第二章 稀土元素的结构特征
元素周期表中稀土元素的特点与应用

元素周期表中稀土元素的特点与应用稀土元素是指原子序数为57至71之间的15种化学元素,它们在元素周期表中位于镧系元素下方的区域。
由于稀土元素具有一系列独特的物理和化学特性,它们在许多领域中具有重要的应用价值。
本文将探讨稀土元素的特点以及它们在不同领域中的应用。
一、稀土元素的特点1. 原子结构:稀土元素的原子结构比较复杂,外层电子结构的变化较小。
随着原子序数的增加,原子半径逐渐减小,原子核电荷增加,电子外层吸引力增强。
2. 磁性:稀土元素中的某些元素,如钕、钆等,表现出较强的磁性。
稀土元素的磁性主要来源于其内部配置的f电子。
这使得稀土元素在制备永磁材料等方面具有重要应用。
3. 化学反应性:稀土元素的化学反应性中等偏弱,容易与非金属元素发生反应,形成稀土化合物。
此外,稀土元素也能形成多种氧化态,具有较强的氧化性。
4. 光谱特性:稀土元素具有丰富的光谱特性,包括可见光和红外线范围。
这些特性使得稀土元素在激光器、荧光材料以及光纤通信等方面有广泛应用。
二、稀土元素的应用1. 电子技术领域:稀土元素在电子技术领域的应用非常广泛。
例如,镧系元素在显示器件中可用作磷光体,发出不同颜色的光,并形成彩色图像。
此外,稀土元素也可用于制备磁记录材料、半导体材料等。
2. 磁性材料:稀土元素在磁性材料中发挥着重要作用。
例如,钕铁硼永磁材料具有较高的磁性能,广泛应用于电机、声音设备、信息存储等领域。
其他稀土元素如铽、铒等也有磁性材料的应用。
3. 催化剂:稀土元素催化剂在化学工业中扮演重要角色。
稀土元素的催化剂可用于石油加工、化学合成、环境保护等各种反应中。
催化剂的加入能够提高反应速率和选择性,降低能量消耗。
4. 光电材料:稀土元素在光电材料方面有广泛应用。
稀土元素的光谱特性可用于制备激光器、荧光粉、发光二极管等器件。
稀土元素的发光稳定性高,具有较长的寿命。
5. 生物医学领域:稀土元素在生物医学领域的应用日益增多。
它们被用作示踪剂、荧光探针、抗肿瘤药物等。
稀土元素的特点

稀土元素的特点稀土元素是指周期表中的镧系元素和钇系元素,共计17种元素。
它们被称为稀土元素是因为它们在地壳中的含量非常稀少。
稀土元素具有许多独特的特点,下面将对其进行详细解释。
1. 化学性质多样性:稀土元素具有丰富的化学性质,可以形成多种化合物。
它们的原子结构中的电子分布不同,因此具有不同的价态和电子构型,使得它们在化学反应中表现出多样性。
2. 磁性:稀土元素中的某些元素如钕、铽等具有较强的磁性。
这些磁性稀土元素被广泛应用于制造永磁材料,用于制造电机、发电机、磁记录材料等。
3. 光学性质:稀土元素在可见光和紫外光区域有较强的吸收和发射能力,因此被广泛应用于荧光体、荧光粉、光纤通信等领域。
4. 半导体性质:稀土元素中的一些元素如铈、铽、钕等具有半导体性质。
它们可以用于制造光电器件、太阳能电池等。
5. 化学稳定性:稀土元素具有较好的化学稳定性,能够耐受高温和腐蚀。
因此,它们被广泛应用于高温合金、催化剂、陶瓷材料等领域。
6. 放射性:稀土元素中的一些元素如镧、铀等具有放射性。
这些放射性稀土元素在核能、核医学和射线治疗等领域有重要应用。
7. 稀土磁石效应:稀土元素中的某些元素如镧、铈等具有稀土磁石效应。
这种效应使得稀土磁石具有较高的磁能积和矫顽力,被广泛应用于电机、传感器、磁记录材料等领域。
8. 催化性能:稀土元素具有良好的催化性能,能够在化学反应中起到催化剂的作用。
它们被广泛应用于石油加工、环境保护、化学合成等领域。
9. 生物学功能:稀土元素在生物体内具有重要的生物学功能,如对植物生长的促进作用、对动物体内酶活性的调节作用等。
10. 稀有性:稀土元素在地壳中的含量非常稀少,因此被称为稀土元素。
它们的分布不均匀,主要分布在中国、澳大利亚、美国等地。
总结起来,稀土元素具有多样性的化学性质、磁性、光学性质、半导体性质、化学稳定性、放射性、稀土磁石效应、催化性能、生物学功能等特点。
这些特点使得稀土元素在许多领域具有重要的应用价值,如电子、光电、材料、能源、环境等领域。
稀土元素的结构特征

稀土元素的结构特征稀土元素是指周期表中的镧系元素,包括镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)和镥(Lu)。
它们的原子数从57到71不断增加,且具有相似的化学性质。
这些元素被广泛用于电子、光学、材料科学和医学等领域,并且是许多技术和设备的基本材料。
1.电子结构:稀土元素的电子结构具有特殊的特征。
它们的电子排布在4f轨道中,这些电子具有特殊的自旋和轨道角动量,称为“内层电子自旋-轨道相互作用”(LS耦合)。
这种相互作用使得稀土元素表现出许多独特的物理和化学性质,例如磁性、发光和超导等。
2.离子半径:稀土元素的离子半径相对较小,尤其是3价稀土离子(+3)的离子半径。
它们的离子半径逐渐缩小,从镧系到镥系,这与它们在周期表中的位置有关。
3.磁性:稀土元素具有丰富的磁性。
其中,镨、钕、钆和铕是具有自发磁性的常温磁体材料,它们在室温下具有较高的磁矩。
镐、铽、钬等元素则具有温度敏感的磁性,称为“磁相变”。
这些稀土磁体在电子设备、计算机和电动汽车等领域有广泛的应用。
4.化合价:稀土元素形成的化合物的化合价多种多样。
由于它们的电子结构特殊,稀土元素可以同时显示不同化合价的特性。
例如,镧的最低化合价为+3,但它也能形成+2和+4的化合价。
5.光学特性:稀土元素在光学方面具有重要的应用价值。
它们的原子核和电子结构使得它们能够吸收和辐射可见光、紫外光和红外光等不同波长的电磁波。
稀土元素可以被用于制备发光材料,例如激光晶体和荧光粉。
总而言之,稀土元素具有独特的电子结构、离子半径、磁性、化合价和光学特性等结构特征。
这些特点使得稀土元素在各种领域有广泛的应用,对于推动科技进步和发展具有重要作用。
稀土元素特性综述

稀⼟元素特性综述稀⼟特性综述根据稀⼟元素原⼦电⼦层结构和物理化学性质,以及它们在矿物中共⽣情况和不同的离⼦半径可产⽣不同性质的特征,⼗七种稀⼟元素通常分为⼆组:轻稀⼟包括:镧、铈、镨、钕、钷、钐、铕、。
重稀⼟包括:钆、铽、镝、钬、铒、铥、镱、镥、钪、钇⼤多数稀⼟元素呈现顺磁性(顺磁性(paramagnetism)是指材料对磁场响应很弱的磁性)。
钆在0℃时⽐铁具更强的铁磁性。
铽、镝、钬、铒等在低温下也呈现铁磁性,镧、铈的低熔点和钐、铕、镱的⾼蒸⽓压表现出稀⼟⾦属的物理性质有极⼤差异。
钐、铕、钇的热中⼦吸收截⾯⽐⼴泛⽤于核反应堆控制材料的镉、硼还⼤。
稀⼟⾦属具有可塑性,以钐和镱为最好。
除镱外,钇组稀⼟较铈组稀⼟具有更⾼的硬度。
常⽤的氯化物体系为KCl-RECl3他们在⼯农业⽣产和科研中有⼴泛的⽤途,在钢铁、铸铁和合⾦中加⼊少量稀⼟能⼤⼤改善性能。
⽤稀⼟制得的磁性材料其磁性极强,⽤途⼴泛。
在化学⼯业中⼴泛⽤作催化剂。
稀⼟氧化物是重要的发光材料、激光材料。
理化性质⼀是缺少硫化物和硫酸盐(只有极个别的),这说明稀⼟元素具有亲氧性;⼆是稀⼟的硅酸盐主要是岛状,没有层状、架状和链状构造;三是部分稀⼟矿物(特别是复杂的氧化物及硅酸盐)呈现⾮晶质状态;四是稀⼟矿物的分布,在岩浆岩及伟晶岩中以硅酸盐及氧化物为主,在热液矿床及风化壳矿床中以氟碳酸盐、磷酸盐为主。
富钇的矿物⼤部分都赋存在花岗岩类岩⽯和与其有关的伟晶岩、⽓成热液矿床及热液矿床中;五是稀⼟元素由于其原⼦结构、化学和晶体化学性质相近⽽经常共⽣在同⼀个矿物中,即铈族稀⼟和钇族稀⼟元素常共存在⼀个矿物中,但这类元素并⾮等量共存,有些矿物以含铈族稀⼟为主,有些矿物则以钇族为主。
由于稀⼟元素可与银、锌、铜等过渡元素协同增效,开发的稀⼟复合磷酸盐抗菌可使陶瓷表⾯产⽣⼤量的羟基⾃由基,从⽽增强了陶瓷的抗菌性能。
稀⼟⾦属的化学活性很强。
当和氧作⽤时,⽣成稳定性很⾼的R2O3型氧化物(R表⽰稀⼟⾦属)。
稀土元素化学..

稀土元素的基本性质
元 素
Sc Y La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
原子 序数
21 39 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
相对原子 质量
44.956 83.905 138.91 140.12 140.907 144.24 [145] 150.35 151.96 157.25 158.924 162.50 164.930 167.26 168.934 173.04 174.97
含稀土的矿物
氟化物 钇萤石(Ca、Y)(F、O)2,氟铈矿CeF3
磷酸盐
碳酸盐及 氟碳酸盐
磷钇矿YPO4,独居石(Ce、Y)PO4 氟碳铈矿CeFCO3,水菱铈矿RE2O3•3CO2•4H2O 硅铍钇矿BeFeY2Si2O10、铈硅石(Ca,Mg)2RE[(SiO4)7- x(FCO3)x][(OH)x(H2O)3-x],淡红硅钇矿Y2Si2O7 钶钇矿(Fe,RE,U,Th)(Nb,Ta)2O6,褐钇钽矿(RE、Ca、 Fe、U)(Nb、Ta)O4,方铈石(Ce、Th)O2 砷钇矿YAsO4 水铈钙硼石 Ca3Al2RE(SO4)F13•10H2O
• 稀土元素位于周期表中的ШB族,特征氧化态为+3。根据洪特 规则,当d或f轨道处于全空、全满或半满时,其原子或离子有特殊 的稳定性,Ce和Tb失去4个电子时,分别处于全空和半满,所以+ 4氧化态也较稳定;Pr和Dy失去四个电子,4f轨道接近全空和半满, 所以也可存在+4氧化态;Eu和Yb失去2个电子时,4f轨道分别处 于半满和全满,也可形成较稳定的+2氧化态化合物,Sm和Tm的 +2氧化态化合物稳定性较差。
2第二章:稀土元素自由原子和离子

1s2 表示一种电子组态,表示在E1s能级上的两 个电子。
(2)镧系元素原子的基态电子组态: 根据能量最低原理,镧系元素自由原子的基态
电子组态有两种类型: [Xe]4fn 6s2 和 [Xe]4fn-1 5d16s2 (n=1-14) La,Ce,Gd: [Xe]4fn-1 5d16s2 ; Lu: [Xe]4f14 5d16s2 ; 其余为:[Xe]4fn 6s2
镧系元素的原子究竟采取那种基态组态呢? ([Xe]4fn 6s2和 [Xe]4fn-1 5d16s2 (n=1-14))
应该从该两种组态的能量ຫໍສະໝຸດ 低来看。实验结果表明: La,Ce,Gd的 [Xe]4fn-1 5d16s2的组态能量
低于相应的[Xe]4fn 6s2。 所以La,Ce,Gd基态组态为: [Xe]4fn-1 5d16s2 Tb的两种组态[Xe]4f96s2 ,[Xe]4f85d16s2
能量相当,因此组态不确定,两种均可。 其余原子的基态电子组态均为: [Xe]4fn 6s2
(3).镧系元素自由离子的基态电子组态: 镧系元素自由离子主要价态为+3,个别有+ 2和+4。
RE3+电子组态: [Xe]4fn(n=0-14,La-Lu)
RE2+电子组态: [Xe]4fn+1 (n+1=6, 7, 13, 14 对应于 +2价的Sm,Eu,Tm,Yb) 。
原子结构理论指出:多电子原子和离子都有 一定的电子组态。一种电子组态不是指原子的一 种状态,而是一组状态。
因此镧系元素原子和离子在基组态时,有一 种或多种能量不同的状态。 例:
如Pr3+在基态时为:[Xe]4f2 ,它可以有91 种不同的能量状态(具体的能量状态数计算后面 介绍)。
稀土元素的特点

稀土元素的特点稀土元素是指化学元素周期表中镧系元素和钪、钇以及镉、锗的混合物。
稀土元素在自然界中分布较广,但含量较低,因此被称为稀土。
稀土元素具有许多独特的特点,主要包括以下几个方面。
稀土元素具有较高的密度和熔点。
稀土元素的密度一般在5-9克/立方厘米之间,属于较重的元素。
其中,钇、镧、铈、镨等元素的密度超过了铁,具有较高的密度。
稀土元素的熔点也较高,一般在1000-2000摄氏度之间,其中铗、铈、镨、钆、钇等元素的熔点超过了铁。
稀土元素具有良好的磁性和光学性质。
稀土元素中的一些元素,如钕、铽、钐等,具有较强的磁性,可以用来制造永磁材料。
稀土元素还具有丰富的光学性质,可以发射出特定的光谱,用于激光器、荧光材料等方面。
第三,稀土元素具有良好的化学活性。
稀土元素的电子排布特殊,容易发生氧化还原反应,可以与氧、硫、氮等元素形成化合物。
稀土元素的化合物常常呈现出特殊的颜色和磁性,具有广泛的应用价值。
第四,稀土元素具有较强的催化作用。
稀土元素的化合物常常是催化剂的重要组成部分,可以催化许多重要的化学反应,如裂解石油、合成有机化合物等。
稀土催化剂具有高催化活性、选择性和稳定性,成为化学工业中不可或缺的重要催化剂。
第五,稀土元素具有较强的放射性。
稀土元素中的一些元素,如镅、钚等,具有较强的放射性,具有一定的危害性。
因此,在稀土元素的开采和应用过程中,需要进行辐射防护和安全保护措施。
稀土元素具有较高的密度和熔点、良好的磁性和光学性质、较强的化学活性、催化作用和放射性等特点。
这些独特的特点使得稀土元素在许多领域中具有广泛的应用价值,如材料科学、化学工业、电子工业等。
稀土元素的研究和应用对推动科技进步和经济发展具有重要意义。
第2章稀土元素的电子结构和镧系收缩 PPT

遵循洪特规则,即等价轨道全充满、半充满或全空的状
态比较稳定。
稀土元素原子核外电子的分布(电子构型)
稀土元素的价电子层结构和氧化态
原子 序数
符号
原子价电子 层结构
RE2+
氧化态 RE3+
RE4+
21
Sc
3d14s2
—
39
Y
4d15s2
—
57
La
5d16s2
—
58
Ce
4f15d16s2
[Xe]4fn6s2和[Xe]4fn-15d16s2 其中[Xe]=1s22s22p63s23p63d104s24p64d105s25p6。
La后其它的元素,电子填充4f轨道,两种情 况4fn-15d16s2 ;4fn6s2 ШB族基态价电子层结构
21 Sc 3d14s2 1s22s22p63s23p63d14s2 39 Y 4d15s2 1s22s22p63s23p63d104s24p64d15s2 57 La 5d16s2 1s22s22p63s23p63d104s24p64d105s25p65d16s2
例如镧的一种电子组态 1s22s22p63s23p63d104s24p64d105s25p65d16s2,表示占 据能量为ε1s的单电子状态的电子数为2,占据能量 为ε2s的单电子状态的电子数为2,占据能量为ε2p的 单电子状态的电子数为6等。
电子组态
构造原理:多电子原子中电子在轨道上的排布规律称为 “构造原理”。 基态原子的电子在原子轨道中填充 排布的顺序通常为: ls, 2s,2p, 3s,3p, 4s,3d,4p, 5s,4d, 5p, 6s,4f,5d,6p, 7s,5f,6d … … 据此可写出大多数原子基态的电子组态。在某些 特殊情况下,上述填充排布的顺序稍有变化。 构造原理图示如下, 这也是元素周期律的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、稀土元素的电子层结构特点和 价态
15个La系原子的电子层结构可写为: [Xe]4fn5d0-16s2
其中[Xe]为氙原子的电子层结构,1s22s22p63s23p63d104s24p64d105s25p6。
• 而最外层电子都已填充到6s2,5d还空着或仅有一个电子,只有4f层 不同,当n=0–14时,元素由LaLu。 • Sc的最外层(4s)2,次外层(3s)23p63d1 • Y的最外层5s2,次外层4s24p64d1 17个稀土元素原子的最外电子层结构相同,均为2个s电子,它们与别的 元素化合时通常都失去这最外层的2个s电子,它们的次外层有的为一 个d电子,无d电子时则失去一个4f电子(这是借助4f n4f n–15d1过 渡),故正常的原子价是3价。这是稀土元素的共性,也是造成化学 性质相似的根本原因。
磁学性质
• 弧立稀土离子的基态磁矩是研究稀土磁性的基础, 故先讨论此问题。原子或离子的磁矩主要由其电 子结构所决定。由于满壳层电子的磁矩总和为零, 所以只需考虑4f层上电子对其磁矩的贡献即可。 • 若4f层上只有一个电子,则其电子轨道磁矩 其轨道角动量有 下列关系: 与
L—为离子轨道总角动量量 子数 S—为离子自旋总角动量量 子数 J—为离子总角动量量子数
第二节 稀土元素的材料学性能和理 化性质
• 一、稀土元素的几何性质 • 二、稀土元素的物理性质
稀土元素的几何性质
在常温、常压条件下,稀土金属有下列五种晶体结构: (1)密排六方结构—原子堆垛次序为ABABAB等,符合此 结构的有钪、钇和从钆到镥的所有重稀土金属(Yb除外); (2)面心立方结构—原子堆垛为ABCABC等,铈和镱属此 结构; (3)双六方结构—原子堆垛为ABACABAC等,镧、镨、钕、 钷等; (4)斜方结构—原子堆垛为ACACBCBABACA等,唯钐有 这一独特结构; (5)体心立方结构—原子堆垛为非密排结构,唯有铕属此 结构。 当温度、压力变化时,多数稀土金属要发生晶型转变,称为 固态相变。
镧系收缩
• 从表2–1中所列RE3+离子半径的数值可知, 从La3+Lu3+,其离子半径依次减少。这种 镧系元素离子半径随原子序数的增加而逐 渐减小的现象称为镧系收缩。 • 其原因是随原子序数的增加,核电荷也相 应增加,然而电子层数保持不变,所增加 的电子(为保持原子为电中性)均填入内 层4f层上,致使原子核对外层5s25p6电子的 引力增大,造成电子云向核靠近,出现了 离子半径减小的趋向。
• (3)根据选择定则,4f–4f能级之间的跃迁,因△L=0的电偶极跃迁 属禁戒的。然而事实上则可观察到这种跃迁。这主要是由于4f组态与 相反宇称的组态g或d发生混合,使对称性偏离反演中心,结果使原属 禁戒的f–f跃迁变为允许。这种强制性的跃迁几率很小,所以激发态的 寿命较长且呈狭窄线状。一般原子激发态寿命平均为10-8—10-10s,而 4f激发态寿命长达10-2—10-6s。这是它可作为激光和荧光材料的主要 依据。
1.力学性质 稀土金属多数为银白色、有光泽的金属。硬度不大,(除Eu、 Yb更小外),硬度随原子序数的增加而增加。稀土金属具 有延展性,可拉成丝也可压成薄板。 前面曾提到由于铕、镱的原了半径异常,不服从镧系收缩, 故原子体积增大,密度减少,硬度也减小。其熔点、沸点、 电阻率也都明显异常,这与其原子参与金属键的电子数目 与其它稀土元素不同有关。 2.热学性质 稀土金属的熔点都较高,大体上随原子序数的增加而增高 (除Eu、Yb外)。 稀土金属的沸点和升华热与原子序数的关系无明显规律。 3.稀土元素的电学性质 稀土金属的导电性并不良好,常温时其电阻率都较高。除镱 外,其电阻率为50~130· cm,比铜、铝的电阻率高1— 2个数量级。另外,它们有正的温度系数,La在接近4.6K 时具有超导性能。
• (6)稀土离子在晶体中或溶液中对白光的 某些波长各有不同的吸收,而对其它波长 有强烈的散射。从而呈现不同的颜色,三 价稀土离子的颜色如下:
稀土元素的化学性质
1.稀土元素的活泼性 稀土元素是典型的金属元素,其金属活泼性仅次于碱金属和碱土金属,并且由钪、钇、镧 递增,由镧→镥递减,即镧是最活泼的稀土金属。 • 稀土金属在室温下就能与空气中的氧作用,继续氧化的程度取决于所生成的氧化物的 结构和性质而有不同。La、Ce、Pr、Nd氧化得很快,而另一些如Y、Dy、Gd、Tb等 则氧化的慢一些。 • 稀土金属在室温下即可吸氢,在250—300℃其相互作用加剧,并生成ReH2.8(对La、 Ce、Pr)或ReH2型氢化物。氢化物在真空中加热到高于1000℃时分解放氢。 • 在硫蒸气中加热稀土金属会生成Re2S3、Re3S4、ReS型硫化物,具有很高的熔点 (1900—2500℃)和耐火性。 • 稀土金属在750—1000℃时能与N2反应,生成ReN型氮化物。稀土金属与碳、碳氢化 物、CO、CO2在加热时相互作用,形成多种碳化物(主要为ReC2)。 • 所有卤素X2(F2、Cl2、Br2、I2)在温度高于200℃时均与稀土金属发生强烈反应,生 成REX3型卤化物。除氟外,所有卤化物都有很强的吸水性,并易水解生成ReOX型卤 氧化物,只有Sm、Eu、Yb生成低价卤化物ReX2。 • 稀土金属易溶于稀的盐酸、硫酸和硝酸中,微溶于氢氟酸和磷酸,这是由于生成难溶 盐的保护膜。稀土金属与碱不发生反应。 • 稀土金属还是强还原剂,能将Fe、Ni、Co、Cr、V、Nb、Ta、Ti、Zr、Si等元素的氧 化物还原为金属。能与许多金属生成金属间化合物,为应用开辟了新天地。 • 稀土金属和其它非金属元素如Cl2、S、N、P、C、Si、B等在一定温度下反应直接生成 熔点高、密度小、化学性质稳定的二元化合物,这是它们可在钢、铁、有色冶炼中被 添加起变质净化作用的原因。
稀土离子的变价
• 稀土元素之间电子层结构上存在差异,4f电子的 数目对价态也有一定影响。 • 根据光谱学上的洪德(Hund)规则,在原子或离 子的电子层结构中,当同一层处于全空、全满或 半满的状态时比较稳定。用到4f层上,则有La3+、 Gd3+、Lu3+的基态电子各为[Xe]4f0、[Xe]4f7 和 [Xe]4f14[见表2–1]。因此它们是比较稳定的3价态。 • 它们下方的元素(Ce3+、Pr3+、Tb3+)离子比稳 定态的离子多一个或两个电子,所以易被氧化为4 价态; • 它们上方的元素(Sm3+、Eu3+、Yb3+)离子则比 稳定态少1或2个电子,所以易被还原成2价态。 这就造成了稀土元素“不正常价态”的存在。
• RE—Fe相图中富铁端形成的RE2Fe17和REFe2化合物 (SmFe2、TbFe2) • RE—Co、RE—Ni相图中生成的RECo5、RENi5(SmCo5、 LaNi5) 都是极为重要的稀土功能材料。如SmCo5永磁材料, LaNi5贮氢材料, SmFe2、TbDyFe2磁致伸缩材料, Nd2Fe14B永磁材料等。
ቤተ መጻሕፍቲ ባይዱ
• (5)f–d组态之间的跃迁,根据选择定则,这种△L=1的跃迁是允许 跃迁。但光谱表现为宽谱带,短寿命,强度较大并受晶体场影响较大 的特点。在稀土离子的激光光谱中,其f–f跃迁谱带窄,强度弱。为了 克服这一弊端,人们利用f–d跃迁来提高对激发光能的吸收,然后将 这部分能量传递给稀土激活离子,这是提高稀土发光率的主要途径。
稀土元素的光谱特性
• 未充满的4f壳层及由此而产生的多种多样的电子能级,所 以稀土元素能够发光。可作为优良的荧光、激光和电光源 材料以及彩色玻璃和陶瓷釉料。
• 稀土元素的电子能级有如下特征:
(1)角量子数L=3的4f壳层共有7个轨道,它们的磁量子数分别为–3, –2,–1,0,1,2,3。15个镧系元素3价离子当处于基态时,4f 电子在各轨道上的分布情况见表2–4。 :总磁量子数,它的最大值即离子的轨道总角动量量子数L
• (4)在稀土离子的4f壳层外面,还有5s25p6电子层,由于后者的屏蔽 作用,故受外界的电场、磁场和配位场(化合物中其它元素的势场) 影响较小。因此,稀土元素化合物的吸收光谱和自由离子的吸收光谱 基本一样,都是线状光谱。这明显不同于d过渡元素的离子。由于d层 外无其它电子层屏蔽,故受配位场影响很大,所以同一元素在不同化 合物中的吸收光谱不同,将其吸收光谱内气体自由离子时的线状光谱 变为化合物或溶液中的带状光谱。
• 电子自旋磁矩
与其自旋角动量
• 它们的矢量和是该离子的总磁矩
•
是电子的总角动量
• 若4f层上有多个电子,电子的自旋和轨道运 动也有耦合,全体该层中的电子的总角动 量才是守恒不变的量。由于稀土的4f电子服 从L–S耦合, • 分别是该离子的轨道角动量 和自旋角动量,离子的磁矩也应为:
• 它仍然同该离子的总角动
第二章 稀土元素的结构特征 与材料学性能
第一节 稀土元素的结构特点
•
17个稀土元素均位于元素周期表同一族一ⅢB族,造成物化性质有一定相似性。特别是 镧系的15个元素(La—Lu)均位于周期表的同一格内,它们的性质更为接近,分离成 单一元素时十分困难。但是,它们本身是17个不同的元素,尤其在电子结构,原子及 离子半径等方面又有显著的不同,所以各自有自己独特的性能。这正是我们要重点研 究的内容。
原子半径对稀土合金结构的影响
• 稀土金属在过渡族金属中的固溶度极低,但能形成一系列 金属间化合物。
稀土金属的原子半径在173.5pm~187.9pm之间,铁原子半径只有 117pm,稀土离子的半径在85pm~106pm之间,而Fe3+、Co2+、 Mn2+、Al3+离子半径分别为60pm、72pm、80pm、50pm。由于 稀土原子和离子的半径都远大于常见的金属原子和离子的半径, 这种半径差(原子R寸 因素)引起的形变能较大,如:
• 左上角的数字表示光谱项的多重性,它等 于2S+1,右下角的数字代表J的数值。例如 Nd3+的基态光谱项用“4I9/2”表示。