北航数值分析课程第一次大作业讲解

合集下载

北航数值分析大作业 第一题 幂法与反幂法

北航数值分析大作业 第一题 幂法与反幂法

数 值 分 析(B ) 大 作 业(一)姓名: 学号: 电话:1、算法设计:①求1λ、501λ和s λ的值:s λ:s λ表示矩阵的按模最小特征值,为求得s λ直接对待求矩阵A 应用反幂法即可。

1λ、501λ:若矩阵A 的特征值满足关系 1n λλ<<且1n λλ≠,要求1λ、及501λ时,可按如下方法求解: a . 对矩阵A 用幂法,求得按模最大的特征值1m λ。

b . 按平移量1m λ对矩阵A 进行原点平移得矩阵1m BA I λ=+,对矩阵B 用反幂法求得B 的按模最小特征值2m λ。

c . 321m m m λλλ=-则:113min(,)m m λλλ=,13max(,)n m m λλλ=即为所求。

②求和A 的与数5011140k k λλμλ-=+最接近的特征值ik λ(k=0,1,…39):求矩阵A 的特征值中与P 最接近的特征值的大小,采用原点平移的方法:先求矩阵 B=A-PI 对应的按模最小特征值k β,则k β+P 即为矩阵A 与P 最接近的特征值。

在本次计算实习中则是先求平移矩阵k B A I μ=-,对该矩阵应用反幂法求得s λ,则与k μ最接近的A 的特征值为:s P λ+重复以上过程39次即可求得ik λ(k=0,1,…39)的值。

③求A 的(谱范数)条件数2cond()A 和行列式det A :在(1)中用反幂法求矩阵A 的按模最小特征值时,要用到Doolittle 分解方法,在Doolittle 分解完成后得到的两个矩阵分别为L 和U ,则A 的行列式可由U 阵求出,即:det(A)=det(U)。

求得det(A)不为0,因此A 为非奇异的实对称矩阵,则: max 2()scond A λλ=,max λ和s λ分别为模最大特征值与模最小特征值。

2、程序源代码:#include "Stdio.h"#include "Conio.h"#include "math.h"//****************************************************************************// // 在存储带状矩阵时,下面的几个量在程序中反复用到,为方便编程故把它们定义成宏.// // M :转换后的矩阵的行数,M=R+S+1。

北航数值分析1-Jacobi法计算矩阵特征值

北航数值分析1-Jacobi法计算矩阵特征值

准备工作算法设计矩阵特征值的求法有幂法、Jacobi法、QR法等,其中幂法可求得矩阵按模最大的特征值(反幂法可求得按模最小特征值),Jacobi法则可以求得对称阵的所有特征值。

分析一:由题目中所给条件λ1≤λ2≤…≤λn,可得出λ1、λn按模并不一定严格小于或大于其他特征值,且即使按模严格小于或大于其他特征值,也极有可能出现|λs|<λ1|<|λn |或|λs|<λn|<|λ1 |的情况,导致按幂法和反幂法无法求解λ1或λn二者中的一者;分析二:题目要求求解与数μk =λ1+k(λn-λ1)/40最接近的特征值λik(k=1,2,3…39),这个问题其实可以转换为求A-μk 按模最小的特征值的问题,但因为在第一个问题中无法确定能肯定的求得λ1和λn,所以第二个问题暂先搁浅;分析三:cond(A)2= ||A|| * ||A-1|| =|λ|max *|λ|min,这可以用幂法和反幂法求得,det(A) =λ1 *λ2 * … *λn,这需要求得矩阵A的所有特征值。

由以上分析可知,用幂法和反幂法无法完成所有问题的求解,而用Jacobi法求得矩阵所有特征值后可以求解题目中所给的各个问题。

所以该题可以用Jacobi法求解。

模块设计由数据结构设计由于矩阵是对称阵,上下带宽均为2,所以可以考虑用二维数组压缩存储矩阵上半带或下半带。

但由于Jacobi法在迭代过程中会破坏矩阵的形态,所以原来为零的元素可能会变为非零,这就导致原来的二维数组无法存储迭代后的矩阵。

基于此的考虑,决定采用一维数组存储整个下三角阵,以此保证迭代的正确进行。

完整代码如下(编译环境windows10 + visual studio2010):完整代码// math.cpp : 定义控制台应用程序的入口点。

//#include "stdafx.h"#include<stdio.h>#include<math.h>#include<time.h>#define N 501#define V (N+1)*N/2+1#define e 2.718281828459045235360287471352662497757247093699959574966967627724076630353#define a(i) (1.64 - 0.024 * (i)) * sin(0.2 * (i)) - 0.64 * pow(e , 0.1 / (i))#define b 0.16#define c -0.064#define eps pow((double)10.0,-12)#define PFbits "%10.5f "#define PFrols 5#define PFe %.11e#define FK 39int p;int q;doublecosz;doublesinz;double MAX;intkk;//#define PTS pts#ifdef PTSvoid PTS(double *m){printf("-----------------------------------------------------------------------\n");printf(" 迭代第%d次\n",kk);for(inti = 1 ; i<= PFrols ; i++){for(int j = (i-1)*i/2+1 ; j <= (i+1)*i/2 ; j++){printf(PFbits,m[j]);}putchar(10);}for(inti = 1 ; i<= PFrols+1 ; i++){printf(" ... ");}putchar(10);printf(" . .\n");printf(" . .\n");printf(" . .\n");for(inti = 1 ; i<= PFrols+2 ; i++){printf(" ... ");}putchar(10);}#elsevoid PTS(double *m){}#endifvoidrecounti(inti , int *pp, int *qq){for(int j = 0 ; j <= N-1 ; j++){if( (i - (j+1)*j/2) <= j+1){*pp = j+1;*qq = i - (j+1)*j/2;break;}}}voidrefreshMetrix(double *m){intipr,ipc,iqr,iqc;m[(p+1)*p/2] = m[(p+1)*p/2] * pow(cosz,2) + m[(q+1)*q/2] * pow(sinz,2) + 2 * m[(p-1)*p/2+q] * cosz * sinz;m[(q+1)*q/2] = m[(p+1)*p/2] * pow(sinz,2) + m[(q+1)*q/2] * pow(cosz,2) - 2 * m[(p-1)*p/2+q] * cosz * sinz;for(inti = 1; i<= N ;i++){if(i != p &&i != q){if(i> p){ipr = i;ipc = p;}else{ipr = p;ipc = i;}if(i> q){iqr = i;iqc = q;}else{iqr = q;iqc = i;}m[(ipr-1)*ipr/2+ipc] = m[(ipr-1)*ipr/2+ipc] * cosz + m[(iqr-1)*iqr/2+iqc] * sinz;m[(iqr-1)*iqr/2+iqc] = -m[(ipr-1)*ipr/2+ipc] * sinz + m[(iqr-1)*iqr/2+iqc] * cosz;}}m[(p-1)*p/2+q] = 0;PTS(m);}//voidcalCosSin(double *m){double app = m[(p+1)*p/2];doubleaqq = m[(q+1)*q/2];doubleapq = m[(p-1)*p/2+q];cosz = cos(atan(2 * apq / (app - aqq))/2);sinz = sin(atan(2 * apq / (app - aqq))/2); }//voidfind_pq(double *m){double max = 0.0;int pp = 0;intqq = 0;for(inti = 1 ; i<= V ; i++){if(fabs(m[i]) > max){recounti(i,&pp,&qq);if(pp != qq){max = fabs(m[i]);p = pp;q = qq;}}}MAX = max;}voidinit(double *m){for(inti = 1 ; i<= N ;i++)m[(i+1)*i/2] = a(i);for(inti = 2 ; i<= N ; i++)m[(i-1)*i/2+i-1] = b;for(inti = 3 ; i<= N ; i++)m[(i-1)*i/2+i-2] = c;PTS(m);}voidcalFinal(double *m){printf("---------------------------------------------------------------------------------------------------\n");printf("结果输出:\n\n");doubleconda;doubledeta = 1.0;doubleminlumda = pow((double)10.0,12);doublemaxlumda = pow((double)10.0,-12);doubleabsminlumda = pow((double)10.0,12);for(inti = 1 ; i<=N ;i++){if(m[(i+1)*i/2] >maxlumda)maxlumda = m[(i+1)*i/2];if(m[(i+1)*i/2] <minlumda)minlumda = m[(i+1)*i/2];if(fabs(m[(i+1)*i/2]) <absminlumda)absminlumda = fabs(m[(i+1)*i/2]);deta *= m[(i+1)*i/2];}if(fabs(minlumda) <fabs(maxlumda))conda = fabs(maxlumda) / absminlumda;elseconda = fabs(minlumda) / absminlumda;printf(" Lumda(1)=%.11e Lumda(%d)=%.11e Lumda(s)=%.11e\n",minlumda,N,maxlumda,absminlumda);printf(" Cond(A)=%.11e\n",conda);printf(" Det(A)=%.11e\n\n",deta);for(inti = 1 ; i<= FK ; i++){doublemuk = minlumda + i * (maxlumda - minlumda) / 40;doublelumdak = 0.0;doubletempabsmin = pow((double)10.0,12);for(int j = 1 ; j <= N ;j++){if(fabs(muk - m[(j+1)*j/2]) <tempabsmin){lumdak = m[(j+1)*j/2];tempabsmin = fabs(muk - m[(j+1)*j/2]);}}printf(" Lumda(i%d)=%.11e ",i,lumdak);if(i%3==0)putchar(10);}putchar(10);printf("------------------------------------------------------------------------------------------------------\n");putchar(10);putchar(10);}int _tmain(intargc, _TCHAR* argv[]){double m[(N+1)*N/2+1] = {0.0};kk=0;MAX=1.0;time_t t0,t1;t0 = time(&t0);init(m);#ifndef PTSprintf("正在计算...\n\n");#endifwhile(true){kk++;find_pq(m);if(MAX<eps)break;#ifdef PTSprintf(" p=%d q=%d |max|=%e\n",p,q,MAX);printf("-----------------------------------------------------------------------\n\n"); #endifcalCosSin(m);refreshMetrix(m);}#ifdef PTSprintf(" p=%d q=%d |max|=%e\n",p,q,MAX);printf("-----------------------------------------------------------------------\n\n");#endifprintf("矩阵最终形态...\n");for(inti = 1 ; i<= PFrols ; i++){for(int j = (i-1)*i/2+1 ; j <= (i+1)*i/2 ; j++){printf(PFbits,m[j]);}putchar(10);}for(inti = 1 ; i<= PFrols+1 ; i++){printf(" ... ");}putchar(10);printf(" . .\n");printf(" . .\n");printf(" . .\n");for(inti = 1 ; i<= PFrols+2 ; i++){printf(" ... ");}putchar(10);t1 = time(&t1);#ifdef PTSprintf("计算并输出用时%.2f秒\n\n",difftime(t1,t0));#elseprintf("迭代次数%d,计算用时%.2f秒\n\n",kk,difftime(t1,t0));#endifcalFinal(m);return 0; }运行结果如下:中间运行状态如下:结果分析数值分析2015/11/10有效性分析1.由输出结果可见矩阵经过21840次迭代后,非对角元全部为零或接近于零;2.代码中有定义预编译宏//#define PTS控制程序运行过程是否输出中间迭代结果,如果输出中间迭代结果,可以发现对角元素在迭代的后期变化非常小,达到收敛的效果;3.算法在多次运行中基本可以在45秒左右完成计算(酷睿i5双核处理器,10G内存,64位windows10操作系统)。

北航数值分析实验报告

北航数值分析实验报告

北航‎数值‎分析‎实验‎报告‎‎篇一‎:‎北航‎数值‎分析‎报告‎第一‎大题‎《‎数值‎分析‎》计‎算实‎习报‎告‎第一‎大题‎学‎号:‎D‎Y1‎30‎5‎姓名‎:‎指导‎老师‎:‎一、‎题目‎要求‎已‎知5‎01‎*5‎01‎阶的‎带状‎矩阵‎A,‎其特‎征值‎满足‎?1‎?‎2‎..‎.‎?5‎01‎。

试‎求:‎1‎、?‎1,‎?5‎01‎和?‎s的‎值;‎‎2、‎A的‎与数‎?k‎??‎1?‎k‎?5‎01‎??‎1‎40‎最‎接近‎的特‎征值‎?i‎k(‎k=‎1,‎2,‎..‎.,‎39‎);‎‎3、‎A的‎(谱‎范数‎)条‎件数‎c n‎d(‎A)‎2和‎行列‎式d‎e t‎A。

‎‎二、‎算法‎设计‎方案‎题‎目所‎给的‎矩阵‎阶数‎过大‎,必‎须经‎过去‎零压‎缩后‎进行‎存储‎和运‎算,‎本算‎法中‎压缩‎后的‎矩阵‎A1‎如下‎所示‎。

‎?0‎?0‎?A‎1?‎?a‎1‎??‎b?‎?c‎0‎b a‎2b‎c‎c b‎b c‎.‎..‎..‎..‎..‎..‎.‎c b‎b c‎c‎b a‎50‎0b‎0‎a ‎3.‎..‎a4‎99‎c‎?‎b?‎?a‎50‎1?‎?‎0?‎0?‎?‎由矩‎阵A‎的特‎征值‎满足‎的条‎件可‎知‎?1‎与?‎50‎1之‎间必‎有一‎个最‎大,‎则采‎用幂‎法求‎出的‎一‎个特‎征值‎必为‎其中‎的一‎个:‎当‎所求‎得的‎特征‎值为‎正数‎,则‎为?‎50‎1;‎否则‎为?‎1。

‎在求‎得?‎1与‎?‎50‎1其‎中的‎一个‎后,‎采用‎带位‎移的‎幂法‎则可‎求出‎它们‎中的‎另一‎个,‎且位‎移量‎即为‎先求‎出的‎特‎征值‎的值‎。

用‎反幂‎法求‎得的‎特征‎值必‎为?‎s。

‎由条‎件数‎的性‎质可‎得,‎c n‎d(‎A)‎2为‎模最‎大的‎特征‎值与‎模最‎小的‎特征‎值之‎比的‎模,‎因此‎,求‎出?‎1,‎?5‎01‎和?‎s的‎值后‎,则‎可以‎求得‎c n‎d(‎A)‎2。

北航研究生数值分析编程大作业1

北航研究生数值分析编程大作业1

数值分析大作业一、算法设计方案1、矩阵初始化矩阵[]501501⨯=ij a A 的下半带宽r=2,上半带宽s=2,设置矩阵[][]5011++s r C ,在矩阵C 中检索矩阵A 中的带内元素ij a 的方法是:j s j i ij c a ,1++-=。

这样所需要的存储单元数大大减少,从而极大提高了运算效率。

2、利用幂法求出5011λλ,幂法迭代格式:0111111nk k k k kk T k k k u R y u u Ay y u ηηβ------⎧∈⎪⎪=⎪=⎨⎪=⎪⎪=⎩非零向量 当1210/-≤-k k βββ时,迭代终止。

首先对于矩阵A 利用幂法迭代求出一个λ,然后求出矩阵B ,其中I A B λ-=(I 为单位矩阵),对矩阵B 进行幂法迭代,求出λ',之后令λλλ+'='',比较的大小与λλ'',大者为501λ,小者为1λ。

3、利用反幂法求出ik s λλ,反幂法迭代格式:0111111nk k k k kk T k k k u R y u Au y y u ηηβ------⎧∈⎪⎪=⎪=⎨⎪=⎪⎪=⎩非零向量 当1210/-≤-k k βββ时,迭代终止,1s k λβ=。

每迭代一次都要求解一次线性方程组1-=k k y Au ,求解过程为:(1)作分解LU A =对于n k ,...,2,1=执行[][]s k n r k k k i c c c c c n s k k k j c cc c k s ks k t k s k r i t t s t i k s k i k s k i js j t k s j r k t t s t k j s j k j s j k <+++=-=++=-=+++----=++-++-++-++----=++-++-++-∑∑);,min(,...,2,1/)(:),min(,...,1,:,1,11),,1max(,1,1,1,11),,1max(,1,1,1(2)求解y Ux b Ly ==,(数组b 先是存放原方程组右端向量,后来存放中间向量y))1,...,2,1(/)(:/:),...,3,2(:,1),min(1.1.11),1max(,1--=-===-=+++-++-+--=++-∑∑n n i c x c b x c b x n i b c b b i s t n s i i t t s t i i i ns n n ti r i t t s t i i i使用反幂法,直接可以求得矩阵按模最小的特征值s λ。

北航数值分析大作业第一题幂法与反幂法

北航数值分析大作业第一题幂法与反幂法

《数值分析》计算实习题目第一题:1. 算法设计方案(1)1λ,501λ和s λ的值。

1)首先通过幂法求出按模最大的特征值λt1,然后根据λt1进行原点平移求出另一特征值λt2,比较两值大小,数值小的为所求最小特征值λ1,数值大的为是所求最大特征值λ501。

2)使用反幂法求λs ,其中需要解线性方程组。

因为A 为带状线性方程组,此处采用LU 分解法解带状方程组。

(2)与140k λλμλ-5011=+k 最接近的特征值λik 。

通过带有原点平移的反幂法求出与数k μ最接近的特征值 λik 。

(3)2cond(A)和det A 。

1)1=nλλ2cond(A),其中1λ和n λ分别是按模最大和最小特征值。

2)利用步骤(1)中分解矩阵A 得出的LU 矩阵,L 为单位下三角阵,U 为上三角阵,其中U 矩阵的主对角线元素之积即为det A 。

由于A 的元素零元素较多,为节省储存量,将A 的元素存为6×501的数组中,程序中采用get_an_element()函数来从小数组中取出A 中的元素。

2.全部源程序#include <stdio.h>#include <math.h>void init_a();//初始化Adouble get_an_element(int,int);//取A 中的元素函数double powermethod(double);//原点平移的幂法double inversepowermethod(double);//原点平移的反幂法int presolve(double);//三角LU 分解int solve(double [],double []);//解方程组int max(int,int);int min(int,int);double (*u)[502]=new double[502][502];//上三角U 数组double (*l)[502]=new double[502][502];//单位下三角L 数组double a[6][502];//矩阵Aint main(){int i,k;double lambdat1,lambdat2,lambda1,lambda501,lambdas,mu[40],det;init_a();//初始化Alambdat1=powermethod(0);lambdat2=powermethod(lambdat1);lambda1=lambdat1<lambdat2?lambdat1:lambdat2;lambda501=lambdat1>lambdat2?lambdat1:lambdat2;presolve(0);lambdas=inversepowermethod(0);det=1;for(i=1;i<=501;i++)det=det*u[i][i];for (k=1;k<=39;k++){mu[k]=lambda1+k*(lambda501-lambda1)/40;presolve(mu[k]);lambda[k]=inversepowermethod(mu[k]);}printf("------------所有特征值如下------------\n");printf("λ=%1.11e λ=%1.11e\n",lambda1,lambda501);printf("λs=%1.11e\n",lambdas);printf("cond(A)=%1.11e\n",fabs(lambdat1/lambdas));printf("detA=%1.11e \n",det);for (k=1;k<=39;k++){printf("λi%d=%1.11e ",k,lambda[k]);if(k % 3==0) printf("\n");} delete []u;delete []l;//释放堆内存return 0;}void init_a()//初始化A{int i;for (i=3;i<=501;i++) a[1][i]=a[5][502-i]=-0.064;for (i=2;i<=501;i++) a[2][i]=a[4][502-i]=0.16;for (i=1;i<=501;i++) a[3][i]=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i); }double get_an_element(int i,int j)//从A中节省存储量的提取元素方法{if (fabs(i-j)<=2) return a[i-j+3][j];else return 0;}double powermethod(double offset)//幂法{int i,x1;double beta=0,prebeta=-1000,yita=0;for (i=1;i<=501;i++)u[i]=1,y[i]=0;//设置初始向量u[]for (int k=1;k<=10000;k++){yita=0;for (i=1;i<=501;i++) yita=sqrt(yita*yita+u[i]*u[i]);for (i=1;i<=501;i++) y[i]=u[i]/yita;for (x1=1;x1<=501;x1++){u[x1]=0;for (int x2=1;x2<=501;x2++)u[x1]=u[x1]+((x1==x2)?(get_an_element(x1,x2)-offset):get_an_element(x1,x2))*y[x2];} prebeta=beta;beta=0;for (i=1;i<=501;i++) beta=beta+ y[i]*u[i];if (fabs((prebeta-beta)/beta)<=1e-12) {printf("offset=%f lambda=%f err=%e k=%d\n",offset,(beta+offset),fabs((prebeta-beta)/beta),k);break;};//输出中间过程,包括偏移量,误差,迭代次数}return (beta+offset);}double inversepowermethod(double offset)//反幂法{int i;double u[502],y[502];double beta=0,prebeta=0,yita=0;for (i=1;i<=501;i++)u[i]=1,y[i]=0; //设置初始向量u[]for (int k=1;k<=10000;k++){yita=0;for (i=1;i<=501;i++) yita=sqrt(yita*yita+u[i]*u[i]);for (i=1;i<=501;i++) y[i]=u[i]/yita;solve(u,y);prebeta=beta;beta=0;for (i=1;i<=501;i++) beta=beta+ y[i]*u[i];beta=1/beta;if (fabs((prebeta-beta)/beta)<=1e-12) {printf("offset=%f lambda=%f err=%e k=%d\n",offset,(beta+offset),fabs((prebeta-beta)/beta),k);break;};//输出中间过程,包括偏移量,误差,迭代次数}return (beta+offset);}int presolve(double offset)//三角LU分解{int i,k,j,t;double sum;for (k=1;k<=501;k++)for (j=1;j<=501;j++){u[k][j]=l[k][j]=0;if (k==j) l[k][j]=1;} //初始化LU矩阵for (k=1;k<=501;k++){for (j=k;j<=min(k+2,501);j++){sum=0;for (t=max(1,max(k-2,j-2)) ; t<=(k-1) ; t++)sum=sum+l[k][t]*u[t][j];u[k][j]=((k==j)?(get_an_element(k,j)-offset):get_an_element(k,j))-sum;}if (k==501) continue;for (i=k+1;i<=min(k+2,501);i++){sum=0;for (t=max(1,max(i-2,k-2));t<=(k-1);t++)sum=sum+l[i][t]*u[t][k];l[i][k]=(((i==k)?(get_an_element(i,k)-offset):get_an_element(i,k))-sum)/u[k][k];}}return 0;}int solve(double x[],double b[])//解方程组{int i,t;double y[502];double sum;y[1]=b[1];for (i=2;i<=501;i++){sum=0;for (t=max(1,i-2);t<=i-1;t++)sum=sum+l[i][t]*y[t];y[i]=b[i]-sum;}x[501]=y[501]/u[501][501];for (i=500;i>=1;i--){sum=0;for (t=i+1;t<=min(i+2,501);t++)sum=sum+u[i][t]*x[t];x[i]=(y[i]-sum)/u[i][i];}return 0;}int max(int x,int y){return (x>y?x:y);}int min(int x,int y){return (x<y?x:y);}3.计算结果结果如下图所示:部分中间结果:给出了偏移量(offset),误差(err),迭代次数(k)4.讨论迭代初始向量的选取对计算结果的影响,并说明原因使用u[i]=1(i=1,2,...,501)作为初始向量进行迭代,可得出以上结果。

北航数值分析全部三次大作业

北航数值分析全部三次大作业

北航数值分析全部三次大作业第一次大作业是关于解线性方程组的数值方法。

我们被要求实现各种常用的线性方程组求解算法,例如高斯消元法、LU分解法和迭代法等。

我首先学习了这些算法的原理和实现方法,并借助Python编程语言编写了这些算法的代码。

在实验中,我们使用了不同规模和条件的线性方程组进行测试,并比较了不同算法的性能和精度。

通过这个作业,我深入了解了线性方程组求解的原理和方法,提高了我的编程和数值计算能力。

第二次大作业是关于数值积分的方法。

数值积分是数值分析中的重要内容,它可以用于计算曲线的长度、函数的面积以及求解微分方程等问题。

在这个作业中,我们需要实现不同的数值积分算法,例如矩形法、梯形法和辛普森法等。

我学习了这些算法的原理和实现方法,并使用Python编写了它们的代码。

在实验中,我们计算了不同函数的积分值,并对比了不同算法的精度和效率。

通过这个作业,我深入了解了数值积分的原理和方法,提高了我的编程和数学建模能力。

第三次大作业是关于常微分方程的数值解法。

常微分方程是数值分析中的核心内容之一,它可以用于描述众多物理、化学和生物现象。

在这个作业中,我们需要实现不同的常微分方程求解算法,例如欧拉法、龙格-库塔法和Adams法等。

我学习了这些算法的原理和实现方法,并使用Python编写了它们的代码。

在实验中,我们解决了一些具体的常微分方程问题,并比较了不同算法的精度和效率。

通过这个作业,我深入了解了常微分方程的原理和方法,提高了我的编程和问题求解能力。

总的来说,北航数值分析课程的三次大作业非常有挑战性,但也非常有意义。

通过这些作业,我在数值计算和编程方面得到了很大的提升,也更加深入地了解了数值分析的理论和方法。

虽然这些作业需要大量的时间和精力,但我相信这些努力将会对我未来的学习和工作产生积极的影响。

北航数值分析大作业一

北航数值分析大作业一

北京航空航天大学数值分析大作业一学院名称自动化专业方向控制工程学号ZY*******学生姓名许阳教师孙玉泉日期2021 年11月26 日设有501501⨯的实对称矩阵A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=5011A a b c b c c b c b a其中,064.0,16.0),501,,2,1(64.0)2.0sin()024.064.1(1.0-==⋅⋅⋅=--=c b i e i i a ii 。

矩阵A 的特征值为)501,,2,1(⋅⋅⋅=i i λ,并且有||min ||,501150121i i s λλλλλ≤≤=≤⋅⋅⋅≤≤1λ,501λ和s λ的值。

A 的与数4015011λλλμ-+=kk 最接近的特征值)39,,2,1(⋅⋅⋅=k k i λ。

A 的(谱范数)条件数2)A (cond 和行列式detA 。

一 方案设计1 求1λ,501λ和s λ的值。

s λ为按模最小特征值,||min ||5011i i s λλ≤≤=。

可使用反幂法求得。

1λ,501λ分别为最大特征值及最小特征值。

可使用幂法求出按模最大特征值,如结果为正,即为501λ,结果为负,那么为1λ。

使用位移的方式求得另一特征值即可。

2 求A 的与数4015011λλλμ-+=kk 最接近的特征值)39,...,2,1(=k k i λ。

题目可看成求以k μ为偏移量后,按模最小的特征值。

即以k μ为偏移量做位移,使用反幂法求出按模最小特征值后,加上k μ,即为所求。

3 求A 的(谱范数)条件数2)(A cond 和行列式detA 。

矩阵A 为非奇异对称矩阵,可知,||)(min max2λλ=A cond(1-1)其中m ax λ为按模最大特征值,min λ为按模最小特征值。

detA 可由LU 分解得到。

因LU 均为三角阵,那么其主对角线乘积即为A 的行列式。

二 算法实现1 幂法使用如下迭代格式:⎪⎪⎩⎪⎪⎨⎧⋅===⋅⋅⋅=------||max |)|sgn(max ||max /),,(111111)0()0(10k k k k k k k k Tn u u Ay u u u y u u u β任取非零向量 (2-1)终止迭代的控制理论使用εβββ≤--||/||1k k k , 实际使用εβββ≤--||/||||||1k k k(2-2)由于不保存A 矩阵中的零元素,只保存主对角元素a[501]及b,c 值。

(完整版)北京航空航天大学数值分析课程知识点总结.docx

(完整版)北京航空航天大学数值分析课程知识点总结.docx

1.2 误差知识与算法知识1.2.2 绝对误差、相对误差与有效数字设 a 是准确值 x 的一个近似值,记 ex a ,称 e 为近似值 a 的绝对误差,简称误差。

如果 |e |的一个上界已知,记为 ,即 | e |,则称 为近似值 a 的绝对误差限或绝对误差界,简称误差限或误差界。

记 e re x a,称 e r 为近似值 a 的相对误差。

由于 x 未知,实际上总把e作为 a 的xxae x ae 的上界,即 r相对误差,并且也记为 e r,相对误差一般用百分比表示。

aar| a |称为近似值 a 的相对误差限或相对误差界。

定义 设数 a 是数 x 的近似值。

如果 a 的绝对误差限时它的某一位的半个单位,并且从该位 到它的第一位非零数字共有 n 位,则称用 a 近似 x 时具有 n 位有效数字。

1.2.3 函数求值的误差估计~设 uf (x) 存在足够高阶的导数, a 是 x 的近似值, 则 uf (a) 是 u f (x) 的近似值。

~若 f'(a) 0 且 | f ''(a) | / | f '(a) |不很大,则有误差估计e(u)f '(a)e(a)~。

(u)f '(a) (a)若 f '(a) f ''(a) ...f (k 1) (a) 0, f ( k) (a) 0 ,且比值~f( k)(a)ke(u)k! e( a)大,则有误差估计。

f ( k) (a)~k(u)(a)k !~nf (a 1, a 2,..., a n )e(a )e(u)i 1 x i i对于 n 元函数,有误差估计~nf ( a 1 ,a 2 ,..., a n )(u)(a i )i 1x if (k 1) (a) / f (k ) (a) 不很;若一阶偏导全为零或很小,则要使用高阶项。

1.2.4 算法及其计算复杂性( 1)要有数值稳定性,即能控制舍入误差的传播。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数值分析A》计算实习题目第一题一.算法设计方案:1.矩阵A的存储与检索将带状线性矩阵A[501][501]转存为一个矩阵MatrixC[5][501] .由于C语言中数组角标都是从0开始的,所以在数组MatrixC[5][501]中检索A的带内元素a ij的方法是:A的带内元素a ij=C中的元素c i-j+2,j2.求解λ1,λ501,λs①首先分别使用幂法和反幂法迭代求出矩阵按摸最大和最小的特征值λmax和λmin。

λmin即为λs;如果λmax>0,则λ501=λmax;如果λmax<0,则λ1=λmax。

②使用带原点平移的幂法(mifa()函数),令平移量p=λmax,求出对应的按摸最大的特征值λ,max,如果λmax>0,则λ1=λ,max+p;如果λmax<0,则λ501=λ,max+p。

3.求解A的与数μk=λ1+k(λ501-λ1)/40的最接近的特征值λik (k=1,2,…,39)。

使用带原点平移的反幂法,令平移量p=μk,即可求出与μk最接近的特征值λik。

4.求解A的(谱范数)条件数cond(A)2和行列式d etA。

①cond(A)2=|λ1/λn|,其中λ1和λn分别是矩阵A的模最大和最小特征值。

②矩阵A的行列式可先对矩阵A进行LU分解后,detA等于U所有对角线上元素的乘积。

二.源程序(VS2010环境下,C++语言)#include<stdio.h>#include<iostream>#include<stdlib.h>#include<math.h>#include<float.h>#include<iomanip>#include<time.h>#define E 1.0e-12 /*定义全局变量相对误差限*/int max2(int a,int b) /*求两个整型数最大值的子程序*/{if(a>b)return a;elsereturn b;}int min2(int a,int b) /*求两个整型数最小值的子程序*/{if(a>b)return b;elsereturn a;}int max3(int a,int b,int c) /*求三整型数最大值的子程序*/{ int t;if(a>b)t=a;else t=b;if(t<c) t=c;return(t);}void assignment(double array[5][501]) /*将矩阵A转存为数组C[5][501]*/ {int i,j,k;//所有元素归零for(i=0;i<=4;){for(j=0;j<=500;){array[i][j]=0;j++;}i++;}//第0,4行赋值for(j=2;j<=500;){k=500-j;array[0][j]=-0.064;array[4][k]=-0.064;j++;}//第1,3行赋值for(j=1;j<=500;){k=500-j;array[1][j]=0.16;array[3][k]=0.16;j++;}//第2行赋值for(j=0;j<=500;){ k=j;j++;array[2][k]=(1.64-0.024*j)*sin((double)(0.2*j))-0.64*exp((double)(0.1/j));}}double mifa(double u[501],double array[5][501],double p) /*带原点平移的幂法*/ {int i,j; /* u[501]为初始迭代向量*/double a,b,c=0; /* array[5][501]为矩阵A的转存矩阵*/double y[501]; /*p为平移量*/for(;;){a=0;b=0;/*选用第一种迭代格式*/ //求ηk-1for(i=0;i<=500;i++){a=a+u[i]*u[i];}a=sqrt(a);//求y k-1for(i=0;i<=500;i++){y[i]=u[i]/a;}//求u kfor(i=0;i<=500;i++){u[i]=0;for(j=max2(i-2,0);j<=min2(i+2,500);j++){u[i]+=array[i-j+2][j]*y[j];}u[i]=u[i]-p*y[i]; /*引入平移量*/}//求βkfor(i=0;i<=500;i++){b+=y[i]*u[i];}if(fabs((b-c)/b)<=E) /*达到精度水平,迭代终止*/ break;c=b;}return (b+p); /*直接返回A的特征值*/}void chuzhi(double a[]) /*用随机数为初始迭代向量赋值*/ {int i;srand((int)time(0));for(i=0;i<=500;i++){a[i]=(10.0*rand()/RAND_MAX); /*生成0~10的随机数*/ }}void chuzhi2(double a[],int j) /*令初始迭代向量为e i*/{int i;for(i=0;i<=500;i++){a[i]=0;}a[j]=1;}void LU(double array[5][501]) /*对矩阵A进行Doolittle分解*/ { /*矩阵A转存在C[5][501]中*/ int j,k,t; /*分解结果L,U分别存在C[5][501]的上半部与下半部*/ for(k=0;k<=500;k++){for(j=k;j<=min2((k+2),500);j++){for(t=max3(0,k-2,j-2);t<=(k-1);t++){array[k-j+2][j]-=array[k-t+2][t]*array[t-j+2][j];}}if(k<500)for(j=k+1;j<=min2((k+2),500);j++){for(t=max3(0,k-2,j-2);t<=(k-1);t++){array[j-k+2][k]-=array[j-t+2][t]*array[t-k+2][k];}array[j-k+2][k]=array[j-k+2][k]/array[2][k];}}}double fmifa(double u[501],double array[5][501],double p){ /*带原点平移的反幂法*/ int i,j;double a,b,c=0;double y[501];//引入平移量for(i=0;i<=500;i++){array[2][i]-=p;}//先将矩阵Doolittle分解LU(array);for(;;){a=0;b=0;//求ηk-1for(i=0;i<=500;i++){a=a+u[i]*u[i];}a=sqrt(a);//求y k-1for(i=0;i<=500;i++){y[i]=u[i]/a;}//回带过程,求解u kfor(i=0;i<=500;i++){u[i]=y[i];}for(i=1;i<=500;i++){for(j=max2(0,(i-2));j<=(i-1);j++){u[i]-=array[i-j+2][j]*u[j];}}u[500]=u[500]/array[2][500];for(i=499;i>=0;i--){for(j=i+1;j<=min2((i+2),500);j++){u[i]-=array[i-j+2][j]*u[j];}u[i]=u[i]/array[2][i];}//求βkfor(i=0;i<=500;i++){b+=y[i]*u[i];}if(fabs((b-c)/b)<=E) /*达到精度要求,迭代终止*/ break;c=b;}return (p+(1/b)); /*直接返回距离原点P最接近的A的特征值*/ }//主函数int main(){ int i;double d1,d501,ds,d,a;double u[501];double MatrixC[5][501];printf(" 《数值分析》计算实习题目第一题\n");printf(" sy1405317 梁天骄\n");//将矩阵A转存为MatrixCassignment(MatrixC);//用带原点平移的幂法求解λ1,λ501chuzhi(u);d=mifa(u,MatrixC,0);chuzhi(u);a=mifa(u,MatrixC,d);if(d<0){d1=d;d501=a;}else{d501=d;d1=a;}printf("λ1=%.12e\n",d1);printf("λ501=%.12e\n",d501);//用反幂法求λschuzhi(u);ds=fmifa(u,MatrixC,0);p rintf("λs=%.12e\n",ds);//用带原点平移的反幂法求λikfor(i=1;i<=39;i++){a=d1+(i*(d501-d1))/40;assignment(MatrixC);chuzhi(u);d=fmifa(u,MatrixC,a);printf("与μ%02d=%+.12e最接近的特征值λi%02d=%+.12e\n",i,a,i,d);}//求A的条件数d=fabs((d1/ds));printf("A的(谱范数)条件数cond<A>2=%.12e\n",d);//求detAassignment(MatrixC);LU(MatrixC);a=1;for(i=0;i<=500;i++){a*=MatrixC[2][i];}printf("行列式detA=%.12e\n",a);//测试不同迭代初始向量对λ1计算结果的影响。

printf("改变迭代初始向量对λmax计算结果的测试如下:\n");assignment(MatrixC);for(i=0;i<=500;i++){chuzhi2(u,i);d1=mifa(u,MatrixC,0);printf("u%03d,λmax=%+e ",i,d1);if(((i+1)%3)==0)printf("\n");}printf("Press any key to continue\n");getchar();return 0;}三.程序结果:四.分析初始向量选择对计算结果的影响矩阵的初始向量选择,对结果的影响很大,选择不同的初始向量可能会得到的特征值。

相关文档
最新文档