我国气象信息系统构成研究
气象信息系统的构成

滨江学院气象组网课程设计报告( 2013 -- 2014 年度第二学期)课程名称:气象组网课程设计题目:气象信息系统构成院系:计算机系班级:计科3学号:20112308904姓名:窦同庆指导教师:李振宏日期:2014 年5月28日气象信息系统构成摘要:目前气象部门内的气象信息系统主要由通信系统、网络系统、计算环境、数据管理与服务几个部分组成。
关键词:通信系统网络系统高性能计算系统数据管理与服务一、引言气象信息系统是气象信息与技术保障体系的组成部分,是气象业务的公共技术基础支撑系统,主要包括通信与网络、高性能计算机、信息存储与共享、数据处理与管理、探测数据质量控制、气象仪器与观测方法研究、气象技术装备管理、气象仪器的计量检定、技术保障等。
气象信息交流是现代气象业务的基础系统和支撑系统。
他主要包括:通信网络、数据存储管理与共享服务,高性能计算机交流等,信息交流作为气象信息的传输,存储管理、计算机处理,资源共享的基础设施,其发生是气象现代化水平的重要标志之一,并直接影响到气象业务部门和广大用户能否及时快速的获取和发送国内外气象信息,关系到气象能否为各级政府,国民经济国防建设等提供优质气象服务,气象信息交流的发展经受到其他气象业务交流发展的驱动,又制约着其他系统的快速发展。
二、气象信息系统的构成气象信息系统是整个气象事业的公共技术基础设施,是国家信息基础设施的重要平台和组成部分,是世界气象(气候系统)基础设施的重要节点,是整个多轨道业务技术体系能否高效能运转的基础保障。
气象信息技术体系的作用是面向国家需求和世界气象领域科技与业务发展提供基础气象信息资源服务。
气象信息系统总体结构框架与体系关系示意图:2.1通信系统通信是通过某种媒体进行的信息传递。
计算机网络是利用通信设备和介质将地理位置不同的、功能独立的多个计算机系统连接起来,以功能完善的网络软件实现资源共享和信息传递的系统。
简单的说即连接两台或多台计算机进行通信的系统。
智慧气象webgis系统设计方案

智慧气象webgis系统设计方案智慧气象WebGIS系统设计方案一、引言智慧气象WebGIS系统是一种基于Web技术和地理信息系统技术的应用系统,可以用于全面、准确地监测、预测和分析气象信息,为气象决策提供支持。
本文将提出一个智慧气象WebGIS系统的设计方案。
二、系统架构智慧气象WebGIS系统的架构包括前端、中间件和后端三层,具体如下:1.前端层:用户通过浏览器访问系统,可以使用地图、图表等可视化形式展示气象数据,并可以进行查询、分析、预测等操作。
2.中间件层:主要包括服务器和数据库。
服务器负责接收用户请求并发送响应,同时也负责与数据库进行数据的交互。
数据库用于存储气象数据和相关信息。
3.后端层:主要包括数据采集、处理和分析。
数据采集通过气象仪器和传感器获取实时气象数据,并将其发送至数据库;数据处理和分析通过算法和模型对气象数据进行处理和分析,生成预测和分析结果。
三、功能模块智慧气象WebGIS系统包括以下功能模块:1.用户管理:实现用户注册、登录、权限管理等功能,用户可以根据权限进行操作。
2.地图展示:将气象数据通过地图形式展示出来,包括实时数据、历史数据和预测数据,并可以通过时间轴进行切换。
3.数据查询:用户可以根据时间、地点等条件进行数据的查询,包括实时数据、历史数据和预测数据。
4.数据分析:用户可以对数据进行统计分析、空间分析和趋势分析等操作,生成图表和报告。
5.预测模型:系统可以根据历史数据和算法建立预测模型,用于预测未来气象情况。
6.告警管理:系统可以根据预设的告警规则对气象数据进行监测,当数据超出规定范围时触发告警,通过短信、邮件等方式通知相关人员。
7.系统管理:管理员可以对系统进行配置和管理,包括用户管理、数据管理、模型管理等。
四、系统流程智慧气象WebGIS系统的流程如下:1.用户注册或登录系统,获取相应权限。
2.用户通过地图展示功能查看实时气象数据,并可以通过时间轴切换到历史数据和预测数据。
气象信息系统概述

用户界面与其他部分
用户界面接收用户的请求和反馈,与其他部 分交互,实现整个系统的闭环运行。
04
气象信息系统面临的挑战与解决方案
数据安全与隐私保护
数据加密
采用先进的加密算法对气 象数据进行加密,确保数 据在传输和存储过程中的 安全。
访问控制
建立严格的访问控制机制, 对不同用户设定不同的权 限级别,防止未经授权的 访问。
数据存储方式:分布式存储和集中式存储,其中分布式存储可以降低数据存储成本 和提高数据安全性。
数据处理技术包括数据清洗、数据融合、数据同化等技术,以实现对气象数据的处 理和分析。
数据分析与可视化技术
数据分析与可视化技术是将处理 后的气象数据转换成易于理解的 形式,并提供给用户进行决策支
持。
数据分析方法:统计分析、模式 识别、机器学习等,以实现对气
气象信息系统的应用场景
气象预报
气象信息系统能够提供天气预 报、气候预测等服务,帮助人
们了解未来的天气状况。
灾害预警
气象信息系统能够实时监测气 象数据,及时发出灾害预警, 减少自然灾害对人类生命财产 的损失。
农业服务
气象信息系统能够提供农业种 植、养殖等方面的服务,帮助 农民科学合理地安排农业生产 。
数据传输技术
数据传输技术是将采集到的气象 数据传输到气象信息系统的关键
环节。
数据传输方式:有线传输和无线 传输,其中无线传输包括卫星通
信、移动通信和微波通信等。
数据传输技术要求高效率和低延 迟,以保证气象数据的实时性和
准确性。
数据存储与处理技术
数据存储与处理技术是气象信息系统的重要组成部分,负责对采集到的气象数据进 行存储、处理和分析。
《气象信息系统》课件

《气象信息系统》PPT课 件
气象信息系统是指用于获取、处理、分析、呈现和发布气象数据和信息的系 统。它在气象预报和各个领域的实际应用中发挥着重要作用。
引言
气象信息系统是什么?为什么需要气象信息系统?本节将对这些基本问题进行介绍。
气象信息系统的ห้องสมุดไป่ตู้类
卫星气象信息系统
利用卫星技术收集和传输气象数据,支持气象预 报和监测。
2 处理气象数据
3 分析气象数据
对获取的气象数据进行质 量控制、校正和处理,确 保数据的准确性和可靠性。
利用统计、模型等方法对 气象数据进行分析,探索 气象现象和规律。
4 呈现气象数据
通过图表、地图等形式将气象数据呈现给用 户,方便理解和应用。
5 发布气象信息
将处理和分析后的气象数据转化为可理解的 信息,发布给用户和决策者。
气象信息系统的应用
农业
利用气象信息系统进行农作物产量估测和灾害预 警。
交通运输
通过气象信息系统进行交通管制和航海导航。
航空航天
气象信息系统为航班运营和火箭发射提供气象支 持。
能源
利用气象信息系统进行风力发电和太阳能发电的 规划和管理。
气象信息系统的趋势
1
智能化
引入人工智能技术,提高系统的自动化和智能化程度。
市政气象信息系统
针对城市气象需要开发的信息系统,用于城市防 灾减灾和气象服务。
地面气象信息系统
通过地面观测设备和仪器收集和处理气象数据, 用于气象预报和研究。
航海气象信息系统
提供海洋气象数据,支持航海活动和海上安全。
气象信息系统的功能
1 获取气象数据
从不同来源获取各类气象 数据,包括观测数据、卫 星数据等。
地方气象标准体系构成浅析——以吉林省为例

地方气象标准体系构成浅析——以吉林省为例
冯喜媛;涂钢;杨磊;邵祺多
【期刊名称】《标准科学》
【年(卷),期】2024()2
【摘要】气象标准体系是气象标准化工作的规划和指引,标准构成分析可直观了解气象标准化工作现状。
本文以吉林省气象标准体系为例,对照《气象高质量发展纲要(2022-2035年)》要求,浅析地方气象标准体系的具体构成特点,明确气象服务保障是目前气象标准化工作的突出领域,数值天气预报、资源开发利用、专业气象服务、气象灾害监测预警和重大突发事件保障等是目前气象标准化工作的重点方向,提出各业务领域全面加强标准化培训工作以及标准化管理工作需求和建议,以期为各地方气象标准体系建设及标准化工作发展提供科学参考。
【总页数】6页(P53-58)
【作者】冯喜媛;涂钢;杨磊;邵祺多
【作者单位】吉林省气象科学研究所;吉林省标准研究院
【正文语种】中文
【中图分类】F42
【相关文献】
1.地方区域性图书馆联盟服务体系的形式与构成——以湖北省区域图书馆合作服务体系为例
2.完善气象地方标准体系有关问题探讨
3.吉林省地方高校毕业生就业工
作体系浅析——以长春大学就业工作体系为例4.民用无人机作业气象标准制订及气象保障体系构建浅析5.吉林省地方生态环境标准体系研究及发展思考
因版权原因,仅展示原文概要,查看原文内容请购买。
气象信息系统

1.1 内涵与定位
气象信息系统负责收集、处理、存储、交换与
分发各种气象信息和相关非气象信息。承担信息的集 中统一管理,数据质量控制和信息服务。主要包括通 信网络系统、高性能计算机系统、数据处理与管理、 信息存储与信息共享服务。
信息系统与信息共享平台的内涵(1)
1、信息系统
信息系统是包括计算机、网络、通信、数据存储和数 据管理等系统在内的公共性基础支撑系统。
2、信息系统结构
信息系统结构是指信息系统内在的、支持高效组织运 行与服务的、在全国范围内不同层次部门、单位进行配置、 布局并有机连接成一个统一体的逻辑结构、物理布局和内在 联系体。
信息系统与信息共享平台的内涵(2)
3、信息共享平台
信息共享平台指信息系统为各方面用户提供信息系统 资源共享(数据、信息、计算等)的服务系统,是信息系统 面向用户的窗口。
开展了地面、高空和辐射资料的统计整编业务 围绕气象数据处理业务,建立了一系列规范和标准
开发气象数据资源,生产和制作了一批数据集产品
2
数据管理业务现状 我国建立了国家级、省级数据管理机构;各级数据管 理机构已经建立了对基本数据的收集、处理业务;对收集的 资料范围也有明确的分工,对主要探测数据的收集业务流程 不断完善;各级数据管理机构对主要常规观测资料按照规定 的时间进行审核、统计、整编,数据质量不断提高;大部分 数据在国家级、省级进行了存储和归档。针对科研、业务对 气象资料的巨大需求,各级数据管理机构均开展了数据的服 务工作。尤其是近年来,国家级数据共享服务取得了很大进 展。 近年来国家级数据管理机构注重了对数据管理技术标 准的制定,研制了“气象数据元数据格式标准”、“气象科 学数据集制作与归档技术规定”、“气象数据集说明文档格 式标准”、“气象资料的分类编码及命名规定”等技术规定。
第一章气象信息系统概述资料

(5)网络通信 20世纪70-80年代,发达国家已经开始进入网络 技术应用阶段。1993年4月计算机广域网传输技术 在全国推广,该技术使通过网络传输的资料种类有 了明显增加,日传输信息量增加了20倍,国内外地 面报的传输时效提高了1-1.5小时,高空观测报提前 了1小时,大大提高了气象资料传输效率。 1991年在中国气象局大院建成我国第一个高性 能的高速局域网CDCnet。 2001年11月中国气象局大院正式建成骨干网络 系统,形成以光纤千兆以太网为主干的国家一级信 息“高速公路”。
2.2计算机应用的发展 (1)早期的国产计算机应用 1967年,中央气象局批准气象科学研究院购置 国产DJS-6计算机(108计算机),从此我国气象部 门有了第一台每秒运算5-7万次浮点运算的电子计算 机。 1970年10月国家气象中心气候资料室安装了2 台DJS-C2晶体管计算机(111计算机)。 1978年,北京大学电子仪器厂生产的DJS-11 计算机(150-3计算机)在国家气象中心安装落户。
(2)微型计算机应用 微机转报系统:用于省一级的自动气象转报系 统和自动填图系统,取代了省级的人工通信和手工 填图。 气候资料加工:1985年开始使用微机编制地面、 高空、日辐射等观测记录月报表的应用软件,改变 了气候资料处理“一把算盘一支笔”的落后面貌。 气象信息综合分析处理系统(MICAPS): 1995年开发,提供了较全面的分析工具和较强的交 互功能,可以显示各种气象数据和图形并供预报员 完成天气预报图的生成和修改。
1.1信息技术 信息技术(information technology, IT)是用 于管理和处理信息所采用的各种技术的总称,常常 被称为信息和通信技术( information and communication technology, ICT)。 从学科的角度看,信息技术体系包括管理和技 术两部分。
气象信息系统的架构与功能分析

气象信息系统的架构与功能分析在当今科技飞速发展的时代,气象信息对于人们的生产生活、防灾减灾以及科学研究等方面都具有极其重要的意义。
气象信息系统作为收集、处理、分析和传播气象数据的关键平台,其架构与功能的合理性和先进性直接影响着气象服务的质量和效果。
接下来,让我们深入探讨一下气象信息系统的架构与功能。
气象信息系统的架构主要由数据采集层、数据处理层、数据存储层、应用服务层和用户界面层组成。
数据采集层是气象信息系统的基础,负责从各种气象观测设备和传感器中获取原始数据。
这些设备包括气象站、卫星、雷达、探空仪等,它们分布在不同的地理位置,能够实时监测大气的温度、湿度、气压、风速、风向、降雨量等多种气象要素。
采集到的数据通过网络传输到数据处理中心,这个过程需要保证数据的准确性和完整性,同时还要具备应对数据丢失和错误的容错机制。
数据处理层承担着对采集到的原始数据进行清洗、转换和质量控制的重要任务。
由于气象数据来源广泛、格式多样,可能存在噪声和误差,因此需要进行数据清洗,去除异常值和错误数据。
同时,还需要将不同格式的数据转换为统一的标准格式,以便后续的存储和分析。
质量控制则是通过对比不同数据源的数据、运用统计方法等手段,评估数据的可靠性和准确性。
数据存储层用于存储经过处理的气象数据。
考虑到气象数据的海量性和长期性,通常采用关系型数据库和分布式文件系统相结合的方式进行存储。
关系型数据库适合存储结构化的数据,如气象站点的基本信息、观测数据的元数据等;而分布式文件系统则能够高效地存储大规模的非结构化数据,如卫星图像、雷达回波数据等。
为了提高数据的访问效率,还会采用数据索引和分区等技术。
应用服务层是气象信息系统的核心,它基于存储的数据提供各种气象服务和应用。
这包括天气预报、气候分析、灾害预警、专业气象服务(如航空、农业、交通等领域的气象服务)等。
天气预报是最常见的应用之一,通过数值天气预报模型和统计预报方法,结合实时的气象数据,对未来一段时间的天气状况进行预测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程论文(我国气象信息系统构成研究)专业:电子信息工程班级:姓名:学号:一、通信系统1 .气象通信系统分层逻辑结构气象通信是气象业务运转的基础和重要保障,是开展天气预报和气象服务的先决条件。
它的特点是网络组织高度分散,信息资料传输高度集中,信息量大,质量、时效要求高。
其主要的如图1-1气象通信系统分层逻辑结构。
1)表现层是通信系统的管理入口,主要为业务管理、维护和运行监视人员提供人机交互界面,满足系统管理、维护和运行监视的需求。
2)应用逻辑层是通信系统的核心,是数树文集和分发功能及传输业务逻辑的实现层,主要提供各种传输协议接口、实现数据交换控制、传输处理及作业调度等。
3)数据存储层为数据交换提供存储服务,主要有文件库和数据库两种存储方式,其中文件库主要存放各种气象资料以及相关的传输和交换策略文件,数据库保存主要数据收发和传输处理过程中的中间状态。
4)基础设施层是通信系统的运行环境,包括通信网络、计算机硬件、存储介质等硬件环境,以及操作系统、集群管理系统、数据库管理软件等软件支撑环境。
图1-1 气象通信系统分层逻辑结构2.国内气象通信系统布局上行气象信息是全国基层气象台站(包括全国区域气象中心、省级、地市级以及县级气象台站、向国家气象信息中心传输的各种观测资料、加工产品以及其他的有关信息,其基本流程是逐级汇集和上传。
下行气象信息是上级业务单位向下级业务单位传输和播发的气象数据和产品。
在国家级,国家气象信息中心主要通过卫星广播系统(PCVSAT、DVB-S等)向全国各省、地市、县气象台站逐级播发信息。
除气象资料的上行和下行传输外,各级气象部「J通过省内宽带网与全国气象宽带网进行气象信息的双向传输和共享。
另外,与部门外用户进行气象数据的交换和共享也是国内气象通信系统的重要功能。
其主要是通过同城线路实现各级气象部门与水利、地震、民航等部门的气象数据收发业务如图1.2-1所示。
图1.2-1 国内通信系统通信示意图1)国家级国内通信系统国家级国内通信系统是国内通信系统的国家级枢纽,承担国内气象资料和产品的收集,以及国内、国外气象资料和产品的分发服务。
主要特点是以文件为单位进行数据传输和交换,支持丁CP/IP协议,具备数据文件收集、分发、交换控制和缺收补调功能,以及文件级、公报级和报告级(站级)气象资料的传输监视和传输质量统计功能。
2)省级通信系统国内各省通过省内通信网、通信线路收集辖区观测站的观测资料、产品及辖区台站的预报等,通过卫星气象数据广播系统接收北京主站广播的数据;同时,通过地面宽带线路将省内各类观测资料和产品传输到国家气象信息中心,通过省内线路为所辖气象台站提供数据服务。
另外,各省还通过同城线路收集预定的资料数据,向同城用户提供气象观测资料和产品。
3)地市和县级通信系统国内各省的县级和地市级气象局基本都建有小型局域网,县(市)局的局域网通过VPN 和地面专线与省局或市气象局网络直接互连。
市局通过2M数字电路或VPN与省局进行网络连接。
另外,市级气象局还安装有连接卫星广域网的双向站,可以直接将资料发送到北京主站。
通信系统主要由数据接收、数据发送、数据编码及业务监控软件构成,网络协议统一采用TCP/IP协议,数据传输采用FTP协议。
4)台站通信系统台站通信系统的功能是按照气象资料传输业务要求对观测数据进行编码和封装,通过通信线路上传到上级通信中心。
对于有人值守的观测站,台站与市局一般通过数据专线(2M)、VPN等实现连接。
5)高校通信系统高校建立气象通信系统的目的在于从国家和省局获取实时气象资料用于教学和科研工作。
一般来说,高校的气象通信系统按照地市或县级标准建设,拥有小型局域网并通过VPN 和地面专线与省局网络直接互连。
另外还安装有连接卫星广域网的单向站,可以直接从北京主站接受资料。
通信系统主要由数据接收、数据编码及业务蓝控软件构成,网络协议统一采用TCP/IP协议,数据传输采用FTP协议。
二、网络系统1.计算机网络系统将多个独立的计算机通过通信线路、通信业鱼和倒坚丝性在一定的地理范围内互联起来的集合体。
独立:是指每台计算机都能够独立运行。
互联:指互相连接的计算机能够互相交换信息,达到资源共享的目的。
2气象网络系统气象网络系统是气象信息传输和气象资源共享的基础平台,由横向和纵向网络系统组成。
横向网络系统包括各级气象部门局域网络、行业间互联网络等本地网络,纵向网络系统为连接国家级、省级、地市级和县站级四级气象部门的网络系统,主要表现形式为广域网络和利用互联网形成的专用虚拟网络系统等。
另外,在国家级,除了本地横向网络和连接各级气象部门的纵向网络外,还通过专线和互联网等形式建立国际通信网络。
3气象局域网络系统气象部门局域网络经历了由小范围孤岛局域网到骨干集中互连的不同阶段,曾经采用的组网方式包括FDDI、以太网等方式,目前已发展为以千兆/万兆以太网络为核心。
1)早期的国家级气象局域网络系统国家气象中心从1990年初开始在业务系统中全面采用局域网技术,而在此之前,用于气象模式运算的M-160,M-170计算机采用的是信道互连方式。
1990年初,随着CYBER和VAX 系统的引进,分别建设了CDCNET网(开放)、LCN网(专网)OEC-NET网(专网)。
2)国家级高速气象局域网络系统1996年,国家气象中心新的高速业务主干局域网开始建设、采用了光纤分布式数据接口(采用多模光纤作为传输媒介的高性能光纤令牌环局域网),在FDDItrunk上配置了VLAN,网络主干可达每秒400万个包的线性路由性能。
中国气象局骨干网络系统采用层次化的千兆以太交换网络结构(交换局域网),各主要业务单位或业务系统以千兆位级速率连接到骨干网络的核心交换层,由核心交换层实现数据的转发,其他的路由功能由分层网络交换设备完成。
除此之外该系统还承担着与外部互联网系统、统、全国气象宽带网络系统、务。
全国卫星气象通信系GTS等的网络连接任3)省级气象局域网络系统日前省级气象部门的局域网络已经实现了核心层/分布层和接入层的部署模式。
其中,北京、山西、辽宁等省(区、市)采用双核心的网络设备,而天津、河北、内蒙等省(区、市)采用单核心的网络设备。
省级气象部门局域网能够通过VLAN的划分,较合理的规划其不同部门的业务欧口办公区。
4.气象城域及广域网络系统从20世纪90年代开始,随着9210工程的实施,全国卫星通信网络系统全面建设完成,但随着大气探测手段的进步,产生的资料量增加,资料种类更多且对传输的时效要求也更加严格。
所以全国卫星通信网络系统所能提供的带宽己十分有限,无法满足雷达观测、自动站观测等资料·的上行传输要求. 因此,2003年中国气象局开始统一建设国家级气象宽带网络主干系统,逐步完成了SDH系统和MPLS VPN系统实现了各省级系统和国家级系统的地面宽带互联.1)全国气象宽带网络主干50日系统SDH(Synchronous Digital Hierarchy,同步数字体系),是按不同速度的数位信号的传输提供相应等级的信息结构,包括复用方法和映射方法,以及相关的同步方法组成的一个技术体制。
解决了由于入户媒质的带宽限制而跟不上骨干网和用户业务需求的发展,导致产生了用户与核心网之间的接入”瓶颈”的问题,同时提高了传输网上大量带宽的利用率。
2005年12月,全国气象宽带网主干SDH系统建设完成。
全国气象宽带网络主干SDH系统是气象部门建设的第一个跨国家和省级的地面宽带网络和系统,采用二级结构:以国家级节点为中央节点的一级星形结构和以省会城市为中央结点的二级结构,覆盖全国30个省级和4个计划单列市的气象部门如图2.4-1所示。
图2.4-1国家气象带网络主干SDH系统结构示意图2)全国气象宽带网络主干MPLS VPN系统MPLS-VPN是指采用MPLS技术在骨干的宽带lP网络上构建企业lP专网,实现跨地域、安全、高速、可靠的数据、语音、图像多业务通信,并结合差别服务、流量工程等相关技术,将公众网可靠的性能、良好的扩展性、丰富的功能与专用网的安全、灵活、高效结合在一起,为用户提供高质量的服务。
3)省级气象广域网络系统我国省级气象部门的省内宽带网建设起步较早,目前多数省份的覆盖省会城市和地(市)的省内宽带网络系统己经建成。
省级系统基于宽带网络系统开展了数据传输、电视会商及IP电话等多项业,己经进行到业务化运行状杯但是己经建成的省内宽带网络基本上是单线路和单设备运行,不具备设备级和线路级备份手段。
三、计算环境气象计算是高性能计算最重要的领域之一,高性能计算机系统购置投资巨人,维护费用成本惊人,具有昂贵和稀缺的特点,属国家高端战略资源。
气象部闭国家级和地方上的高性能计算机系统能力近年来有了快速发展,同时在系统资源管理水平、天气气候模式计算支撑服务能力上有了较大提升,在系统性能测试、资源整合协同共享等方面取得了有益成果。
1.天气与气候模式计算气象计算需要海量计算资源支撑。
与其他领域相比,高性能计算机在气象领域的应用最为成熟。
气象科学领域的最主要一类计算应用程序为气象模式,气象模式通过求解描述大气状况的一组数学物理方程式来计算大气的物理量和要素场(如温度、风向和风速及湿度)将如何改变,从而由目前的天气状态推演出对未来天气现象的描述。
气象模式,无论用于短期天气预报还是长期气候预测,都离不开强大高性能计算资源的支持,以保障数值天气预报系统的时效性。
2.计算资源社会共享与服务北京高性能计算机应用中心(国家气象信息中心)是我国组建的第一个利用自主研制的高性能计算机、面向社会开放的计算机应用中心。
2000年7月成立以来已有80余用户在系统上开户,计算资源共享服务的用户遍及中国气象局、中国科学院、中国医科院、中国石化集团和北大、清华、中科大、复旦等教育部有关院校,为气象、石油、药物、基因研究、力学、化工冶金等领域大型应用课题的用户提供了急需的计算平台,解决了原来在国内无法计算的难题,取得了一些具有国内领先、国际先进的成果。
主力计算机系统神威l的系统可用率达90%以上,平均使用率达50%左右,发挥了良好的社会经济效益。
图3.2-1 全国数据模式发展及运行平台概况表3.计算机软件系统页面系统由管理、计算和存储三个部分组成,共有两套全局内网和一套外网分别是:旧A 计算网络、千兆以太管理网络和千兆光纤接入网络。
计算网络由一台324口旧A交换机连接所有计算、管理和存储设备;管理网络由5台48口千兆以太网交换机连接所有的计算、管理和存储设备;接入网络由1台光纤交换机连接管理、登录和元数据设备直接与中国气象局局域网连接。
神威4000A主要的软件环境包括管理和监测软件,由基于B/S架构的系统管理、监控子系统和SWGFS文件系统等组成。