五年级奥数.位值原理(AB级).学生版

合集下载

小学五下 位值原理

小学五下 位值原理

例题1:一个两位数等于它的数字和的6倍,求这个两位数。

练习1:一个两位数等于它的数字和的7倍,求这个两位数。

例题2:在一个两位数的数字中间加一个0,所得的三位数比原来的数大8倍,求这个两位数。

【分析】我们可以将两位数设为ab,如果a,b中间加一个0,这个数就变成了a0b,接下来我们就可以将新三位数和原两位书用位值原理展开,然后解方程求出两位数。

练习2:在一个两位数的两个数字之间加一个0,所得的三位数是原来的数的6倍,求这个两位数。

例题3:一个三位数,把它的个位和百位调换位置之后,得到一个新三位数,这个新三位数和原三位数的差的各位数字是7,试求两个数的差。

【分析】设原来的三位数是abc,个位百位调换位置后,得到的新三位数就是cba,这两个数的差有什么样的性质?练习3:把一个三位数颠倒顺序后得到一个新数,这个数比原来的数大792,那么原来的三位数最大可以是多少?例题4:若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式:学习好勤动脑×5=勤动脑学习好×8,“学习好勤动脑”所表示的六位数最小是多少?【分析】如果我们逐位展开,那么题目会变得十分复杂,但注意到题目中的两个六位数都是由“学习好”和“勤动脑”两部分构成,我们可以将这两部分作为展开的最小单位,那这两个六位数该展开成怎样的算式呢?练习4:若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式:用微信交作业×2=交作业用微信×5,“用微信交作业”所表示的六位数最小是多少?例题5:在等式“祝福母亲节=母亲节祝福×五÷月”中,相同的汉字表示相同的数字,不同的汉字表示不同的数字,其中“五”表示“5”,“月”表示“8”,那么“祝福母亲节”所表示的五位数是多少?【分析】在本题中,我们应该把什么作为展开的最小单位呢?例题6:在一个三位数的百位和十位之间加入一个数字后,得到的四位数恰好是原三位数的9倍,那么这样的三位数最小是多少?最大是多少?【分析】假设原来的三位数是abc,在百位和十位之间加入一个数字d,得到的四位数就是adbc,那我们该如何进行展开才能简化计算呢?作业:1.851= ×100+ ×10+ ×12.55984= ×1000+ ×10+ ×13.nba= ×100+ ×10+ ×14.3下5除2= ×10000+ ×100+ ×15.在一个两位数的两个数字中间加一个0,所得到的的三位数是原数的7倍,这个两位数是多少?6.将一个两位数的个位数字和十位数字交换位置,得到一个新的两位数,它比原来的两位数小54,那么原来的两位数最小是多少?7.将一个两位数的个位数字和十位数字交换位置,得到一个新的两位数,它与原来的两位数的和是187,那么原来的两位数是多少?8.在等式“雪含思青山映×6=青山映雪含思”中,相同汉字代表相同数字,不同汉字代表不同数字,那么“青山映雪含思”这个六位数等于多少?。

小学奥数:位值原理.专项练习及答案解析

小学奥数:位值原理.专项练习及答案解析

5-7-1.位值原理教学目标1.利用位值原理的定义进行拆分2.巧用方程解位值原理的题知识点拨位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。

我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。

这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。

既是说,一个数字除了本身的值以外,还有一个“位置值”。

例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。

最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。

但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。

希望同学们在做题中认真体会。

1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e ×10+f。

3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲模块一、简单的位值原理拆分【例 1】一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字的和是。

【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】这个两位数,加上它的个位数字的9倍,恰好等于100,也就是说,十位数字的10倍加上个位数字的10倍等于100,所以十位数字加个位数字等于100÷10=10。

五年级奥数位值原理

五年级奥数位值原理

位值原理知识框架当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使像古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲知识点一:位值原理的认识【例 1】填空:365= ×100+ ×10+ ×1365=36×+5×=2×+3×+a×+b×=203 +×【例 2】ab与ba的和被11除,商等于______与______的和。

五年级数学奥数讲义-位值原理与数的进制(学生版)

五年级数学奥数讲义-位值原理与数的进制(学生版)

“位值原理与数的进制”学生姓名授课日期教师姓名授课时长本讲是数论知识体系中的两大基本问题,也是学好数论知识所必须要掌握的知识要点。

通过本讲的学习,要求学生理解并熟练应用位值原理的表示形式,掌握进制的表示方法、各进制间的互化以及二进制与实际问题的综合应用。

并学会在其它进制中位值原理的应用。

从而使一些与数论相关的问题简单化。

一、位值原理位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

二、数的进制我们常用的进制为十进制,特点是“逢十进一”。

在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。

比如二进制,八进制,十六进制等。

二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。

因此,二进制中只用两个数字0和1。

二进制的计数单位分别是1、21、22、23、……,=1二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2×25+0×24+0×23+1×22+1×21+0×20。

二进制的运算法则是“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。

注意:对于任意自然数n,我们有n0=1。

n进制:n进制的运算法则是“逢n进一,借一当n”,n进制的四则混合运算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。

【试题来源】【题目】某三位数abc和它的反序数cba的差被99除,商等于与的差;ab与ba 的差被9除,商等于与的差;ab与ba的和被11除,商等于与的和。

【试题来源】【题目】如果ab×7= ,那么ab等于多少?【试题来源】【题目】从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数。

小学奥数- 位值原理

小学奥数- 位值原理

5-7-1.位值原理教学目标1.利用位值原理的定义进行拆分2.巧用方程解位值原理的题知识点拨位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。

我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。

这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。

既是说,一个数字除了本身的值以外,还有一个“位置值”。

例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。

最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。

但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。

希望同学们在做题中认真体会。

1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。

3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲模块一、简单的位值原理拆分【例1】一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字的和是。

【例2】学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【例3】把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【例4】几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年。

(小学奥数)位值原理

(小学奥数)位值原理

5-7-1.位值原理教學目標1.利用位值原理的定義進行拆分2.巧用方程解位值原理的題知識點撥位值原理當我們把物體同數相聯系的過程中,會碰到的數越來越大,如果這種聯繫過程中,只用我們的手指頭,那麼到了“十”這個數,我們就無法數下去了,即使象古代墨西哥尤裏卡坦的瑪雅人把腳趾也用上,只不過能數二十。

我們顯然知道,數是可以無窮無盡地寫下去的,因此,我們必須把數的概念從實物的世界中解放出來,抽象地研究如何表示它們,如何對它們進行運算。

這就涉及到了記數,記數時,同一個數字由於所在位置的不同,表示的數值也不同。

既是說,一個數字除了本身的值以外,還有一個“位置值”。

例如,用符號555表示五百五十五時,這三個數字具有相同的數值五,但由於位置不同,因此具有不同的位置值。

最右邊的五表示五個一,最左邊的五表示五個百,中間的五表示五個十。

但是在奧數中位值問題就遠遠沒有這麼簡單了,現在就將解位值的三大法寶給同學們。

希望同學們在做題中認真體會。

1.位值原理的定義:同一個數字,由於它在所寫的數裏的位置不同,所表示的數值也不同。

也就是說,每一個數字除了有自身的一個值外,還有一個“位置值”。

例如“2”,寫在個位上,就表示2個一,寫在百位上,就表示2個百,這種數字和數位結合起來表示數的原則,稱為寫數的位值原理。

2.位值原理的表達形式:以六位數為例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。

3.解位值一共有三大法寶:(1)最簡單的應用解數字謎的方法列豎式(2)利用十進位的展開形式,列等式解答(3)把整個數字整體的考慮設為x,列方程解答例題精講模組一、簡單的位值原理拆分【例 1】一個兩位數,加上它的個位數字的9倍,恰好等於100。

這個兩位數的各位數字的和是。

【例 2】學而思的李老師比張老師大18歲,有意思的是,如果把李老師的年齡顛倒過來正好是張老師的年齡,求李老師和張老師的年齡和最少是________?(注:老師年齡都在20歲以上)【例 3】把一個數的數字順序顛倒過來得到的數稱為這個數的逆序數,比如89的逆序數為98.如果一個兩位數等於其逆序數與1的平均數,這個兩位數是________.【例 4】幾百年前,哥倫布發現美洲新大陸,那年的年份的四個數字各不相同,它們的和等於16,如果十位數字加1,則十位數字恰等於個位數字的5倍,那麼哥倫布發現美洲新大陸是在西元___________年。

小学奥数知识点拨 精讲试题 位值原理.学生版

小学奥数知识点拨 精讲试题 位值原理.学生版

【巩固】有三个数字能组成 6 个不同的三位数,这 6 个三位数的和是 2886,求所有这样的 6 个三位数中最小 的三位数的最小值.
【例 24】从 1~9 九个数字中取出三个,用这三个数可组成六个不同的三位数。若这六个三位数之和是 3330, 则这六个三位数中最小的可能是几?最大的可能是几?
5-7-1.位值原理.题库
5-7-1.位值原理.题库
学生版
page 6 of 10
【例 31】记四位数 abcd 为 X ,由它的四个数字 a,b,c,d 组成的最小的四位数记为 X ,如果 X X * 999 ,
那么这样的四位数 X 共有_______个.
【例 32】9000 名同学参加一次数学竞赛,他们的考号分别是 1000,1001,1002,…9999.小明发现他的考号是
【例 34】一个三位数除以 11 所得的商等于这个三位数各位数码之和,求这个三位数是多少?
模块三、巧用方程解位值原理
【例 35】有一个两位数,如果把数码 1 加写在它的前面,那么可以得到一个三位数,如果把 1 写在它的后面, 那么也可以得到一个三位数,而且这两个三位数相差 414,求原来的两位数。
5-7-1.位值原理.题库
【巩固】把 5 写在某个四位数的左端得到一个五位数,把 5 写在这个四位数的右端也得到一个五位数,已知 这两个五位数的差是 22122,求这个四位数。
5-7-1.位值原理.题库
学生版
page 8 of 10
【例 39】 如果把数码 5 加写在某自然数的右端,则该数增加 A1111 ,这里 A 表示一个看不清的数码,求这 个数和 A。
1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。也就是说,每一 个数字除了有自身的一个值外,还有一个“位置值”。例如“2”,写在个位上,就表示 2 个一,写在百位上,就表 示 2 个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

高斯小学奥数五年级下册含答案第07讲_位值原理

高斯小学奥数五年级下册含答案第07讲_位值原理

第七讲位值原理在十进制中,每个数都是由0~9这十个数字中的若干个组成的,而每个数字在数中都占一个数位,数的大小是由数字和数字所处的数位两方面共同决定的.比如一个数由1、2、3三个数字组成,我们并不能确定这个数是多少,因为1、2、3能组成很多数,例如213、321、123、…….但如果说1在百位,2在十位,3在个位这样去组成一个数,就能很清楚地知道这个数应该是123.从这个例子可以看出,一个数的大小由数位和数位上的数字共同决定,一个数字在不同的数位上表示不同的大小:个位上的数字代表几个1;十位上的数字代表几个10;百位上的数字代表几个100;……那么可以利用这种办法将一个多位数拆开,例如123110021031=⨯+⨯+⨯,这个结论被称为位值原理.有的时候,为了分析问题方便,我们并不将多位数逐位展开,而是采用整体展开的办法,如2345623100045106=⨯+⨯+,我们将在后面的例题中看到这些方法的具体应用.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.一个两位数等于它的数字和的6倍,求这个两位数.练习1.一个两位数等于它的数字和的7倍,这个两位数可能是多少?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -通常我们在利用位置原理的过程中,要利用字母来表示数,所以同学们一定要熟练和掌握这种表示方法,并能利用位值原理将字母表示的数展开.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1231个100 2个10 3个1例题2.在一个两位数的两个数字中间加一个0,所得的三位数比原数大8倍,求这个两位数.a b.接下来分析:我们可以将两位数设为ab,如果a、b中间加一个0,这个数就变成了0我们就可以将新三位数和原两位数用位值原理展开,然后解方程求出两位数.练习2在一个两位数的两个数字之间加一个0,所得的三位数是原数的6倍,求这个两位数.例题3.一个三位数,把它的个位和百位调换位置之后,得到一个新的三位数,这个新三位数和原三位数的差的个位数字是7.试求两个数的差.分析:设原来的三位数是abc,个位百位调换位置后,得到的新的三位数就是cba.这两个数的差有什么样的性质?练习3.把一个三位数颠倒顺序后得到一个新数,这个数比原来数大792,那么原来的三位数最大可以是多少?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在一些位数较多的位值原理问题中,如果将每一个数位都拆开,再进行分析,往往会出现太多的字母,让人觉得无从下手.这个时候我们就要将多位数中的一部分作为一个整体来考虑,这样就能避免不必要的计算,从而更轻松地解决问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题4.若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式学习好勤动脑勤动脑学习好⨯=⨯58中,“学习好勤动脑”所表示的六位数最小是多少?分析:如果本题我们逐位展开,那么题目会变得十分复杂.但注意到题目中的两个六位数都是由“学习好”和“勤动脑”两部分构成,我们可以将这两部分作为展开的最小单位,那这两个六位数该展开成怎样的算式呢?练习4.若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式用微信交作业交作业用微信⨯=⨯25中,“用微信交作业”所表示的六位数最小是多少?例题5.在等式“=⨯÷祝福母亲节母亲节祝福五月”中,相同的汉字代表相同的数字,不同汉字表示不同数字,其中“五”代表“5”,“月”代表“8”,那么“祝福母亲节”所代表的五位数是多少?分析:在本题中,我们应该把什么作为展开的最小单位呢?例题6.在一个三位数的百位和十位之间加入一个数字后,得到的四位数恰好是原三位数的9倍,那么这样的三位数最小是多少?最大是多少?分析:假设原来的三位数是abc,在百位和十位之间加入一个数字d,得到的四位数就是adbc.那我们该如何进行展开才能简化计算呢?神奇的杠杆上图是一杆秤,平时如果陪家长买过菜的同学应该见到过,秤杆的一边是一个秤砣,另一边是要称重的物体,仅仅凭借移动秤砣在撑杆上的位置,就可以与很多重量不同的物品保持平衡,从而根据秤杆上的刻度来确定物品的重量.这也与位值原理有类似的地方,秤砣放在不同的位置,可以与不同的重量保持平衡.而欲使杠杆保持平衡,只要满足一个简单的比例式就可以了: 支点与秤砣距离物品重量支点与物品距离秤砣重量. 所以,阿基米德曾经说过:“给我一个支点,我可以撬起地球!”这句话不仅是激励我们奋进的格言,更是有科学根据的.作业1. (1)851___100___10___1=⨯+⨯+⨯;(2)55984___1000___10___1=⨯+⨯+⨯;(3)___100___10___1nba =⨯+⨯+⨯;(4)352___10000___100___1=⨯+⨯+⨯下除. 作业2. 在一个两位数的两个数字中间加一个0,所得到的三位数是原数的7倍,这个两位数是多少?作业3. 将一个两位数的个位数字和十位数字交换位置,得到一个新的两位数.它比原来的两位数小54,那么原来的两位数最小是多少?作业4. 将一个两位数的个位数字和十位数字交换位置,得到一个新的两位数.它与原来的两位数的和是187,那么原来的两位数是多少?作业5. 在等式“6⨯=雪含思青山映青山映雪含思”中,相同汉字代表相同数字,不同汉字代表不同数字.那么,“青山映雪含思”这个六位数等于多少?第七讲 位值原理例题1. 答案:54 简答:设这个两位数为ab ,根据题意得()106a b a b +=+,化简得45a b =,由于a 、b 都是0~9之间的数字且a 不能为0,所以只有a =5、b =4.例题2. 答案:45 简答:由题意,09a b ab =⨯,即:()100109a b a b +=+⨯,化简得:45b a =.由于a 是1至9中的某个数字,b 是0至9中的某个数字,那么只能是4a =,5b =.因此原来的两位数就是45.例题3. 答案:297 简答:()()100101001099abc cba a b c c b a a c -=++-++=-,所以差为99的倍数,并且差的个位是7,所以两数差为:297.例题4. 答案:410256简答:整体考虑,设学习好为x ,勤动脑为y .则有()()1000510008x y y x +⨯=+⨯,4992x =7995y .约39得128x =205y ,因为6个数字不能重复,经检验只有410256和615384两个符合要求.而问题求的是最少,不要被阴到哦!例题5. 答案:24390简答:设祝福为a ,.母亲节.为b ,则有:85ab ba ⨯=⨯,即:800085005a b b a +=+,化简得:654a b =,并且a ,b 中没有重复数字,尝试得知:五位数是24390.例题6. 答案:125,675简答:根据分析,设bc 为x ,由位值原理得:()10001009100a d x a x ++=⨯+,化简得:()252a d x ⨯+=.其中x 有25、50、75三种情况.当25x =时,2a d +=,那么当1a =时,三位数最小,为125;当2a =时,三位数最大,为225. 当50x =时,4a d +=,那么当1a =时,三位数最小,为150;当4a =时,三位数最大,为450. 当75x =时,6a d +=,那么当1a =时,三位数最小,为175;当6a =时,三位数最大,为675. 综上所述,可知所有这样的三位数中,最小的是125,最大的是675.练习1. 答案:21,42,63,84 简答:设这个两位数为ab ,根据题意得()107a b a b +=+,化简得2a b =,由于a 、b 都是0~9之间的数字且a 不能为0,所以这个两位数可能是21、42、63或84.练习2. 答案:18 简答:由题意,06a b ab =⨯,即:()100106a b a b +=+⨯,化简得:8b a =.由于a 是1至9中的某个数字,b 是0至9中的某个数字,那么只能是1a =,8b =.因此原来的两位数就是18.练习3. 答案:199简答:设原来的三位数为abc ,根据题意有792cba abc -=,化简后得到()99792c a -=,8c a -=.那么a 和c 只能分别是1和9,b 的取值是任意的.那么原来的三位数最大就是199.练习4. 答案:476190简答:设“用微信”为x ,“交作业”为y ,根据题意有2000250005x y y x +=+,化简后得95238x y =.考虑到x 和y 都是三位数,且没有重复数字,可求出x 最小是476,y 最小是190.作业1. 答案:(1)8、5、1;(2)55、98、4;(3)n 、b 、a ;(4)3、下5、除2简答:略.作业2. 答案:15 简答:70ab a b ⨯=,利用位值原理展开解方程即可.作业3. 答案:71 简答:54ab ba -=,化简后有6a b -=,最小是71.作业4.答案:89或98.简答:187ab ba +=,化简后有17a b +=,只能是89. 作业5. 答案:857142 简答:600061000⨯+⨯=⨯+雪含思青山映青山映雪含思,化简后有857142⨯=⨯雪含思青山映,那么有142=雪含思,=857青山映.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

位值原理
当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.
1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.
2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.
3.解位值一共有三大法宝:
(1)最简单的应用解数字谜的方法列竖式 (2)利用十进制的展开形式,列等式解答 (3)把整个数字整体的考虑设为x ,列方程解答
(1)最简单的应用解数字谜的方法列竖式
(2)利用十进制的展开形式,列等式解答 (3)把整个数字整体的考虑设为x ,列方程解答
知识框架
重难点
位值原理
【例 1】 一个两位数,加上它的个位数字的9倍,恰好等于100.这个两位数的各位数字的和

.
【巩固】 一个两位数,加上它的十位数字的9倍,恰好等于100.这个两位数是
.
【例 2】 学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的
年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)
【巩固】 把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个
两位数等于其逆序数与1的平均数,这个两位数是________.
【例 3】 几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果
十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年.
【巩固】 小明今年的年龄是他出生那年的年份的数字之和.问:他今年多少岁
?
例题精讲
【例 4】一个十位数字是0的三位数,等于它的各位数字之和的67倍,交换这个三位数的个位数字和百位数字,得到的新三位数是它的各位数字之和的倍.
【巩固】一个三位数,个位和百位数字交换后还是一个三位数,它与原三位数的差的个位数字是7,试求它们的差.
a b c彼此不同,则abc最大是________
【例 5】三位数abc比三位数cba小99,若,,
【巩固】一个三位数abc与它的反序数cba的和等于888,这样的三位数有_________个.
【例 6】
将2,3,4,5,6,7,8,9这八个数分别填入下面的八个方格内(不能重复),可以组成许多不同的减法算
式,要使计算结果最小,并且是自然数,则这个计算结果是__________.
□□□□□□□□
【巩固】用1,2,3,4,5,7,8,9组成两个四位数,这两个四位数的差最小是___________.
【例 7】
xy,zw各表示一个两位数,若xy+zw=139,则x+y+z+w= .。

相关文档
最新文档