ,m 有1019-=种可能.故满足条件的椭圆有8972´=个.本题答案选B .例2.如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,则1234567PF P F P F P F P F P F P F ++++++=______________.. 解:如图,根据椭圆的对称性知,117111122PF P F PF PF a +=+=, 同理其余两对的和也是2a ,又41P F a =,∴1234567735PF P F P F P F P F P F P F a ++++++== 例3.如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(Ⅰ)求在0k =,01b <<的条件下,S 的最大值;的最大值;(Ⅱ)当2AB =,1S =时,求直线AB 的方程.的方程. 解:(Ⅰ)设A 1()x b ,,B 2()x b ,,由2214x b +=,解得21221xb =±-,,所以1212S b x x =- 2222111b b b b =-£+-= .当且仅当22b =时,S 取到最大值1. (Ⅱ)由2214y kx bx y =+ìïí+=ïî,得2221()2104k x kbx b +++-=,2241k b D =-+① 2121AB k x x =+- 2222411214k b k k -+=+=+.②.②AyxOB例3图设O 到AB 的距离为d ,则21Sd AB ==,又因为21b d k=+, 所以221b k =+,代入②式并整理,得42104k k -+=, 解得212k =,232b =,代入①式检验,0D >,故直线AB 的方程是的方程是 2622y x =+或2622y x =-或2622y x =-+,或2622y x =--.点评:本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.方法和综合解题能力.二、在双曲线中常以一道选择题或填空题的形式考查双曲线的两个定义、焦点坐标、准线方程以及渐近线方程等基础知识;解答题中往往综合性较强,在知识的交汇点出题,对双曲线的基础知识、解析几何的基本技能和基本方法进行考查.的基本技能和基本方法进行考查.例4.已知双曲线22221x y a b-=(0,0)a b >>的右焦点为F ,右准线与一条渐近线交于点A ,OAFD 的面积为22a (O 为原点),则两条渐近线的夹角为(,则两条渐近线的夹角为( )A .30º.30ºB .45º.45ºC .60º.60ºD .90º.90º解:解:D D .双曲线222221(0,0)(,0),x y a a b F c x abc-=>>=的焦点右准线方程,x ab y =渐近线,则),(2c ab c a A ,所以2212a c ab c S OAF =´´=D ,求得a b =,所以双曲线为等轴双曲线,则两条渐进线夹角为90°,故选D .点评:本题考查双曲线中焦距,本题考查双曲线中焦距,准线方程,准线方程,准线方程,渐近线方程,渐近线方程,渐近线方程,三角形面积,三角形面积,三角形面积,渐近线夹角等知识的综合运用.渐近线夹角等知识的综合运用.例5. P 是双曲线221916x y -=的右支上一点,M、N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则PM PN -的最大值为(的最大值为( ))A. 6B.7C.8D.9解:设双曲线的两个焦点分别是1(5,0)F -与2(5,0)F ,则这两点正好是两圆的圆心,当且仅当点P 与M 、1F 三点共线以及P 与N 、2F 三点共线时所求的值最大,此时三点共线时所求的值最大,此时12(2)(1)1019PM PN PF PF -=---=-=,故选B .例例6.已知双曲线222x y -=的左、的左、右焦点分别为右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.点.(Ⅰ)若动点M 满足1111F M F A F B FO=++(其中O 为坐标原点),求点M 的轨迹方程;的轨迹方程;(Ⅱ)在x 轴上是否存在定点C ,使CA ·CB为常数?若存在,求出点C 的坐标;若不存在,请说明理由.明理由.解:由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.(Ⅰ)设()M x y ,,则则1(2)F M x y =+ ,,111(2)F A x y =+,, 1221(2)(20)F B x y FO =+= ,,,,由1111F M F A F B FO =++得121226x x x y y y +=++ìí=+î,即12124x x x y y y +=-ìí+=î,,于是AB 的中点坐标为422x y -æöç÷èø,. 当AB 不与x 轴垂直时,121224822yy y yxx x x-==----,即1212()8y y y x x x -=--.又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=.当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程.,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=.(Ⅱ)假设在x 轴上存在定点(0)C m ,,使CA CB为常数.为常数.当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-¹±. 代入222x y -=有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是21212()()(2)(2)CA CB x m x m k x x =--+--22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++--222222(12)2442(12)11m k mm m m k k -+-=+=-++--.因为CA CB是与k 无关的常数,所以440m -=,即1m =,此时CA CB =1-. 当AB 与x 轴垂直时,点A B ,的坐标可分别设为(22),,(22)-,,此时(12)(12)1CA CB =-=-,,.故在x 轴上存在定点(10)C ,,使CA CB 为常数.为常数.三、抛物线是历年高考的重点,在高考中除了考查抛物线的定义、标准方程、几何性质外,还常常与函数问题、应用问题结合起来进行考查,难度往往是中等.函数问题、应用问题结合起来进行考查,难度往往是中等.例例7.抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是(的纵坐标是( )A .1716 B .1516 C .78D .0 解:由题意抛物线为:y x 412=,则焦点为1(0,)16F ,准线为:116y =-;由抛物线上的点00(,)M x y 到焦点的距离与到准线的距离相等,推得:16150=y,即M 点的纵坐标为1516,故选B .例8.已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(0)l >.过A 、B 两点分别作抛物线的切线,设其交点为M.两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明FM AB为定值;为定值;(Ⅱ)设△ABM 的面积为S ,写出()S f l =的表达式,并求S 的最小值.的最小值.解:(Ⅰ)由已知条件,得(0,1)F ,0l >.设11(,)A x y ,22(,)B x y .由AF →=λFB →, 即得1122(,1)(,1)x y x y l --=-,îïíïì-x 1=λx 2 ①①1-y 1=λ(y 2-1) 1) ②② 将①式两边平方并把y 1=14x 12,y 2=14x 22代入得y 1=λ2y 2 ③③ 解②、③式得y 1=λ,y 2=1λ,且有x 1x 2=-λx 22=-=-44λy 2=-=-44,抛物线方程为y =14x 2,求导得y ′=12x .所以过抛物线上A 、B 两点的切线方程分别是两点的切线方程分别是y =12x 1(x (x--x 1)+y 1,y =12x 2(x (x--x 2)+y 2,即y =12x 1x -14x 12,y =12x 2x -14x 22. 解出两条切线的交点M 的坐标为的坐标为((x 1+x 22,x 1x 24)=(x 1+x 22,-,-1)1)1)..所以FM →·AB →=(x 1+x 22,-,-2)2)2)··(x 2-x 1,y 2-y 1)=12(x 22-x 12)-2(14x 22-14x 12)=0所以FM →·AB →为定值,其值为0.(Ⅱ)由(Ⅰ)知在△(Ⅱ)由(Ⅰ)知在△ABM ABM 中,中,FM FM FM⊥⊥AB AB,因而,因而S =12|AB||FM||AB||FM|..|FM||FM|==(x 1+x 22)2+(-2)2=14x 12+14x 22+12x 1x 2+4=y 1+y 2+12×(-4)4)++4=λ+1λ+2=λ+1λ.++λ+λ)=|AB||FM||AB||FM|=(λ+λ)λ+1λ≥2m ÷ø,m+=m +=2my -,2my -,211-+122y y +-24m - Oyx1 1- l FP B QMFO Axyyy P BOA 1d 2d2q解:(Ⅰ)在P AB △中,2AB =,即222121222cos2d d d d q =+-,2212124()4sin d d d d q =-+,即2121244sin 212d d d d q l -=-=-<(常数), 点P 的轨迹C 是以A B ,为焦点,实轴长221a l =-的双曲线.方程为:2211x y l l -=-.(Ⅱ)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即21115110112l l ll l -±-=Þ+-=Þ=-,因为01l <<,所以512l -=.②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x l l ì-=ï-íï=-î得:2222(1)2(1)(1)()k x k x k l l l l l éù--+---+=ëû,由题意知:2(1)0k l l éù--¹ëû,所以21222(1)(1)k x x k l l l --+=--,2122(1)()(1)k x x k l l l l --+=--.于是:22212122(1)(1)(1)k y y k x x k l l l =--=--. 因为0OM ON = ,且M N ,在双曲线右支上,所以在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x l l l l l l l l l l l l l l l -ì+=ì-ì=ï>-ïïï+-+>ÞÞÞ<<+--íííïïï>+->>îîï-î. 由①②知,51223l -£<.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考复数训练题
1.(2013·山东)复数3-i 1-i
等于 ( C ) A .1+2i B .1-2i C .2+i D .2-i
2.(2013·宁夏、海南)复数3+2i 2-3i -3-2i 2+3i
= ( D ) A .0 B .2 C .-2i D .2i
3.(2013·陕西)已知z 是纯虚数,z +21-i
是实数,那么z 等于 ( D ) A .2i B .i C .-i D .-2i
4.(2013·武汉市高三年级2月调研考试)若f (x )=x 3-x 2+x -1,则f (i)= ( B )
A .2i
B .0
C .-2i
D .-2
5.(2013·北京朝阳4月)复数z =2-i 1+i
(i 是虚数单位)在复平面内对应的点位于 ( D ) A .第一象限 B .第二象限
C .第三象限
D .第四象限
6.(2013·北京东城3月)若将复数2+i i 表示为a +b i(a ,b ∈R ,i 是虚数单位)的形式,则b a
的值为 ( A )
7.(2013·北京西城4月)设i 是虚数单位,复数z =tan45°-i·sin60°,则z 2等于 ( B )
A.74-3i
B.14-3i
C.74+3i
D.14+3i 8.(2013·黄冈中学一模)过原点和3-i 在复平面内对应的直线的倾斜角为 ( D )
A.π6 B .-π6
C.23π
D.56
π 9.设a 、b 、c 、d ∈R ,若a +b i c +d i
为实数,则 ( C ) A .bc +ad ≠0 B .bc -ad ≠0
C .bc -ad =0
D .bc +ad =0
10.已知复数z =1-2i ,那么1z
= ( D ) A.55+255
i B.55-255i C.15+25i D.15-25
i 11.已知复数z 1=3-b i ,z 2=1-2i ,若z 1z 2
是实数,则实数b 的值为 ( A ) A .6 B .-6 C .0 D.16
12.(2013·广东)设z 是复数,α(z )表示满足z n =1的最小正整数n ,则对虚数单位i ,α(i )=
( B )
A .2
B .4
C .6
D .8 13.若z =12+32
i ,且(x -z )4=a 0x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 2等于 ( B ) A .-12+32
i B .-3+33i C .6+33i D .-3-33i
14.若△ABC 是锐角三角形,则复数z =(cos B -sin A )+i (sin B -cos A )对应的点位于( B )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
15.如果复数2-bi 1+2i
(其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b 等于 ( C )
A. 2
B.23 C .-23 D .2
16.设函数f (x )=-x 5+5x 4-10x 3+10x 2-5x +1,则f (12+32i )的值为 ( C ) A .-12+32i B.32-12
i C.12+32i D .-32+12
i 17.若i 是虚数单位,则满足(p +qi )2=q +pi 的实数p ,q 一共有 ( D ) A .1对 B .2对 C .3对 D .4对
18.已知(2x 2-x p )6的展开式中,不含x 的项是2027
,那么正数p 的值是 ( C ) A .1 B .2 C .3 D .4
19.复数z =-lg(x 2+2)-(2x +2-x -1)i (x ∈R )在复平面内对应的点位于 ( C )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
20.设复数z +i (z ∈C )在映射f 下的象为复数z 的共轭复数与i 的积,若复数ω在映射f 下的象为-1+2i ,则相应的ω为 ( A )
A .2
B .2-2i
C .-2+i
D .2+i
21.(2013·海淀4月)在复平面内,复数1+a i i
(a ∈R )对应的点位于虚轴上,则a =____0____. 22.(2013·安徽宿州二中模拟考三)i 是虚数单位,则1+C 16i +C 26i 2+C 36i 3+C 46i 4+C 56i 5+C 66i 6=_-8i_______.
23.i 为虚数单位,则=⎪⎭⎫ ⎝⎛-+201111i i
A.i -
B.1-
C.i
D.1
24.若()2,,x i i y i x y R -=+∈,则复数x yi +=( )
A.2i -+
B.2i +
C.12i -
D.12i +
25.设 i 是虚数单位,复数ai
i 1+2-为纯虚数,则实数a 为
(A )2 (B ) -2 (C ) 1-2 (D ) 12
26.设复数z满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_________
27.复数512i
+
-(i 是虚数单位)的模等于 .
28.已知0<a <2,复数z =a +i (i 是虚数单位),则|z |的取值范围是
A .3)
B .5.(1,3) D .(1,5)
29.下面是关于复数21z i =-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-
()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34。