上海市各区2019届中考数学二模试卷精选汇编压轴题专题(含答案)87
上海市浦东新区2019年中考数学二模试卷含答案解析+【精选五套中考模拟卷】

上海市浦东新区2019年中考数学二模试卷含答案解析一、选择题:(本大题共6题,每题4分,满分24分)1.2019的相反数是()A.B.﹣2019 C.﹣D.20192.已知一元二次方程x2+3x+2=0,下列判断正确的是()A.该方程无实数解B.该方程有两个相等的实数解C.该方程有两个不相等的实数解D.该方程解的情况不确定3.下列函数的图象在每一个象限内,y随着x的增大而增大的是()A.y=﹣B.y=x2﹣1 C.y= D.y=﹣x﹣14.如果从1、2、3这三个数字中任意选取两个数字,组成一个两位数,那么这个两位数是素数的概率等于()A.B.C.D.5.下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是()A.15,17 B.14,17 C.17,14 D.17,156.如图,△ABC和△AMN都是等边三角形,点M是△ABC的重心,那么的值为()A.B.C.D.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:|﹣1|= .8.不等式x﹣1<2的解集是.9.分解因式:8﹣2x2= .10.计算:3()+2(﹣2)= .11.方程的根是.12.已知函数f(x)=,那么f()= .13.如图,传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,则物体从A 到B所经过的路程为米.14.正八边形的中心角等于度.15.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是.16.已知:⊙O1、⊙O2的半径长分别为2和R,如果⊙O1与⊙O2相切,且两圆的圆心距d=3,则R的值为.17.定义运算“﹡”:规定x﹡y=ax+by(其中a、b为常数),若1﹡1=3,1﹡(﹣1)=1,则1﹡2= .18.在Rt△ABC中,∠ACB=90°,BC=15,AC=20.点D在边AC上,DE⊥AB,垂足为点E,将△ADE沿直线DE翻折,翻折后点A的对应点为点P,当∠CPD为直角时,AD的长是.三、解答题:(本大题共7题,满分78分)19.(10分)计算:2sin45°﹣20190++()﹣1.20.(10分)解方程:.21.(10分)如图,AB是⊙O的弦,C是AB上一点,∠AOC=90°,OA=4,OC=3,求弦AB的长.22.(10分)某工厂生产一种产品,当生产数量不超过40吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示:(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为210万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)23.(12分)如图,已知:四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于点F,∠ECA=∠D (1)求证:△EAC∽△ECB;(2)若DF=AF,求AC:BC的值.24.(12分)如图,二次函数y=ax2﹣4ax+2的图象与y轴交于点A,且过点B(3,6).(1)试求二次函数的解析式及点A的坐标;(2)若点B关于二次函数对称轴的对称点为点C,试求∠CAB的正切值;(3)若在x轴上有一点P,使得点B关于直线AP的对称点B1在y轴上,试求点P的坐标.25.(14分)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB的中点,点E为边AC上的一个动点.联结DE,过点E作DE的垂线与边BC交于点F,以DE,EF为邻边作矩形DEFG.(1)如图1,当AC=8,点G在边AB上时,求DE和EF的长;(2)如图2,若,设AC=x,矩形DEFG的面积为y,求y关于x的函数解析式;(3)若,且点G恰好落在Rt△ABC的边上,求AC的长.参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.2019的相反数是()A.B.﹣2019 C.﹣D.2019【考点】相反数.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:2019的相反数是﹣2019.故选:B.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.已知一元二次方程x2+3x+2=0,下列判断正确的是()A.该方程无实数解B.该方程有两个相等的实数解C.该方程有两个不相等的实数解D.该方程解的情况不确定【考点】根的判别式.【分析】把a=1,b=3,c=2代入判别式△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=3,c=2,∴△=b2﹣4ac=32﹣4×1×2=1>0,∴方程有两个不相等的实数根.故选C.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.3.下列函数的图象在每一个象限内,y随着x的增大而增大的是()A.y=﹣B.y=x2﹣1 C.y= D.y=﹣x﹣1【考点】反比例函数的性质;一次函数的性质;二次函数的性质.【分析】分析四个选项中得函数解析式,根据系数的正负结合各函数的性质即可得出其增减性,由此即可得出结论.【解答】解:A 、y=﹣中k=﹣1<0,∴函数y=﹣的图象在第二、四象限内y 随着x 的增大而增大;B 、y=x 2﹣1中a=1>0,∴函数y=x 2﹣1的图象在第二、三象限内y 随着x 的增大而减小,在第一、四象限内y 随着x 的增大而增大;C 、y=﹣中k=1>0,∴函数y=的图象在第一、三象限内y 随着x 的增大而减小;D 、y=﹣x ﹣1中k=﹣1<0,b=﹣1<0,∴函数y=﹣x ﹣1的图象在第二、三、四象限内y 随着x 的增大而减小.故选A .【点评】本题考查了反比例函数的性质、一次函数的性质以及二次函数的性质,解题的关键是逐项分析四个选项的增减性.本题属于基础题,难度不大,解决该题型题目时,熟悉各函数的性质及各函数的图象是解题的关键.4.如果从1、2、3这三个数字中任意选取两个数字,组成一个两位数,那么这个两位数是素数的概率等于( )A .B .C .D . 【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这个两位数是素数的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,这个两位数是素数的有13,23,31共3种情况,∴这个两位数是素数的概率为: =.故选A .【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.5.下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是()A.15,17 B.14,17 C.17,14 D.17,15【考点】众数;折线统计图;中位数.【分析】根据中位数和众数的概念求解.把数据按大小排列,第4个数为中位数;17℃出现的次最多,为众数.【解答】解:17℃出现了2次,最多,故众数为17℃;共7个数据,从小到大排列为8,9,11,14,15,17,第4个数为14,故中位数为14℃.故选C.【点评】本题为统计题,考查了众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数为数据中出现次数最多的数.6.如图,△ABC和△AMN都是等边三角形,点M是△ABC的重心,那么的值为()A.B.C.D.【考点】三角形的重心.【分析】延长AM交BC于点D,根据△ABC是等边三角形可知AD⊥BC,设AM=2x,则DM=x,利用锐角三角函数的定义用x表示出AB的长,再根据相似三角形的性质即可得出结论.【解答】解:延长AM交BC于点D,∵△ABC是等边三角形,∴AD⊥BC.设AM=2x,则DM=x,∴AD=3x,∴AB===2x.∵△ABC和△AMN都是等边三角形,∴△ABC∽△AMN,∴=()2=()2=.故选B.【点评】本题考查的是三角形的重心,熟知重心到顶点的距离与重心到对边中点的距离之比为2:1是解答此题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:|﹣1|= .【考点】有理数的减法;绝对值.【分析】首先根据有理数的减法法则,求出﹣1的值是多少;然后根据一个负数的绝对值等于它的相反数,求出|﹣1|的值是多少即可.【解答】解:|﹣1|=|﹣|=.故答案为:.【点评】(1)此题主要考查了有理数的减法,要熟练掌握,解答此题的关键是要明确:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).(2)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.8.不等式x﹣1<2的解集是x<3 .【考点】解一元一次不等式.【分析】解不等式x﹣1<2,即可得到不等式x﹣1<2的解集,本题得以解决.【解答】解:x﹣1<2两边同时加1,得x﹣1+1<2+1x<3,故答案为:x<3.【点评】本题考查解一元一次不等式,解题的关键是会解一元一次不等式的方法.9.分解因式:8﹣2x2= 2(2+x)(2﹣x).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式,再根据平方差公式进行分解即可.【解答】解:原式=2(4﹣x2)=2(2+x)(2﹣x).故答案为:2(2+x)(2﹣x).【点评】本题考查的是提取公因式法与公式法的综合运用,熟记平方差公式是解答此题的关键.10.计算:3()+2(﹣2)= ﹣﹣.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:3()+2(﹣2)=3﹣3+2﹣4=﹣﹣.故答案为:﹣﹣.【点评】此题考查了平面向量的运算法则.注意掌握去括号法则是解此题的关键.11.方程的根是x=﹣4 .【考点】无理方程.【分析】9的算术平方根是3,故5﹣x=9,x=﹣4.【解答】解:因为算术平方根的被开方数是非负数,根据题意可得,5﹣x=9,解得:x=﹣4.故本题答案为:x=﹣4.【点评】记准算术平方根的被开方数是非负数这一要求,是解决这类问题的关键.12.已知函数f(x)=,那么f()= 3 .【考点】函数值.【分析】将x=代入计算即可.【解答】解:f()====3.故答案为:3.【点评】本题主要考查的是求函数值,掌握二次根式的性质是解题的关键.13.如图,传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,则物体从A 到B所经过的路程为18 米.【考点】解直角三角形的应用-坡度坡角问题.【分析】直接利用坡角的定义得出AC的长,进而利用勾股定理得出AB的长.【解答】解:∵传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,∴可得:BC=9m,则=,解得:AC=9,则AB===18(m).故答案为:18.【点评】此题主要考查了坡角的定义,根据题意得出AC的长是解题关键.14.正八边形的中心角等于45 度.【考点】正多边形和圆.【分析】根据中心角是正多边形相邻的两个半径的夹角来解答.【解答】解:正八边形的中心角等于360°÷8=45°;故答案为45.【点评】本题考查了正多边形和圆的知识,解题的关键是牢记中心角的定义及求法.15.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是720 .【考点】条形统计图;用样本估计总体.【分析】用所有学生数乘以样本中课外阅读时间不少于6小时的人数所占的百分比即可.【解答】解:估计该校1200名学生一周的课外阅读时间不少于6小时的人数是:1200×=720(人),故答案为:720.【点评】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比.16.已知:⊙O1、⊙O2的半径长分别为2和R,如果⊙O1与⊙O2相切,且两圆的圆心距d=3,则R的值为1或5 .【考点】圆与圆的位置关系.【分析】由于⊙O1与⊙O2相切,则分两圆内切和外切讨论得到R+2=3或R﹣2=3,然后解两个一次方程即可.【解答】解:∵⊙O1与⊙O2相切,∴R+2=3或R﹣2=3,∴R=1或R=5.故答案为1或5.【点评】本题考查了圆与圆的位置关系:设两圆的圆心距为d,两圆半径分别为R、r,当两圆外离⇔d>R+r;两圆外切⇔d=R+r;两圆相交⇔R﹣r<d<R+r(R≥r);两圆内切⇔d=R﹣r(R>r);两圆内含⇔d<R﹣r(R>r).17.定义运算“﹡”:规定x﹡y=ax+by(其中a、b为常数),若1﹡1=3,1﹡(﹣1)=1,则1﹡2= 4 .【考点】解二元一次方程组;有理数的混合运算.【分析】已知等式利用题中的新定义化简为二元一次方程组,求出方程组的解得到a与b的值,即可确定出所求式子的值.【解答】解:根据题中的新定义得:,解得:,则1﹡2=1×2+2×1=2+2=4,故答案为:4【点评】此题考查了解二元一次方程组,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.18.在Rt△ABC中,∠ACB=90°,BC=15,AC=20.点D在边AC上,DE⊥AB,垂足为点E,将△ADE沿直线DE翻折,翻折后点A的对应点为点P,当∠CPD为直角时,AD的长是.【考点】翻折变换(折叠问题).【分析】设AD=x,再根据折叠的性质得∠PDE=∠ADE=90°,∠1=∠A,PD=AD=x,于是可判断点P在边AC上,所以PC=20﹣2x,然后利用等角的余角相等得到∠1=∠3,则∠A=∠3,则可判断Rt△BCP∽Rt△ABC,利用相似比可计算出x.【解答】解:如图,设AD=x,在△ABC中,∠ACB=90°,BC=15,AC=20,∴AB=25,∵DE⊥AB,∴∠AED=∠ACB=90°,∵△ADE沿DE翻折得到△PDE,∴∠PED=∠AED=90°,∠1=∠A,PD=AD=x,∴CD=20﹣x,∵∠CPD=90°,∴∠1+∠2=90°,∠A+∠B=90°,∴∠2=∠B,∴PC=BC=15,∵CD2=CP2+PD2,即(20﹣x)2=152+x2,∴x=,∴AD=.故答案为:.【点评】此题主要考查了图形的翻折变换,以及勾股定理的应用,关键是掌握翻折后哪些线段是对应相等的.三、解答题:(本大题共7题,满分78分)19.(10分)(2019•浦东新区二模)计算:2sin45°﹣20190++()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果.【解答】解:原式=2×﹣1+2+2=1+3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(2019•浦东新区二模)解方程:.【考点】解分式方程;解一元二次方程-因式分解法.【分析】本题的最简公分母是(x+2)(x﹣2).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果需检验.【解答】解:方程两边都乘(x+2)(x﹣2),得x(x﹣2)+(x+2)2=8,x2﹣2x+x2+4x+4=8,整理得x2+x﹣2=0.解得x1=﹣2,x2=1.经检验,x2=1为原方程的根,x1=﹣2是增根(舍去).∴原方程的根是x=1.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解;(2)解分式方程一定注意要代入最简公分母验根.21.(10分)(2019•浦东新区二模)如图,AB是⊙O的弦,C是AB上一点,∠AOC=90°,OA=4,OC=3,求弦AB的长.【考点】垂径定理.【分析】首先过点O作OD⊥AB于D,应用直角三角形的性质和三角函数的求法,求出AD的长度是多少;然后应用垂径定理,求出弦AB的长是多少即可.【解答】解:如图,过点O作OD⊥AB于D,,∵OA2+OC2=AC2,∴AC2=42+32=25,∴AC=5.在Rt△AOC中,cos∠OAC==,在Rt△ADO中,cos∠OAD=,∴==,∴AD=×4=.∵OD⊥AB,∴AB=2AD=2×=.【点评】此题主要考查了垂径定理的应用,直角三角形的性质和三角函数的求法,要熟练掌握.22.(10分)(2019•浦东新区二模)某工厂生产一种产品,当生产数量不超过40吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示:(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为210万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)【考点】一次函数的应用.【分析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)直接利用每吨的成本×生产吨数=总成本为210万元,进而得出等式求出答案.【解答】解:(1)设函数解析式为:y=kx+b,将(0,10),(40,6)分别代入y=kx+b得:,解得:,所以y=﹣x+10(0≤x≤40);(2)由(﹣x+10)x=210,解得:x1=30,x2=70,由于0≤x≤40,所以x=30,答:该产品的生产数量是30吨.【点评】此题主要考查了一次函数的应用,正确利用待定系数法求出一次函数解析式是解题关键.23.(12分)(2019•浦东新区二模)如图,已知:四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于点F,∠ECA=∠D(1)求证:△EAC∽△ECB;(2)若DF=AF,求AC:BC的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由四边形ABCD是平行四边形、∠ECA=∠D可得∠ECA=∠B,∠E为公共角可得△EAC∽△ECB;(2)由CD∥AE、DF=AF可得CD=AE,进而有BE=2AE,根据△EAC∽△ECB得,即: =,可得答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠ECA=∠D,∴∠ECA=∠B,∵∠E=∠E,∴△EAC∽△ECB;(2)∵四边形ABCD是平行四边形,∴CD∥AB,即:CD∥AE∴,∵DF=AF∴CD=AE,∵四边形ABCD是平行四边形,∴AB=CD,∴AE=AB,∴BE=2AE,∵△EAC∽△ECB,∴,∴,即: =,∴.【点评】本题主要考查相似三角形的判定与性质及平行四边形的性质,熟练掌握相似形的对应边成比例和平行四边形的性质是关键.24.(12分)(2019•浦东新区二模)如图,二次函数y=ax2﹣4ax+2的图象与y轴交于点A,且过点B(3,6).(1)试求二次函数的解析式及点A的坐标;(2)若点B关于二次函数对称轴的对称点为点C,试求∠CAB的正切值;(3)若在x轴上有一点P,使得点B关于直线AP的对称点B1在y轴上,试求点P的坐标.【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数图象上点的坐标特征.【分析】(1)把B(3,6)代入y=ax2﹣4ax+2,求出a的值,得到二次函数的解析式,进而求出点A的坐标;(2)先求出抛物线的对称轴,根据对称性得出C点坐标,求出BC=2,AB=5,tan∠CBA=,过点C作CH⊥AB于点H,再求出CH=,AH=,根据正切函数定义即可求出∠CAB的正切值;(3)由AB=AB1=5,从而点B1的坐标为(0,﹣3)或(0,7),设P(x,0)根据PB=PB1,分B1的坐标为(0,﹣3)或(0,7)两种情况利用勾股定理求得x值.【解答】解:(1)∵二次函数y=ax2﹣4ax+2的图象过点B(3,6),∴6=9a﹣12a+2,解得a=﹣,所以二次函数的解析式为y=﹣x2+x+2,∵二次函数y=﹣x2+x+2的图象与y轴交于点A,∴点A的坐标为(0,2);(2)∵y=﹣x2+x+2=﹣(x﹣2)2+,∴对称轴为直线x=2,∵点B(3,6)关于二次函数对称轴的对称点为点C,∴C(1,6),∴BC=2,AB==5,tan∠CBA=,过点C作CH⊥AB于点H,则CH=,BH=,AH=,∴tan∠CAB==;(3)由题意,AB=AB1=5,从而点B1的坐标为(0,﹣3)或(0,7).设P(x,0).①如果点B1(0,7),∵点B关于直线AP的对称点B1在y轴上,∴PB=PB1,即(x﹣3)2+62=x2+72,解得x=﹣,即P(﹣,0);②如果点B1′(0,﹣3),∵点B关于直线AP的对称点B1在y轴上,∴PB=PB1,即(x﹣3)2+62=x2+32,解得x=6,即P(6,0);综上所述,所求点P的坐标为(﹣,0)或(6,0).【点评】本题主要考查待定系数求二次函数解析式、解直角三角形、勾股定理等,求二次函数解析式是基础,构建直角三角形求三角函数值是基本做法,通过勾股定理得出点坐标间联系是关键.25.(14分)(2019•浦东新区二模)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB的中点,点E为边AC上的一个动点.联结DE,过点E作DE的垂线与边BC交于点F,以DE,EF为邻边作矩形DEFG.(1)如图1,当AC=8,点G在边AB上时,求DE和EF的长;(2)如图2,若,设AC=x,矩形DEFG的面积为y,求y关于x的函数解析式;(3)若,且点G恰好落在Rt△ABC的边上,求AC的长.【考点】四边形综合题.【分析】(1)根据勾股定理求出AB,根据相似三角形的判定定理得到△ADE∽△ACB,根据相似三角形的性质求出DE和BG,求出EF;(2)作DH⊥AC于H,根据相似三角形的性质得到y关于x的函数解析式;(3)根据点G在边BC上和点G在边AB上两种情况,根据相似三角形的性质解答.【解答】解:(1)∵∠ACB=90°,BC=6,AC=8,∴AB==10,∵D为斜边AB的中点,∴AD=BD=5,∵DEFG为矩形,∴∠ADE=90°,∴∠ADE=∠C,又∠A=∠A,∴△ADE∽△ACB,∴=,即=,解得,DE=,∵△ADE∽△FGB,∴=,则BG=,∴EF=DG=AB﹣AD﹣BG=;(2)如图2,作DH⊥AC于H,∴DH∥BC,又AD=DB,∴DH=BC=3,∵DH⊥AC,∠C=90°,∠DEF=90°,∴△DHE∽△ECF,∴==,∴EC=2DH=6,EH=x﹣6,∴DE2=32+(x﹣6)2=x2﹣6x+45,∴y=DE•EF=2DE2=x2﹣12x+90,(3)如图3,当点G在边BC上时,∵,DE=3,∴EF=,∴AC=9,如图4,当点G在边AB上时,设AD=DB=a,DE=2b,EF=3b,∵△ADE∽△FGB,∴=,即=,整理得,a2﹣3ab﹣4b2=0,解得,a=4b,a=﹣b(舍去),∴AD=2DE,∵△ADE∽△ACB,∴AC=2BC=12,综上所述,点G恰好落在Rt△ABC的边上,AC的长为9或12.【点评】本题的是矩形的性质、勾股定理的应用、相似三角形的判定和性质、二次函数解析式的求法以及三角形中位线定理,掌握相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键,注意分情况讨论思想的运用.中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上)1. 计算(-4)+6的结果为A.-2 B.2 C.-10 D.22.我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为A.3.5×106B.3.5×107C.35×105D.0.35×1083.下列图形中,是中心对称图形的是A. B. C. D.21·cn·jy·com4.如图,数轴上有四个点M,P,N,Q,若点M,N表示的数互为相反数,则图中表示绝对值最大的数对应的点是A.点M B.点N C.点P D.点Q5.如图是某个几何体的三视图,该几何体是A.三棱柱B.三棱锥C.圆锥D.圆柱6.已知方程3x2-4x-4=0的两个实数根分别为x1,x2.则x1+x2的值为A.4 B.23C.43D.-437.八年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是A.1010202x x-= B.1010202x x-=C.1010123x x-= D.1010123x x-=8.若圆锥的母线长是12,侧面展开图的圆心角是120°,则它的底面圆的半径为A. 2B. 4C. 6D. 89.如图,点A为反比例函数y=8x(x﹥0)图象上一点,点B为反比例函数y=kx(x﹤0)图象上一点,直线AB 过原点O,且OA=2OB,则k的值为QP NM左视图主视图俯视图(第5题)A .2B .4C .-2D .-410=4,BC =6,E 为BC 的中点.将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则△CDF的面积为 A.3.6B. 4.32C. 5.4D. 5.76二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位......置.上) 11.9的算术平方根为 ▲ .12.如图,若AB ∥CD ,∠1=65°,则∠2的度数为 ▲°. 13.分解因式:12a 2-3b 2= ▲ .14.如图,⊙O 的内接四边形ABCD 中,∠BOD =100°,则∠BCD = ▲ °. 15.如图,利用标杆BE 测量建筑物的高度.若标杆BE 的高为1.2m ,测得AB =1.6m ,BC =12.4m ,则楼高CD 为 ▲ m .16.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数 中位数 众数 方差 8.58.38.10.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是 ▲ . 17.将正六边形ABCDEF 放入平面直角坐标系xOy 后,若点A ,B ,E 的坐标分别为(a ,b ),(-3,-1),(-a ,b ),则点D 18. 如图,平面直角坐标系xOy 中,点A 是直线y =33x +433上一动点,将点A 向右 平移1个单位得到点B ,点C (1,0),则 OB +CB 的最小值为 ▲ .三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19. (本小题满分10分)(1)计算(x +y)2-y(2x +y);(第10题)8xy (第9题)(第18题)DCEBA(第15题)(第14题)DCB A 1(第12题)2(2)先化简,再求代数式的值:2221()244a a a a a a +----+÷4a a-,其中a=2.20.(本小题满分9分)近年来,我国很多地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”, 随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表:请根据图表中提供的信息解答下列问题:(1)填空:m = ▲ ,n = ▲ ,扇形统计图中E 组所占的百分比为 ▲ % ; (2)若该市人口约有400万人,请你计算其中持D 组“观点”的市民人数; (3)对于“雾霾”这个环境问题,请用简短的语言发出倡议.21.(本小题满分8分)一个不透明的口袋中装有四个完全相同的小球,把它们分别标号为1,2,3,4.从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,请用列表法或画树形图的方法,求两次摸出的小球上所标数字之和大于4的概率.22.(本小题满分8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BA D =37°,沿AD 方向前进150米到达点C ,测得∠BCD=45°. 求小岛B 到河边公路AD 的距离. (参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)23.(本小题满分8分)如图,⊙O 的直径AB =10,弦AC =6,∠BAC 的平分线交⊙O 于点D ,过点D 作⊙O 的切线交AC 的延长线于点E.求DE 的长.C 10%B A20%DE调查结果扇形统计图BCA(第22题)D24.(本小题满分9分)如果一元一次方程的解是一元一次不等式组的解,那么称该一元一次方程为该不等式组的关联方程.(1)若不等式组122136xx x⎧-<⎪⎨⎪+>-+⎩,的一个关联方程的解是整数,则这个关联方程可以是▲(写出一个即可);(2)若方程3-x=2x,3+x=2(x+12)都是关于x的不等式组22x x mx m<-⎧⎨-⎩,≤的关联方程,试求m的取值范围.25.(本小题满分8分)在△ABC中,AB=AC=2,∠BAC=45º.△AEF是由△ABC绕点A按逆时针方向旋转得到,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF是菱形时,求CD的长.26.(本小题满分10分)请用学过的方法研究一类新函数kyx=(k为常数,k≠0)的图象和性质.(1)在给出的平面直角坐标系中画出函数6yx=的图象(可以不列表);(2)对于函数kyx=,当自变量x的值增大时,函数值y怎样变化?(3)函数kyx=的图象可以经过怎样的变化得到函数2kyx=+的图象?(第25题)FEDCBA27.(本小题满分13分)如图,矩形ABCD 中,AB =4,AD =6,点P 在AB 上,点Q 在DC 的延长线上,连接DP ,QP ,且∠APD =∠QPD ,PQ 交BC 于点G. (1)求证:DQ =PQ ; (2)求AP ·DQ 的最大值;(3)若P 为AB 的中点,求PG 的长.28.(本小题满分13分)已知二次函数y =ax 2+bx +c (c ≠4a ),其图象L 经过点A (-2,0). (1)求证:b 2-4ac >0;(2)若点B (-c2a,b +3)在图象L 上,求b 的值;(3)在(2)的条件下,若图象L 的对称轴为直线x =3,且经过点C (6,-8),点D (0,n )在y 轴负半轴上,直线BD 与OC 相交于点E ,当△ODE 为等腰三角形时,求n 的值.(第27题)数学试题参考答案与评分标准一、选择题(本大题共10小题,每小题3分,共30分.)11. 3 12.6513.3(2a +b)(2a -b)14.13015.10.516.中位数17.(3,-1)18三、解答题(本大题共10小题,共96分.) 19.(本小题满分10分)(1)解:原式=x 2+2xy +y 2-2xy -y 2················· 4分 =x 2 ························· 5分 (2)解:原式=221[](2)(2)4a a aa a a a ----- ··············· 6分 =2(2)(2)(1)(2)4a a a a aa a a +----- ··················· 7分=24(2)4a aa a a --- ························ 8分=21(2)a - ··························· 9分当a =2时,21(2)a -15= ············ 10分 20.(本小题满分9分)(1)80, 100,15; ························· 3分 (2)400×120400=120(万), 答:其中持D 组“观点”的市民人数约为120万人; ········· 6分 (3)根据所抽取样本中持C 、D 两种观点的人数占总人数的比例较大,所以倡议今后的环境改善中严格控制工厂的污染排放,同时市民多乘坐公共汽车, 减少私家车出行的次数. ······················· 9分 21.(本小题满分8分)· 5分 因为所有等可能的结果数共有12种,其中所标数字之和大于4的占8种,·································· 6分所以 P(数字之和大于4)=812=23. ················· 8分22.(本小题满分8分)解:过B作BE⊥CD垂足为E,设BE=x米,·············· 1分在Rt△ABE中,tanA=BEAE,········· 2分AE=BEtanA=BEtan37°=43x,······· 3分在Rt△ABE中,tan∠BCD=BECE,······· 4分CE=BEtan∠BCD=xtan45°=x,······ 5分∵AC=AE-CE,∴43x-x=150解得x=450 ················ 7分答:小岛B到河边公路AD的距离为450米. ·············· 8分23.(本小题满分8分)解:连接OD,过点O作OH⊥AC,垂足为H.··············· 1分由垂径定理得AH=12AC=3.在Rt△A OH中,OH=52-32=4.········· 2分∵DE切⊙O于D,∴OD⊥DE,∠ODE=90°.············ 3分∵AD平分∠BAC,∴∠BAD=∠CAD.∵OA=OD,∴∠BAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC.·········· 5分∴∠E=180°-90°=90°.又OH⊥AC,∴∠OHE=90°,∴四边形ODEH为矩形.·············· 7分∴DE=OH=4.·················· 8分24.(本小题满分9分)(1)x-2=0;(答案不唯一)····················· 3分(2)解方程3-x=2x得x=1,解方程3+x=2(x+12)得x=2,······ 5分解不等式组22x x mx m<-⎧⎨-⎩,≤得m<x≤m+2,·············· 7分∵1,2都是该不等式组的解,(第23题)EBCA(第22题)D。
上海普陀中考数学二模试卷及答案(图片版)

上海普陀中考数学二模试卷及答案(图片
版)
2019年4月上海普陀初三数学二模考了哪些题目?数学网中考频道第一时间为大家整理2019.4上海普陀中考数学二模试卷及答案,更多上海中考二模试卷及答案详见
2019.4上海黄浦中考数学二模试卷及答案
2019.4上海浦东中考数学二模试卷及答案
2019.4上海徐汇中考数学二模试卷及答案
2019.4上海长宁中考数学二模试卷及答案
2019.4上海静安中考数学二模试卷及答案
2019.4上海普陀中考数学二模试卷及答案
2019.4上海闸北中考数学二模试卷及答案
2019.4上海虹口中考数学二模试卷及答案
2019.4上海杨浦中考数学二模试卷及答案
2019.4上海闵行中考数学二模试卷及答案
2019.4上海宝山中考数学二模试卷及答案
2019.4上海嘉定中考数学二模试卷及答案
2019.4上海金山中考数学二模试卷及答案
2019.4上海松江中考数学二模试卷及答案
2019.4上海奉贤中考数学二模试卷及答案
2019.4上海崇明中考数学二模试卷及答案。
上海市各区2019届中考数学二模试卷精选汇编压轴题专题

3
(2)过点 O 作 OH⊥AB,垂足为点 H,则由(1)可得 AH=4,OH=3 ∵AC=x,∴ CH | x 4 | 在 Rt△HOC 中, CHO 90 ,AO=5, ∴ CO HO2 HC 2 32 | x 4 |2 x2 8x 25 ,
(1 分)
易知△CDA∽△BCA,又 AC BC2 AB2 x2 4 ,
则 AD CA 1 x2 4 x 1 17 (舍负)—————(2
AC CB
x2 4
x
2
分)
易知∠ACE<90°.
8
所以边 BC 的长为 2 或 1 17 .——————————————————(1 2
海C B 图9
C B
图 10
上
25.(1)证明:∵ AO 、 BO 是圆 O 的半径 ∴ AO BO …………1 分 ∴ OAB B …………1 分 ∵ AC ∥ OB ∴ BAC B …………1 分 ∴ OAB BAC ∴ AB 平分 OAC …………1 分
A
O
C B
升 (2)如果点 Q 在线段 AD 上(与点 A、D 不重合),设△APQ 的面积为 y,
求 y 关于 x 的函数关系式,并写出定义域; (3)如果△QED 与△QAP 相似,求 BP 的长.
E
B
AQ P
海D CB
A
D C
上图9
备用图
25.解:(1)在⊙P 中,PA=PQ,∴∠PAQ =∠PQA,……………………………(1 分) ∵AD∥BC,∴∠PAQ =∠APB,∠PQA =∠QPC,∴∠APB =∠EPC,……(1 分) ∵梯形 ABCD 中,AD∥BC,AB=DC,∴∠B =∠C,…………………………(1 分) ∴△APB∽△ECP.…………………………………………………………(1 分)
上海市闸北区2019年中考数学二模试卷含答案解析

2019年上海市闸北区中考数学二模试卷一.选择题:(本大题共6题,每题4分,满分24分)1.下列代数式中,属于分式的是()A.﹣3 B.C.D.﹣4a3b2.的值为()A.2 B.﹣2 C.土2 D.不存在3.下列方程中,没有实数根的方程是()A.x2+2x﹣1=0 B.x2+2x+1=0 C.x2﹣x+2=0 D.x2﹣x﹣2=04.方程组的解是()A.B.C.D.5.如图,已知∠BDA=∠CDA,则不一定能使△ABD≌△ACD的条件是()A.BD=DC B.AB=AC C.∠B=∠C D.∠BAD=∠CAD6.若⊙O1与⊙O2相交于两点,且圆心距O1O2=5cm,则下列哪一选项中的长度可能为此两圆的半径?()A.1cm、2cm B.2cm、3cm C.10cm、15cm D.2cm、5cm二.填空题:(本大题共12题,每题4分,满分48分)7.计算:a5÷a2=.8.分解因式:3x2﹣6x=.9.不等式组的解集是.10.函数y=的定义域是.11.二次函数y=x2﹣2x+b的对称轴是直线x=.12.袋子里有4个黑球,m个白球,它们除颜色外都相同.经过大量实验,从中任取一个球恰好是黑球的概率是,则m的值是.13.某中学九(1)班5个同学在体育测试“1分钟跳绳”项目中,跳绳个数如下:126,134,118,152,148.这组数据中,中位数是.14.某企业2019年的年利润为100万元,2019年和2019年连续增长,且这两年的增长率相同,据统计2019年的年利润为125万元.若设这个相同的增长率为x,那么可列出的方程是.15.如图,AB∥DE,△ACB是等腰直角三角形,且∠C=90°,CB的延长线交DE于点G,则∠CGE=度.16.如图,在△ABC中,点D在AC边上且AD:DC=1:2,若,,那么=(用向量、表示).17.在平面直角坐标系xOy中,⊙C的半径为r,点P是与圆心C不重合的点,给出如下定义:若点P′为射线CP上一点,满足CP•CP′=r2,则称点P′为点P关于⊙C的反演点.如图为点P及其关于⊙C的反演点P′的示意图.写出点M (,0)关于以原点O为圆心,1为半径的⊙O的反演点M′的坐标.18.如图,底角为α的等腰△ABC绕着点B顺时针旋转,使得点A与边BC上的点D重合,点C与点E重合,联结AD、CE.已知tanα=,AB=5,则CE=.三.解答题:(本大题共7题,满分78分)19.计算:cos30°+|1﹣|﹣()﹣1.20.解方程:.21.已知:如图,在△ABC 中,∠ABC=45°,AD 是BC 边上的中线,过点D 作DE ⊥AB于点E ,且sin ∠DAB=,DB=3.求:(1)AB 的长;(2)∠CAB 的余切值.22.甲骑自行车从A 地出发前往B 地,同时乙步行从B 地出发前往A 地,如图所示,y 甲、y 乙分别表示甲、乙离开A 地y (km )与已用时间x (h )之间的关系,且直线y 甲与直线y 乙相交于点M .(1)求y 甲与x 的函数关系式(不必注明自变量x 的取值范围);(2)求A 、B 两地之间距离.23.如图,直角梯形ABCD 中,∠B=90°,AD ∥BC ,BC=2AD ,点E 为边BC 的中点. (1)求证:四边形AECD 为平行四边形;(2)在CD 边上取一点F ,联结AF 、AC 、EF ,设AC 与EF 交于点G ,且∠EAF=∠CAD .求证:△AEC ∽△ADF ;(3)在(2)的条件下,当∠ECA=45°时.求:FG :EG 的比值.24.如图,矩形OMPN 的顶点O 在原点,M 、N 分别在x 轴和y 轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN 交于C ,与PM 交于D ,过点C 作CA ⊥x 轴于点A ,过点D 作DB ⊥y 轴于点B ,AC 与BD 交于点G .(1)求证:AB ∥CD ;(2)在直角坐标平面内是否若存在点E ,使以B 、C 、D 、E 为顶点,BC 为腰的梯形是等腰梯形?若存在,求点E 的坐标;若不存在请说明理由.25.如图,在△ABC中,AB=AC=6,BC=4,⊙B与边AB相交于点D,与边BC相交于点E,设⊙B的半径为x.(1)当⊙B与直线AC相切时,求x的值;(2)设DC的长为y,求y关于x的函数解析式,并写出定义域;(3)若以AC为直径的⊙P经过点E,求⊙P与⊙B公共弦的长.2019年上海市闸北区中考数学二模试卷参考答案与试题解析一.选择题:(本大题共6题,每题4分,满分24分)1.下列代数式中,属于分式的是()A.﹣3 B.C.D.﹣4a3b【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:A、3是整式,故A错误;B、a﹣b是整式,故B错误;C、是分式不是整式,故C正确;D、﹣4a3b是整式,故D错误;故选:C.2.的值为()A.2 B.﹣2 C.土2 D.不存在【考点】算术平方根.【分析】直接根据算术平方根的定义求解.【解答】解:因为4的算术平方根是2,所以=2.故选A.3.下列方程中,没有实数根的方程是()A.x2+2x﹣1=0 B.x2+2x+1=0 C.x2﹣x+2=0 D.x2﹣x﹣2=0【考点】根的判别式.【分析】分别求出每一个方程中判别式△的值,如果△<0,那么一元二次方程没有实数根.【解答】解:A、∵△=4+4=8>0,∴方程有两个不相等的两个实数根;B、∵△=4﹣4=0,∴方程有两个相等的两个实数根;C、∵△=1﹣8=﹣7<0,∴方程没有实数根;D、∵△=1+8=9>0,∴方程有两个不相等的两个实数根;故选C.4.方程组的解是()A.B.C.D.【考点】解二元一次方程组.【分析】本题解法有多种.可用加减消元法或代入消元法解方程组,解得x、y的值;也可以将A、B、C、D四个选项的数值代入原方程检验,能使每个方程的左右两边相等的x、y的值即是方程的解.【解答】解:将方程组中4x﹣y=13乘以2,得8x﹣2y=26①,将方程①与方程3x+2y=7相加,得x=3.再将x=3代入4x﹣y=13中,得y=﹣1.故选B.5.如图,已知∠BDA=∠CDA,则不一定能使△ABD≌△ACD的条件是()A.BD=DC B.AB=AC C.∠B=∠C D.∠BAD=∠CAD【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据以上定理逐个判断即可.【解答】解:A、BD=DC,∠BDA=∠CDA,AD=AD,符合全等三角形的判定定理SAS,能推出△ABD≌△ACD,故本选项错误;B、AB=AC,∠BDA=∠CDA,AD=AD,不符合全等三角形的判定定理,不能推出△ABD ≌△ACD,故本选项正确;C、∠B=∠C,∠BDA=∠CDA,AD=AD,符合全等三角形的判定定理AAS,能推出△ABD ≌△ACD,故本选项错误;D、∠BDA=∠CDA,AD=AD,∠BAD=∠CAD,符合全等三角形的判定定理ASA,能推出△ABD≌△ACD,故本选项错误;故选B.6.若⊙O1与⊙O2相交于两点,且圆心距O1O2=5cm,则下列哪一选项中的长度可能为此两圆的半径?()A.1cm、2cm B.2cm、3cm C.10cm、15cm D.2cm、5cm【考点】圆与圆的位置关系.【分析】由各选项中⊙O1与⊙O2的半径以及圆心距O1O2=5cm,根据圆和圆的位置与两圆的圆心距、半径的数量之间的关系,得出⊙O1与⊙O2的位置关系即可求解.【解答】解:A、∵5>2+1,∴d>R+r,∴两圆外离,故本选项错误;B、∵5=2+3,∴d=R+r,∴两圆外切,故本选项错误;C、∵5=15﹣10,∴d=R﹣r,∴两圆内切,故本选项错误;D、∵5﹣2<5<5+2,∴R﹣r<d<R+r,∴两圆相交,故本选项正确;故选D.二.填空题:(本大题共12题,每题4分,满分48分)7.计算:a5÷a2=a3.【考点】同底数幂的除法.【分析】根据同底数幂相除,底数不变指数相减计算即可.【解答】解:a5÷a2=a5﹣2=a3.8.分解因式:3x2﹣6x=3x(x﹣2).【考点】因式分解-运用公式法.【分析】首先确定公因式为3x,然后提取公因式3x,进行分解.【解答】解:3x2﹣6x=3x(x﹣2).故答案为:3x(x﹣2).9.不等式组的解集是1<x<3.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+1>2,得:x>1,解不等式2x<6,得:x<3,∴不等式组的解集为:1<x<3,故答案为:1<x<3.10.函数y=的定义域是x≤1.【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【解答】解:根据题意得:1﹣x≥0,解得x≤1.11.二次函数y=x2﹣2x+b的对称轴是直线x=1.【考点】二次函数的性质.【分析】将二次函数配方成顶点式即可确定对称轴方程.【解答】解:∵y=x2﹣2x+b=x2﹣2x+1+b﹣1=(x+1)2+b﹣1故对称轴是直线x=1.故答案为:1.12.袋子里有4个黑球,m个白球,它们除颜色外都相同.经过大量实验,从中任取一个球恰好是黑球的概率是,则m的值是4.【考点】概率公式.【分析】根据概率公式列出从中任取一个球恰好是黑球的概率公式,求出m的值即可.【解答】解:袋子里有4个黑球,m个白球,若从中任取一个球恰好是黑球的概率是,根据题意可得:=,解得m=4.故答案为:4.13.某中学九(1)班5个同学在体育测试“1分钟跳绳”项目中,跳绳个数如下:126,134,118,152,148.这组数据中,中位数是134.【考点】中位数.【分析】把这组数按从大到小(或从小到大)的顺序排列,因为数的个数是奇数个,所以中间哪个数就是中位数.【解答】解:按照从小到大的顺序排列为:118,126,134,148,152,中位数为:134.故答案为:134;14.某企业2019年的年利润为100万元,2019年和2019年连续增长,且这两年的增长率相同,据统计2019年的年利润为125万元.若设这个相同的增长率为x,那么可列出的方程是100(1+x)2=125.【考点】由实际问题抽象出一元二次方程.【分析】一般用增长后的量=增长前的量×(1+增长率),2019年年利润是100(1+x)万元,在2019年的基础上再增长x,就是2019年的年利润,即可列出方程.【解答】解:设增长率为x,根据题意2019年为100(1+x)万元,2019年为100(1+x)2万元.则100(1+x)2=125;故答案为:100(1+x)2=125.15.如图,AB∥DE,△ACB是等腰直角三角形,且∠C=90°,CB的延长线交DE于点G,则∠CGE=135度.【考点】平行线的性质;等腰直角三角形.【分析】先根据等腰直角三角形的性质求出∠ABC的度数,再由平行线的性质求出∠DGB 的度数,根据补角的定义即可得出结论.【解答】解:∵△ACB是等腰直角三角形,且∠C=90°,∴∠ABC=45°.∵AB∥DE,∴∠DGB=∠ABC=45°,∴∠CGE=180°﹣45°=135°.故答案为:135.16.如图,在△ABC中,点D在AC边上且AD:DC=1:2,若,,那么=2+2(用向量、表示).【考点】*平面向量.【分析】由,,直接利用三角形法则求解,即可求得,又由点D在AC边上且AD:DC=1:2,即可求得答案.【解答】解:∵,,∴=+=+,∵点D在AC边上且AD:DC=1:2,∴=2=2+2.故答案为:2+2.17.在平面直角坐标系xOy中,⊙C的半径为r,点P是与圆心C不重合的点,给出如下定义:若点P′为射线CP上一点,满足CP•CP′=r2,则称点P′为点P关于⊙C的反演点.如图为点P及其关于⊙C的反演点P′的示意图.写出点M (,0)关于以原点O为圆心,1为半径的⊙O的反演点M′的坐标(2,0).【考点】相似三角形的判定与性质;坐标与图形性质;点与圆的位置关系.【分析】根据点P′为射线CP上一点,满足CP•CP′=r2,点P′为点P关于⊙C的反演点列式计算即可.【解答】解:设点M′的坐标为(a,0),由题意得,a=12,解得,a=2,则设点M′的坐标为(2,0),故答案为:(2,0).18.如图,底角为α的等腰△ABC绕着点B顺时针旋转,使得点A与边BC上的点D重合,点C与点E重合,联结AD、CE.已知tanα=,AB=5,则CE=.【考点】旋转的性质;等腰三角形的性质.【分析】如图,作AH⊥BC于H,EF⊥BC于F,则BH=CH,先利用三角形函数的定义和勾股定理可计算出BH=4,则BC=2BH=8,再根据旋转的性质得∠CBE=α,BE=BC=8,接着在Rt△BEF中利用三角函数的定义可计算出EF和BF,然后在Rt△CEF中利用勾股定理计算CE.【解答】解:如图,作AH⊥BC于H,EF⊥BC于F,则BH=CH,在Rt△ABH中,tan∠ABH=tanα==,设AH=3t,则BH=4t,∴AB==5t,∴5t=5,解得t=1,∴BC=2BH=8,∵等腰△ABC绕着点B顺时针旋转,使得点A与边BC上的点D重合,∴∠CBE=α,BE=BC=8,在Rt△BEF中,tan∠EAF=tanα==,设AH=3x,则BH=4x,BE=5x,∴5x=8,解得x=,∴EF=,BF=,∴CF=8﹣=,在Rt△CEF中,CE==.故答案为.三.解答题:(本大题共7题,满分78分)19.计算:cos30°+|1﹣|﹣()﹣1.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用特殊角的三角函数值计算,第二项分母有理化,第三项利用绝对值的代数意义化简,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=++﹣1﹣3=2﹣.20.解方程:.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣5+x2﹣1=3x﹣3,整理得:(x﹣3)(x+1)=0,解得:x1=3,x2=﹣1,经检验x=﹣1是增根,分式方程的解为x=3.21.已知:如图,在△ABC中,∠ABC=45°,AD是BC边上的中线,过点D作DE⊥AB于点E,且sin∠DAB=,DB=3.求:(1)AB的长;(2)∠CAB的余切值.【考点】解直角三角形.【分析】(1)在Rt△BDE中,求得BE=DE=3,在Rt△ADE中,得到AE=4,根据线段的和差即可得到结论;(2)作CH⊥AB于H,根据已知条件得到BC=6,由等腰直角三角形的性质得到BH=CH=6,根据三角函数的定义即可得到结论.【解答】解:(1)在Rt△BDE中,DE⊥AB,BD=3∠ABC=45°,∴BE=DE=3,在Rt△ADE中,sin∠DAB=,DE=3,∴AE=4,AB=AE+BE=4+3=7;(2)作CH⊥AB于H,∵AD是BC边上是中线,BD=3,∴BC=6,∵∠ABC=45°,∴BH=CH=6,∴AH=7﹣6=1,在Rt △CHA 中,cot ∠CAB==.22.甲骑自行车从A 地出发前往B 地,同时乙步行从B 地出发前往A 地,如图所示,y 甲、y 乙分别表示甲、乙离开A 地y (km )与已用时间x (h )之间的关系,且直线y 甲与直线y 乙相交于点M .(1)求y 甲与x 的函数关系式(不必注明自变量x 的取值范围);(2)求A 、B 两地之间距离.【考点】一次函数的应用.【分析】(1)设y 甲=kx (k ≠0),由点M 的坐标利用待定系数法即可求出y 甲关于x 的函数关系式;(2)设y 乙=mx +n ,由函数图象得出点的坐标,结合点的坐标利用待定系数法即可求出y 乙关于x 的函数关系式,再令x=0求出y 值即可得出结论.【解答】解:(1)设y 甲=kx (k ≠0),∵点M (0.5,7.5)在直线y 甲的图象上,∴0.5k=7.5,解得:k=15.∴y 甲关于x 的函数关系式为y 甲=15x .(2)设y 乙=mx +n ,将点(0.5,7.5),点(2,0)代入函数关系式得:,解得:.∴y 乙关于x 的函数关系式为y 乙=﹣5x +10.令y 乙=﹣5x +10中x=0,则y=10.∴A 、B 两地之间距离为10千米.23.如图,直角梯形ABCD 中,∠B=90°,AD ∥BC ,BC=2AD ,点E 为边BC 的中点. (1)求证:四边形AECD 为平行四边形;(2)在CD 边上取一点F ,联结AF 、AC 、EF ,设AC 与EF 交于点G ,且∠EAF=∠CAD .求证:△AEC ∽△ADF ;(3)在(2)的条件下,当∠ECA=45°时.求:FG :EG 的比值.【考点】相似形综合题.【分析】(1)由E为BC中点,得到BC=2CE,再由BC=2AD,得到CE=AD,再由AD与CE平行,利用一组对边平行且相等的四边形为平行四边形即可得证;(2)由四边形AECD为平行四边形,得到对角相等,再由已知角相等,利用两对角相等的三角形相似即可得证;(3)设AD=BE=CE=a,由∠ECA=45°,得到△ABC为等腰直角三角形,即AB=BC=2a,在Rt△ABE中,根据勾股定理表示出AE,由三角形AEC与三角形ADF相似得比例,表示出DF.由CD﹣DF表示出CF,再由AE与DC平行得比例,即可求出所求式子之比.【解答】解:(1)∵BC=2AD,点E为BC中点,∴BC=2CE,∴AD=CE,∵AD∥CE,∴四边形AECD为平行四边形;(2)∵四边形AECD为平行四边形,∴∠D=∠AEC,∵∠EAF=∠CAD,∴∠EAC=∠DAF,∴△AEC∽△ADF,(3)设AD=BE=CE=a,由∠ECA=45°,得到△ABC为等腰直角三角形,即AB=BC=2a,∴在Rt△ABE中,根据勾股定理得:AE==a,∵△AEC∽△ADF,∴=,即=,∴DF=a,∴CF=CD﹣DF=a﹣a=a,∵AE∥DC,∴===.24.如图,矩形OMPN的顶点O在原点,M、N分别在x轴和y轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN交于C,与PM交于D,过点C作CA⊥x轴于点A,过点D作DB⊥y轴于点B,AC与BD交于点G.(1)求证:AB∥CD;(2)在直角坐标平面内是否若存在点E,使以B、C、D、E为顶点,BC为腰的梯形是等腰梯形?若存在,求点E的坐标;若不存在请说明理由.【考点】反比例函数综合题.【分析】(1)首先求得C和D的坐标,证明=即可证得;(2)分成PN∥DB和CD∥AB两种情况进行讨论,即可求解.【解答】(1)证明:∵四边形OMPN是矩形,OM=6,ON=3,∴P的坐标是(6,3).∵点C和D都在反比例函数y=的图象上,且点C在PN上,点D在PM上,∴点C(2,3),点D(6,1).又∵DB⊥y轴,CA⊥x轴,∴A的坐标是(2,0),B的坐标是(0,1).∵BG=2,GD=4,CG=2,AG=1.∴=,==,∴=,∴AB∥CD;(2)解:①∵PN∥DB,∴当DE1=BC时,四边形BCE1D是等腰梯形,此时直角△CNB≌直角△E1PD,∴PE1=CN=2,∴点E1的坐标是(4,3);②∵CD∥AB,当E2在直线AB上,DE2=BC=2,四边形BCDE2为等腰梯形,直线AB的解析式是y=﹣x+1,∴设点E2(x,﹣x+1),DE2=BC=2,∴(x﹣6)2+(x)2=8,解得:x1=,x2=4(舍去).∴E2的坐标是(,﹣).25.如图,在△ABC中,AB=AC=6,BC=4,⊙B与边AB相交于点D,与边BC相交于点E,设⊙B的半径为x.(1)当⊙B与直线AC相切时,求x的值;(2)设DC的长为y,求y关于x的函数解析式,并写出定义域;(3)若以AC为直径的⊙P经过点E,求⊙P与⊙B公共弦的长.【考点】圆的综合题.【分析】(1)根据勾股定理,求出AG,再由割线定理,求出BH即可;(2)由相似得出比例式,表示出DF,CF,由勾股定理建立函数关系式;(3)根据圆的性质求出BE,CE,再用△BQP∽△BGE,求出EG即可,【解答】解:(1)作AG⊥BC,BH⊥AC,∵AB=AC,AG⊥BC,∴BG=CG=2,∴AG==4,∵AG×BC=BH×AC,∴BH==,∴当⊙B与直线AC相切时,x=;(2)作DF⊥BC,∴DF∥AG,∴,∴,∴DF=x,∴CF=4﹣x,在Rt△CFD中,CD2=DE2+CF2,∴y==(<x≤4),(3)①作PQ⊥BC,∵EF是⊙B,⊙P的公共弦,∵⊙P经过点E,∴PA=PE=PC,∴AE⊥BC,∵AC=AB,∴BE=CE=2,∵PQ∥AE,且P是AC中点,∴PQ=AE=2,CP=3,∴CQ=1,BQ=3,∴BP=,∵△BQP∽△BGE,∴,∴,∴EG=,∴EF=;②当点E,与点C重合时,EF=.2019年10月31日。
上海市2019年初三下学期数学二模汇编:25题压轴题(K12教育文档)

上海市2019年初三下学期数学二模汇编:25题压轴题(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(上海市2019年初三下学期数学二模汇编:25题压轴题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为上海市2019年初三下学期数学二模汇编:25题压轴题(word版可编辑修改)的全部内容。
上海市2019年中考数学二模汇编:25题压轴题闵行25.(本题共3小题,其中第(1)小题各4分,第(2)、(3)小题各5分,满分14分)如图1,点P 为∠MAN 的内部一点.过点P 分别作PB ⊥AM 、PC ⊥AN ,垂足分别为点B 、C .过点B 作BD ⊥CP ,与CP 的延长线相交于点D .BE ⊥AP ,垂足为点E .(1)求证:∠BPD =∠MAN ;(2)如果sin MAN ∠=,AB =BE = BD ,求BD 的长;(3)如图2,设点Q 是线段BP 的中点.联结QC 、CE ,QC 交AP 于点F .如果 ∠MAN = 45°,且BE // QC ,求PQF CEFS S ∆∆的值.宝山25.(本题满分14分,第(1)、第(2)小题满分各4分,第(3)小题满分6分)如图已知: AB 是圆O 的直径,AB=10,点C 为圆O 上异于点A 、B 的一点,点M 为弦BC 的中点. (1)如果AM 交OC 于点E ,求OE:CE 的值; (2)如果AM ⊥OC 于点E ,求∠ABC 的正弦值;(3)如果AB :BC=5:4,D 为BC 上一动点,过D 作DF ⊥OC ,交OC 于点H ,与射线BO 交于圆内MN A B CDP(图1)EE M(图2)ANQFPCDB探究一:设BD=x,FO=y,求y关于x的函数解析式及其定义域.探究二:如果点D在以O为圆心,OF为半径的圆上,写出此时BD的长度.崇明25.(本题满分14分,其中第(1)、(2)小题满分各4分,第(3)小题满分6分)如图9,在梯形ABCD中,AD BC∥,8AB DC==,12BC=,3cos5C=,点E为AB边上一点,且2BE=.点F是BC边上的一个动点(与点B、点C不重合),点G在射线CD上,且EFG B∠=∠.设BF的长为x,CG的长为y.(1)当点G在线段DC上时,求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当以点B为圆心,BF长为半径的⊙B与以点C为圆心,CG长为半径的⊙C相切时,求线段BF的长;(3)当CFG△为等腰三角形时,直接写出线段BF的长.DAG奉贤25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图10,已知△ABC ,AB3BC,∠B =45°,点D 在边BC 上,联结AD , 以点A 为圆心,AD 为半径画圆,与边AC 交于点E ,点F 在圆A 上,且AF ⊥AD .(1)设BD 为x ,点D 、F 之间的距离为y ,求y 关于x 的函数解析式,并写出定义域; (2)如果E 是DF 的中点,求:BD CD 的值;(3)联结CF ,如果四边形ADCF 是梯形,求BD 的长 .金山25. 如图,在ABC Rt ∆中, 90=∠C ,16=AC cm,20=AB cm ,动点D 由点C 向点A 以每秒cm 1速度在边AC 上运动,动点E 由点C 向点B 以每秒cm 34速度在边BC 上运动,若点D ,点E 从点C 同时出发,运动t 秒(0>t ),联结DE .(1)求证:DCE ∆∽BCA ∆.图10ABCDE第25题备用图①当⊙P 与边AB 相切时,求t 的值.②在点D 、点E 运动过程中,若⊙P 与边AB 交于点F 、G (点F 在点G 左侧),联结CP 并延长CP 交边AB 于点M ,当PFM ∆与CDE ∆相似时,求t 的值。
2019年上海市宝山区、嘉定区中考二模数学试题及答案

2019学年嘉定九年级第二次质量调研数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】一、选择题:(本大题共6题,每题4分,满分24分) 1.下列说法中,正确的是(▲)(A )23是分数; (B )0是正整数; (C )722是有理数;(D )16是无理数. 2.抛物线2(1)4y x =-+与y 轴的交点坐标是(▲)(A )(0,4); (B )(1,4); (C )(0,5); (D )(4,0). 3.下列说法正确的是(▲)(A )一组数据的平均数和中位数一定相等; (B )一组数据的平均数和众数一定相等; (C )一组数据的方差一定是正数;(D )一组数据的众数一定等于该组数据中的某个数据.4.今年春节期间,小明把2000元压岁钱存入中国邮政储蓄银行,存期三年,年利率是%.254,小明在存款到期后可以拿到的本利和为(▲)(A )20003%)25.41(+元; (B )20002+0003254⨯⨯%.元; (C )20003254⨯⨯%.元; (D )20003%)25.41(⨯+元. 5.如图1,已知向量a 、b 、c ,那么下列结论正确的是(▲)(A )b c a =+; (B )b c a =-; (C )c b a -=+; (D )c b a =+.6.已知⊙1O 的半径长为cm 2,⊙2O 的半径长为cm 4.将⊙1O 、⊙2O 放置在直线l 上(如图2),如果⊙1O 在直线l 上任意滚动,那么圆心距21O O 的长不可能是(▲) (A )cm 1; (B )cm 2; (C )cm 6; (D )cm 8.l图21O2Oa bc图1二、填空题(本大题共12题,每题4分,满分48分) 7.化简:21-= ▲ .8. 计算:=23)(a ▲ .9. 计算:=÷3166 ▲ (结果表示为幂的形式). 10.不等式组⎩⎨⎧>+≤-04201x ,x 的解集是 ▲ .11.在一个不透明的布袋中装有2个白球和8个红球,它们除了颜色不同之外,其余均相同.如果从中随机摸出一个球,摸到红球的概率是 ▲ .(将计算结果化成最简分数) 12.如果关于x 的方程1)1(2+=-a x a 无解,那么实数a = ▲ .13.近视眼镜的度数y (度)与镜片焦距x (米)呈反比例,其函数关系式为xy 100=.如果近似眼镜镜片的焦距250.x =米,那么近视眼镜的度数y 为 ▲ . 14.方程x x -=+6的根是 ▲ .15.手机已经普及,家庭座机还有多少?为此,某校中学生从某街道5000户家庭中随机抽取50户家庭进行统计,列表如下: 拥有座机数(部) 0 1 2 3 4 相应户数10141871该街道拥有多部电话(指1部以上,不含1部)的家庭大约有 ▲ 户.16.如果梯形两底的长分别为3和7,那么联结该梯形两条对角线的中点所得的线段长为 ▲ .17.在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①),(y x f =(2+x ,y ).如)1,1(f =)1,3(;②),(y x g =),(y x --,如)2,2(g =)2,2(--. 按照以上变换有:))1,1((f g =)1,3(g =)1,3(--,那么))4,3((-g f 等于 ▲ . 18.如图3,在梯形ABCD 中,已知AB ∥CD ,︒=∠90A ,cm AB 5=,cm BC 13=.以点B 为旋转中心,将BC 逆时针旋转︒90至BE ,BE 交CD 于F 点.如果点E 恰好落在射线AD 上,那么DF 的长为 ▲ cm .三、简答题(本大题共7题,满分78分) 19.(本题满分10分)ACB D E图3FABC DE FMN图6计算:︒+︒︒-︒+-60sin 45tan 30sin 30cos 42730)(.20.(本题满分10分)解方程:12221=++-x x .21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图4,在ABC ΔRt 中,90ACB ∠=︒,点D 在AC 边上,且CA CD BC ⋅=2. (1)求证:CBD A ∠=∠;(2)当α=∠A ,2=BC 时,求AD 的长(用含α的锐角三角比表示).22.(本题满分10分,每个小题各5分)某游泳池内现存水)(m 18903,已知该游泳池的排水速度是灌水速度的2倍.假设在换水时需要经历“排水——清洗——灌水”的过程,其中游泳池 内剩余的水量y (3m )与换水时间....t (h )之间的 函数关系如图5所示.根据图像解答下列问题:(1)根据图中提供的信息,求排水的速度及清洗该游泳池所用的时间;(2)求灌水过程中的y (3m )与换水时间....t (h )之间的函数关系式,写出函数的定义域.23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,点E 是正方形ABCD 边BC 上的一点(不与B 、C 重合),点F 在CD 边的延长线上,且满足BE DF =.联结EF ,点M 、N 分别是EF 与AC 、AD 的交点.(1)求AFE ∠的度数;ACBD图4(h)tO1890521 图5)(m 3y(2)求证:FCACCM CE =.24.(本题满分12分,每小题满分4分) 已知平面直角坐标系xOy (如图7),抛物线c bx x y ++=221经过点)0,3(-A 、)23,0(-C . (1)求该抛物线顶点P 的坐标; (2)求CAP ∠tan 的值;(3)设Q 是(1)中所求出的抛物线的一个动点,点Q 的横坐标为t ,当点Q 在第四象限时,用含t 的代数式表示△QAC 的面积.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知AP 是半圆O 的直径,点C 是半圆O 上的一个动点(不与点A 、P 重合),联结AC ,以直线AC 为对称轴翻折AO ,将点O 的对称点记为1O ,射线1AO 交半圆O 于点B ,联结OC .(1)如图8,求证:AB ∥OC ;(2)如图9,当点B 与点1O 重合时,求证:CB AB =;(3)过点C 作射线1AO 的垂线,垂足为E ,联结OE 交AC 于F .当5=AO ,11=B O 时,求AFCF的值.AC(O 1)BOP AOPAB CO 1OP 图7 O xy1- 1-11参考答案一、选择题:(本大题共6题,每题4分,满分24分) 1.C ;2.C ;3.D ;4.B ;5.C ;6.A.二、填空题(本大题共12题,每题4分,满分48分) 7.12-;8.6a ;9.326;10.12≤<-x ;11.54;12.1=a ;13.400=y ;14.2-=x ;15.2600;16.2;17.(5,4-);18.1235(或写成12112). 三、简答题(本大题共7题,满分78分)19.解:原式=23121234331+-⨯+- ……………………6分=32132331+-+- …………1分=13231-=+--. …………2+1分20.解:方程两边同时乘以)x )x 2(2+-(,得 4)2(222-=-++x x x …1+1+1+1分整理,得 0232=--x x . ……2分解这个整式方程,得 21731+=x ,21732-=x . ……2+1分 (若记错了求根公式,但出现了17,即根的判别式计算正确,可得1分)经检验知,21731+=x ,21732-=x 都是原方程的根. ……1分 所以,原方程的根是 21731+=x ,21732-=x . 21.解:(1)∵CA CD BC ⋅=2,∴BCCACD BC =. ……1分 ∵90ACB ∠=︒,点D 在AC 边上,∴BCD ACB ∠=∠. ……1分 ∴△ACB ∽△BCD . ∴CBD A ∠=∠. ……1+1分 说明:若没有写出“∵90ACB ∠=︒,点D 在AC 边上,∴BCD ACB ∠=∠”,但只要写出了BCD ACB ∠=∠,可得1分.(2)∵CBD A ∠=∠,α=∠A ,∴α=∠CBD .……………………………1分 在Rt △ACB 中,90ACB ∠=︒,2=BC ,α=∠A . ∵BCACA =∠cot , ∴ααcot 2cot =⋅=BC AC . …………………………………………2分 在Rt △BCD 中,︒=∠90BCD ,α=∠CBD ,2=BC , ∵BCCDCBD =∠tan , ∴ααtan 2tan =⋅=BC CD . …………………………………………2分 ∴ ααtan 2cot 2-=-=CD AC AD . ……………………………1分 本题解题方法较多,请参照评分.如写成 ααtan 2tan 2-=AD ;4cos 4tan 22--=ααAD ; 4cos 44sin 422---=ααAD ;ααtan 24sin 42--=AD 等等,均正确.22.解(1)由图像可知,该游泳池5个小时排水)(m 18903, ……1分所以该游泳池排水的速度是37851890=÷(/h m 3). ……1分由题意得该游泳池灌水的速度是18921378=⨯(/h m 3),……1分由此得灌水)(m 18903需要的时间是101891890=÷(h ) ……1分 所以清洗该游泳池所用的时间是610521=--(h ) ……1分(2)设灌水过程中的y (3m )与换水时间t (h )之间的函数关系式是b kt y +=(0≠k ). 将(11,0),(21,1890)代入b kt y ++=,得⎩⎨⎧=+=+.b k ,b k 189021011 解得⎩⎨⎧-==.b ,k 2079189 ……1+2分所以灌水过程中的y (3m )与时间t (h )之间的函数关系式是2079189-=t y (2111≤<t ). ……1+1分备注:学生若将定义域写成2111≤≤t ,亦视为正确,此处不是问题的本质. 23.解:(1)在正方形ABCD 中, ︒=∠=∠=∠90BAD ADC B ,AD AB =.……1分 ∵BE DF =,︒=∠=∠90ADF B ,AD AB =,∴△ABE ≌△ADF .……1分 ∴AF AE =,DAF BAE ∠=∠. ……………1+1分 ∴︒=∠=∠+∠=∠+∠=∠90BAD BAE EAD DAF EAD EAF . ……1分 ∵AF AE =,∴AEF AFE ∠=∠. ∴︒=︒⨯=∠=∠459021AEF AFE . ……………1分 (2) 方法1:∵四边形ABCD 是正方形,∴︒=∠45ACD . ……………1分∵︒=∠45AEF ,∴ACF AEF ∠=∠. ……………1分 又∵FMC AME ∠=∠, ……………1分 ∴△ABE ∽△ADF , ……………2分 ∴FCACCM CE =. ……………1分 方法2:∵四边形ABCD 是正方形,∴︒=∠=∠45ACD ACB . …………1分 ∵△ABE ≌△ADF ,∴AFD AEB ∠=∠. ……………1分∵CAE CAE ACB AEB ∠+︒=∠+∠=∠45, C F MC F M A F E A FD ∠+︒=∠+∠=∠45, ∴CFM CAE ∠=∠. ……………2分又∵ACD ACB ∠=∠,△ACE ∽△FCM . ……………1分∴FCACCM CE =. ……………1分 其他方法,请参照评分.24.解:(1)将)0,3(-A 、)23,0(-C 代入c bx x y ++=221,得 ⎪⎪⎩⎪⎪⎨⎧-==+--.23,032)3(2c c b 解得⎪⎩⎪⎨⎧-==.c ,b 231 ………………2分 所以抛物线的表达式为23212-+=x x y . ………………1分 其顶点P 的坐标为(1-,2-). ………………1分 (2)方法1:延长AP 交y 轴于G ,过 C 作AG CH ⊥,垂足是H . 设直线AP 的表达式为b kx y +=, 将),(A 03-、),(P 21--代入,得⎩⎨⎧-=+-=+-23b k b k ,解得⎩⎨⎧-=-=31b k . ∴3--=x y . 进而可得G (30-,). ………1分 ∴OA OG =,︒=∠=∠45OAG G . 在Rt △CHG 中,42345sin =︒⋅==CG CH HG . ………1分 在Rt △AOG 中,2345cos =︒=OGAG ,∴429=-=HG AG AH . ∴31tan ==∠AH CH CAP .……1+1分 方法2:设a CH =,易得a CG 2=,a OG 22=,a AG 4=,a AH 3=, 31tan ==∠AH CH CAP . 方法3:联结OP ,利用两种不同的方式分别表示四边形APCO 的面积:49+=+=∆∆∆APC AOC APC APCO S S S S 四边形;415433=+=+=∆∆POC APO APCO S S S 四边形; ∴23=∆APC S ,然后求523=AC 、22=AP , 利用面积求AC 边上的高552=h ,求1010sin =∠CAP ,进而求31tan =∠CAP .(3)设)2321,(2-+t t t Q , …………1分由Q 在第四象限,得t t =,2321232122+--=-+t t t t . 联结OQ ,易得 AOQ QOC AOC QAC S S S S ∆∆∆∆-+=. ∵4923321=-⨯-⨯=∆AOC S ,t t S QOC 432321=⨯-⨯=∆, ………1分 492343232132122+--=-+⨯-⨯=∆t t t t S QOA …………1分 ∴t t t t t S QAC 4943)492343(434922+=+---+=∆. …………1分 25.解:(1)∵点1O 与点O 关于直线AC 对称,∴AC O OAC 1∠=∠. ………1分 在⊙O 中,∵OC OA =,∴C OAC ∠=∠. …………1分 ∴C AC O ∠=∠1. ∴1AO ∥OC ,即AB ∥OC . …………1+1分 (2)方法1:联结OB . ………1分 ∵点1O 与点O 关于直线AC 对称,AC 1OO ⊥, ………1分 由点1O 与点B 重合,易得AC OB ⊥. ………1分 ∵点O 是圆心,AC OB ⊥,∴CB AB = ………2分方法2:∵点1O 与点O 关于直线AC 对称,∴1AO AO =,1CO CO = ………1+1分由点1O 与点B 重合,易得 AB AO =,CO CB = …………1分 ∵OC OA =,∴CB AB =. ∴ CB AB = ………1+1分 方法3:证平行四边形1AOCO 是菱形. (3) 过点O 作AB OH ⊥,垂足为H .∵AB OH ⊥,AB CE ⊥,∴OH ∥CE ,又∵AB ∥OC ,∴5==OC HE .……1分当点1O 在线段AB 上(如图),6111=+=+=B O AO B O AO AB ,又∵ AB OH ⊥,∴321==AB AH . ∴835=+=+=AH EH AE ……1分∵AB ∥OC , ∴85==AE OC AF CF ……1分当点1O 在线段AB 的延长线上,类似可求75==AE OC AF CF . …2分。
2019年上海市徐汇区中考二模数学试题及答案(word解析版)

2019年上海市徐汇区中考数学二模试卷一.选择题(本大题共6题,每题4分,满分24分)B.、与被开方数不同,故不是同类二次根式;与与被开方数相同,故是同类二次根式.23.(4分)(2019•徐汇区二模)如果关于x的一元二次方程x2﹣2x+m﹣1=0有两个不相等的实数根,那么和﹣))[的平均数为=﹣))﹣6.(4分)(2019•徐汇区二模)在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的分析:过B作BD⊥AC交CA的延长线于D,求出BD,和⊙B的半径比较,即可得出答案.BD=AB=二.填空题(本大题共12题,每题4分,满分48分)7.(4分)(2019•徐汇区二模)计算:=﹣1.数学试卷解:=8.(4分)(2019•徐汇区二模)计算:2a(3a﹣1)=6a2﹣2a.9.(4分)(2019•徐汇区二模)方程x﹣1=的解是x 1=1或x2=2.,10.(4分)(2019•市中区二模)已知函数f(x)=,那么f(﹣1)=.=.故答案为:.11.(4分)(2019•徐汇区二模)如图,点A在反比例函数的图象上,那么该反比例函数的解析式是.,将即可得到y=,y=12.(4分)(2019•徐汇区二模)如图,在△ABC中,中线AD和BE相交于点G,如果=,=,那么向量=.,,利用三角形法则,即可求得的长,又由在,可求得的长,继而求得解:∵=﹣=﹣==(﹣=﹣=+=)+,==(+=数学试卷故答案为:.13.(4分)(2019•徐汇区二模)如图,AB∥CD,CB平分∠ACD,如果∠BAC=120°,那么cosB=.BCD=.故答案为:.14.(4分)(2019•徐汇区二模)在形状、大小、颜色都一样的卡片上,分别画有线段、直角三角形、等腰三角形、等边三角形、平行四边形、菱形、等腰梯形、正五边形、正六边形、圆等10个图形,小杰随机抽取一张卡片,抽得图形既是轴对称图形,又是中心对称图形的概率是.=.故答案为:.=15.(4分)(2019•徐汇区二模)为了解某校初三年级学生一次数学测试成绩的情况,从近450名九年级学生中,随机抽取50名学生这次数学测试的成绩,通过数据整理,绘制如下统计表(给出部分数据,除[90,分以上)约为38%(填百分数).=0.516.(4分)(2019•徐汇区二模)如图,⊙O半径为5,△ABC的顶点在⊙O上,AB=AC,AD⊥BC,垂足是D,cotB=2,那么AD的长为2.cotB==2数学试卷17.(4分)(2000•安徽)一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是和,试写出符合要求的方程组(只要填写一个即可)..18.(4分)(2019•徐汇区二模)在Rt△ABC中,∠C=90°,sinA=,将△ABC绕点A旋转后,点C落在射线BA上,点B落到点D处,那么sin∠ADB的值等于或.,AC==4ABD===2BE=BD=a==2ADB==的值为或故答案为:或三.(本大题共7题,第19-22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.(10分)(2019•徐汇区二模)计算:()0﹣cos30°+﹣()2.+﹣,然后合并即可.﹣+﹣++20.(10分)(2019•徐汇区二模)解不等式组:;并将解集在数轴上表示出来.数学试卷解:21.(10分)(2019•徐汇区二模)销售某种商品,根据经验,销售单价不少于30元∕件,但不超过50元∕件时,销售数量N(件)与商品单价M(元∕件)的函数关系的图象如图所示中的线段AB.(1)求y关于x的函数关系式;(2)如果计划每天的销售额为2400元时,那么该商品的单价应该定多少元?由题意,得解得22.(10分)(2019•徐汇区二模)如图,梯形ABCD中,AB∥CD,AC和BD相交于点O,BD⊥AB,AB=3,BD=4,CD=2.求:(1)tan∠CAB的值;(2)△AOD的面积.CAB=即可得出答案.===,BO=CAB==;﹣,××=.23.(12分)(2019•徐汇区二模)如图,四边形ABCD是平行四边形,在边AB的延长线上截取BE=AB,点F在AE的延长线上,CE和DF交于点M,BC和DF交于点N.(1)求证:四边形DBEC是平行四边形;(2)如果AD2=AB•AF,求证:CM•AB=DM•CN.数学试卷,所以,,,24.(12分)(2019•徐汇区二模)抛物线y=ax2+bx(a≠0)经过点A(1,),对称轴是直线x=2,顶点是D,与x轴正半轴的交点为点B.(1)求抛物线y=ax2+bx(a≠0)的解析式和顶点D的坐标;(2)过点D作y轴的垂线交y轴于点C,点M在射线BO上,当以DC为直径的⊙N和以MB为半径的⊙M相切时,求点M的坐标.,解得:)的解析式,顶点解得.解得.相切时,25.(14分)(2019•徐汇区二模)如图1,在Rt△ABC中,∠CAB=90°,AC=3,AB=4,点P是边AB上任意一点,过点P作PQ⊥AB交BC于点E,截取PQ=AP,联结AQ,线段AQ交BC于点D,设AP=x,DQ=y.(1)求y关于x的函数解析式及定义域;(2)如图2,联结CQ,当△CDQ和△ADB相似时,求x的值;(3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边AB 上时,求AP的长.数学试卷;a=,.定义域是:≤,)的解法,可得,,,解得.,;;又∵解得.。
上海市浦东新区2019届中考数学二模试卷含答案解析

2019年上海市浦东新区中考数学二模试卷一、选择题,共6题,每题4分,共24分1.下列等式成立的是()A.2﹣2=﹣22B.26÷23=22C.(23)2=25D.20=12.下列各整式中,次数为5次的单项式是()A.xy4B.xy5C.x+y4D.x+y53.如果最简二次根式与是同类二次根式,那么x的值是()A.﹣1 B.0 C.1 D.24.如果正多边形的一个内角等于135°,那么这个正多边形的边数是()A.5 B.6 C.7 D.85.下列说法中,正确的个数有()①一组数据的平均数一定是该组数据中的某个数据;②一组数据的中位数一定是该组数据中的某个数据;③一组数据的众数一定是该组数据中的某个数据.A.0个B.1个C.2个D.3个6.已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当OA=OB时,四边形ABCD是矩形D.当∠ABD=∠CBD时,四边形ABCD是矩形二、填空题,共12小题,每题4分,共48分7.计算:=.(结果保留根号)8.分解因式:x3﹣4x=.9.方程x=x+4的解是.10.已知分式方程+=3,如果t=,那么原方程可化为关于t的整式方程是.11.如果反比例函数的图象经过点(3,﹣4),那么这个反比例函数的比例系数是.12.如果随意把各面分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的骰子抛到桌面上,那么正面朝上的数字是合数的概率是.13.为了解某山区金丝猴的数量,科研人员在改山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有只.14.已知点G时△ABC的重心,=,=,那么向量用向量、表示为.15.如图,已知AD∥EF∥BC,AE=3BE,AD=2,EF=5,那么BC=.16.如图,已知小岛B在基地A的南偏东30°方向上,与基地A相距10海里,货轮C在基地A的南偏西60°方向、小岛B的北偏西75°方向上,那么货轮C与小岛B的距离是海里.17.对于函数y=(ax+b)2,我们称[a,b]为这个函数的特征数.如果一个函数y=(ax+b)2的特征数为[2,﹣5],那么这个函数图象与x轴的交点坐标为.18.如图,已知在Rt△ABC中,D是斜边AB的中点,AC=4,BC=2,将△ACD沿直线CD折叠,点A落在点E处,联结AE,那么线段AE的长度等于.三、简答题,共7题,共78分19.化简并求值:(1+)+,其中x=+1.20.解不等式组:,并写出它的非负整数解.21.已知:如图,在△ABC中,D是边BC上一点,以点D为圆心,CD为半径作半圆,分别与边AC、BC相交于点E和点F.如果AB=AC=5,cosB=,AE=1.求:(1)线段CD的长度;(2)点A和点F之间的距离.22.小张利用休息日进行登山锻炼,从山脚到山顶的路程为12千米.他上午8时从山脚出发,到达山顶后停留了半个小时,再原路返回,下午3时30分回到山脚.假设他上山与下山时都是匀速行走,且下山比上山时的速度每小时快1千米.求小张上山时的速度.23.如图,已知在平行四边形ABCD中,AE⊥BC,垂足为E,AF⊥CD,垂足为点F.(1)如果AB=AD,求证:EF∥BD;(2)如果EF∥BD,求证:AB=AD.24.已知:如图,直线y=kx+2与x轴正半轴相交于A(t,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A和点B,点C在第三象象限内,且AC⊥AB,tan∠ACB=.(1)当t=1时,求抛物线的表达式;(2)试用含t的代数式表示点C的坐标;(3)如果点C在这条抛物线的对称轴上,求t的值.25.如图,已知在△ABC中,射线AM∥BC,P是边BC上一动点,∠APD=∠B,PD交射线AM 于点D.联结CD.AB=4,BC=6,∠B=60°.(1)求证:AP2=AD•BP;(2)如果以AD为半径的圆A以与A以BP为半径的圆B相切.求线段BP的长度;(3)将△ACD绕点A旋转,如果点D恰好与点B重合,点C落在点E的位置上,求此时∠BEP 的余切值.2019年上海市浦东新区中考数学二模试卷参考答案与试题解析一、选择题,共6题,每题4分,共24分1.下列等式成立的是()A.2﹣2=﹣22B.26÷23=22C.(23)2=25D.20=1【考点】同底数幂的除法;幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】根据负整数指数幂,可判断A,根据同底数幂的除法,可判断B,根据幂的乘方,可判断C,根据0指数幂,可判断D.【解答】解:A、负整数指数幂与正整数指数幂互为倒数,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、幂的乘方底数不变指数相乘,故C错误;D、非零的零次幂等于1,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.2.下列各整式中,次数为5次的单项式是()A.xy4B.xy5C.x+y4D.x+y5【考点】单项式.【分析】根据单项式的次数是所有字母的指数和,可得答案.【解答】解:A、是5次单项式,故A正确;B、是6次单项式,故B错误;C、是多项式,故C错误;D、是5次多项式,故D错误;故选:A.【点评】本题考查了单项式,需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.3.如果最简二次根式与是同类二次根式,那么x 的值是( )A .﹣1B .0C .1D .2 【考点】同类二次根式.【分析】根据题意,它们的被开方数相同,列出方程求解即可.【解答】解:由最简二次根式与是同类二次根式,得x+2=3x ,解得x=1.故选:C .【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.4.如果正多边形的一个内角等于135°,那么这个正多边形的边数是( )A .5B .6C .7D .8 【考点】多边形内角与外角.【分析】根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【解答】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数n=360÷45=8,∴该正多边形的边数是8.故选:D .【点评】本题主要考查多边形内角与外角的知识点,解答本题的关键是知道多边形的外角之和为360°,此题难度不大.5.下列说法中,正确的个数有( )①一组数据的平均数一定是该组数据中的某个数据;②一组数据的中位数一定是该组数据中的某个数据;③一组数据的众数一定是该组数据中的某个数据.A .0个B .1个C .2个D .3个【考点】众数;算术平均数;中位数.【分析】根据平均数的定义,即可判断①;根据中位数的定义,即可判断②;根据众数的定义即可判断③.【解答】解:①根据平均数的定义,可判断①错误,如3,7,8三个数的平均数为:=6;②根据中位数的定义可判断②错误,当数据个数为偶数个时,中位数不一定是该组数据中的某个数据,如2,2,4,5的中位数为:=3;③根据众数的定义可判断③正确.故选:B.【点评】此题考查了平均数,中位数,众数的定义,解题的关键是:熟记这三种数据的定义.6.已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当OA=OB时,四边形ABCD是矩形D.当∠ABD=∠CBD时,四边形ABCD是矩形【考点】矩形的判定;平行四边形的性质;菱形的判定.【分析】利用矩形的判定、四边形的性质及菱形的判定方法分别判断后即可确定正确的选项.【解答】解:A、根据邻边相等的平行四边形是菱形可以得到该结论正确;B、根据对角线互相垂直的平行四边形是菱形可以得到该选项正确;C、根据对角线相等的平行四边形是矩形可以判断该选项正确;D、不能得到一个角是直角,故错误,故选D.【点评】本题考查了矩形的判定、四边形的性质及菱形的判定方法,牢记判定方法是解答本题的关键.二、填空题,共12小题,每题4分,共48分7.计算:=.(结果保留根号)【考点】实数的性质.【专题】计算题.【分析】本题需先判断出的符号,再求出的结果即可.【解答】解:∵﹣2<0∴=2﹣故答案为:2﹣【点评】本题主要考查了实数的性质,在解题时要能根据绝对值得求法得出结果是本题的关键.8.分解因式:x3﹣4x=x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.9.方程x=x+4的解是x=﹣2﹣2.【考点】二次根式的应用;解一元一次方程.【分析】根据一元一次方程的解法求解,然后分母有理化即可.【解答】解:移项得,x﹣x=4,合并同类项得,(1﹣)x=4,系数化为1得,x===﹣2﹣2,即x=﹣2﹣2.故答案为:x=﹣2﹣2.【点评】本题考查了二次根式的应用,解一元一次方程,难点在于要分母有理化.10.已知分式方程+=3,如果t=,那么原方程可化为关于t的整式方程是t2﹣3t+2=0.【考点】换元法解分式方程.【分析】把t=代入方程,得出t+=3,整理成一般形式即可.【解答】解:∵+=3,t=,∴t+=3,整理得:t2﹣3t+2=0,故答案为:t2﹣3t+2=0.【点评】本题考查了用换元法解分式方程的应用,解此题的关键是能正确换元,题目是一道比较典型的题目,难度不是很大.11.如果反比例函数的图象经过点(3,﹣4),那么这个反比例函数的比例系数是﹣12.【考点】反比例函数图象上点的坐标特征.【分析】直接根据根据反比例函数中k=xy的特点进行解答即可.【解答】解:∵反比例函数的图象经过点(3,﹣4),∴k=3×(﹣4)=﹣12.故答案为:﹣12.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.如果随意把各面分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的骰子抛到桌面上,那么正面朝上的数字是合数的概率是.【考点】概率公式.【分析】由随意把各面分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的骰子抛到桌面上,共有6中等可能的结果,正面朝上的数字是合数的有4,6;直接利用概率公式求解即可求得答案.【解答】解:∵随意把各面分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的骰子抛到桌面上,共有6中等可能的结果,正面朝上的数字是合数的有4,6;∴正面朝上的数字是合数的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.为了解某山区金丝猴的数量,科研人员在改山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有120只.【考点】用样本估计总体.【分析】设该山区金丝猴的数量约有x只金丝猴,根据第一次捕获了15只金丝猴,在它们的身上做标记后放回该山区,第二次又捕获了32只金丝猴,其中4只身上有上次做的标记,列出方程,求出x的值即可.【解答】解:设该山区金丝猴的数量约有x只金丝猴,依题意得x:15=32:4,解得:x=120.则该山区金丝猴的数量约有120只.故答案为:120.【点评】本题主要考查了利用样本估计总体的思想,用样本估计整体让整体×样本的百分比即可.14.已知点G时△ABC的重心,=,=,那么向量用向量、表示为+.【考点】*平面向量;三角形的重心.【分析】由点G时△ABC的重心,根据三角形重心的性质,即可求得,再利用三角形法则求得的长,继而求得答案.【解答】解:如图,∵点G时△ABC的重心,=,∴==,∴=+=+,∵点G时△ABC的重心,∴==+.故答案为:+.【点评】此题考查了平面向量的知识与三角形重心的性质.注意掌握三角形法则的应用.15.如图,已知AD∥EF∥BC,AE=3BE,AD=2,EF=5,那么BC=.【考点】相似三角形的判定与性质.【分析】首先延长BA与CD,相交于点G,由AD∥EF∥BC,可得△GAD∽△GEF,△GAD∽△GBC,又由AD=2,EF=5,根据相似三角形的对应边成比例,即可求得BC的长.【解答】解:延长BA与CD,相交于点G,∵AD∥EF∥BC,∴△GAD∽△GEF,△GAD∽△GBC,∴==,∵AD=2,EF=,AE=9,∴=,解得:GA=6,∴GB=GA+AE+BE=18,∴=,解得:BC=6.故答案为:6.【点评】此题考查了相似三角形的判定与性质以及平行线分线段成比例定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.如图,已知小岛B在基地A的南偏东30°方向上,与基地A相距10海里,货轮C在基地A的南偏西60°方向、小岛B的北偏西75°方向上,那么货轮C与小岛B的距离是10海里.【考点】解直角三角形的应用-方向角问题.【分析】由已知可得△ABC是等腰直角三角形,已知AB=10海里,根据等腰直角三角形的性质即可求得斜边BC的长.【解答】解:如图,由题意得,∠BAD=30°,∠CAD=60°,∠CBE=75°,AB=10海里.∵AD∥BE,∴∠ABE=∠BAD=30°,∴∠ABC=∠CBE﹣∠ABE=75°﹣30°=45°.在△ABC中,∵∠BAC=∠BAD+∠CAD=30°+60°=90°,∠ABC=45°,∴△ABC是等腰直角三角形,∵AB=10海里,∴BC=AB=10海里.故答案为10.【点评】本题考查了解直角三角形的应用﹣方向角问题,等腰直角三角形的判定与性质,掌握方向角的定义从而证明△ABC是等腰直角三角形是解题的关键.17.对于函数y=(ax+b)2,我们称[a,b]为这个函数的特征数.如果一个函数y=(ax+b)2的特征数为[2,﹣5],那么这个函数图象与x轴的交点坐标为(,0).【考点】抛物线与x轴的交点.【专题】新定义.【分析】首先根据函数的特征数新定义求出a和b的值,然后令y=0,即可求出x的值.【解答】解:∵对于函数y=(ax+b)2,我们称[a,b]为这个函数的特征数,函数y=(ax+b)2的特征数为[2,﹣5],∴a=2,b=﹣5,∴函数为y=(2x﹣5)2,∴(2x﹣5)2=0解得x=,∴这个函数图象与x轴的交点坐标为(,0),故答案为:(,0).【点评】本题主要考查了抛物线与x轴交点的知识,解答本题的关键是掌握函数的特征数新定义,此题难度不大.18.如图,已知在Rt△ABC中,D是斜边AB的中点,AC=4,BC=2,将△ACD沿直线CD折叠,点A落在点E处,联结AE,那么线段AE的长度等于.【考点】翻折变换(折叠问题).【分析】延长CD交AE于F,由折叠的性质得出CF⊥AE,AC=EC,得出∠AFC=90°,AF=EF,由勾股定理求出AB,由直角三角形斜边上的中线性质得出CD=AB=AD,得出∠DCA=∠DAC,证出△AFC∽△BCA,得出对应边成比例,求出AF,即可得出AE的长.【解答】解:如图所示:延长CD交AE于F,由折叠的性质得:CF⊥AE,AC=EC,∴∠AFC=90°,AF=EF,∵在Rt△ABC中,∠ACB=90°,∴AB===2,∵D是斜边AB的中点,∴CD=AB=AD,∴∠DCA=∠DAC,∵∠AFC=∠ACB=90°,∴△AFC∽△BCA,∴,即,∴AF=,∴AE=2AF=;故答案为:.【点评】本题考查了翻折变换的性质、勾股定理、相似三角形的判定与性质;熟练掌握翻折变换的性质,并能进行推理计算是解决问题的关键.三、简答题,共7题,共78分19.化简并求值:(1+)+,其中x=+1.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=(+)+=+=+=当x=+1时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.解不等式组:,并写出它的非负整数解.【考点】解一元一次不等式组;一元一次不等式组的整数解.【分析】首先分别计算出两个不等式的解集,然后再根据大小小大中间找确定不等式组的解集,然后再找出非负整数解.【解答】解:,由①得:x≥﹣4,由②得:x<2,不等式组的解集为:﹣4≤x<2,非负整数解为:0,1.【点评】此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.已知:如图,在△ABC中,D是边BC上一点,以点D为圆心,CD为半径作半圆,分别与边AC、BC相交于点E和点F.如果AB=AC=5,cosB=,AE=1.求:(1)线段CD的长度;(2)点A和点F之间的距离.【考点】圆周角定理;解直角三角形.【分析】(1)连接EF,利用圆周角定理得出∠FEC=90°,再利用等腰三角形的性质,结合锐角三角函数得出答案;(2)利用锐角三角函数得出NC的长,再利用勾股定理得出答案.【解答】解:(1)连接EF,∵由题意可得FC是⊙D的直径,∴∠FEC=90°,∵AB=AC,∴∠B=∠ACB,∵AB=AC=5,cosB=,AE=1,∴EC=4,cosB=cos∠ACB===,解得:FC=5,则DC=2.5;(2)连接AF,过点A作AN⊥BC于点N,∵AB=5,cosB=,∴BN=4,∴AN=3,∵cosC=cosB=,∴NC=4,∴FN=1,∴AF==.【点评】此题主要考查了圆周角定理以及勾股定理和锐角三角函数等知识,正确应用锐角三角函数关系是解题关键.22.小张利用休息日进行登山锻炼,从山脚到山顶的路程为12千米.他上午8时从山脚出发,到达山顶后停留了半个小时,再原路返回,下午3时30分回到山脚.假设他上山与下山时都是匀速行走,且下山比上山时的速度每小时快1千米.求小张上山时的速度.【考点】分式方程的应用.【分析】设小张上山时的速度为x千米/小时,则下山时的速度为x+1千米/小时,根据上下山所用时间和到达山顶后停留了半个小时为15时30分﹣8时=7小时30分列出方程解答即可.【解答】解:设小张上山时的速度为x千米/小时,则下山时的速度为x+1千米/小时,由题意得++=7.5,解得:x=3或x=﹣(不合题意,舍去),经检验x=3是原分式方程的解.答:小张上山时的速度为3千米/小时.【点评】此题考查分式方程的实际运用,掌握行程问题中路程、时间、速度三者之间的关系是解决问题的关键.23.如图,已知在平行四边形ABCD中,AE⊥BC,垂足为E,AF⊥CD,垂足为点F.(1)如果AB=AD,求证:EF∥BD;(2)如果EF∥BD,求证:AB=AD.【考点】平行四边形的性质.【专题】证明题.【分析】(1)直接利用平行四边形的性质结合全等三角形的判定方法得出△ABE≌△ADF(AAS),进而求出答案;(2)利用平行线分线段成比例定理结合相似三角形的判定与性质得出△ABE∽△ADF,进而求出答案.【解答】证明:(1)∵在平行四边形ABCD中,AE⊥BC,AF⊥CD,∴∠ABE=∠ADF,在△ABE和△ADF中∵,∴△ABE≌△ADF(AAS),∴BE=DF,∴=,∴EF∥BD;(2)∵EF∥BD,∴=,∵∠ABF=∠ADF,∠AEB=∠AFD,∴△ABE∽△ADF,∴=,∴=,∴AD×BC=AB×DC,∴AB2=AD2,∴AB=AD.【点评】此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质和平行四边形的性质等知识,得出=是解题关键.24.已知:如图,直线y=kx+2与x轴正半轴相交于A(t,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A和点B,点C在第三象象限内,且AC⊥AB,tan∠ACB=.(1)当t=1时,求抛物线的表达式;(2)试用含t的代数式表示点C的坐标;(3)如果点C在这条抛物线的对称轴上,求t的值.【考点】二次函数综合题.【分析】(1)把点A(1,0),B(0,2)分别代入抛物线的表达式,解方程组即可;(2)如图:作CH⊥x轴,垂足为点H,根据△AOB∽△CHA,得到==,根据tan∠ACB==,得到==,根据OA=t,得到点C的坐标为(t﹣4,﹣2t).(3)根据点C(t﹣4,﹣2t)在抛物线y=﹣x2+bx+c的对称轴上,得到t﹣4=,即b=2t﹣8,把点A(t,0)、B(0,2)代入抛物线的表达式,得﹣t2+bt+2=0,可知t2+(2t﹣8)t+2=0,即t2﹣8t+2=0,据此即可求出t的值.【解答】解:(1)∵t=1,y=kx+2,∴A(1,0),B(0,2),把点A(1,0),B(0,2)分别代入抛物线的表达式,得,解得,,∴所求抛物线的表达式为y=﹣x2﹣x+2.(2)如图:作CH⊥x轴,垂足为点H,得∠AHC=∠AOB=90°,∵AC⊥AB,∴∠OAB+∠CAH=90°,又∵∠CAH+∠ACH=90°,∴∠OAB=∠ACH,∴△AOB∽△CHA,∴==,∵tan∠ACB==,∴==,∵OA=t,OB=2,∴CH=2t,AH=4,∴点C的坐标为(t﹣4,﹣2t).(3)∵点C(t﹣4,﹣2t)在抛物线y=﹣x2+bx+c的对称轴上,∴t﹣4=,即b=2t﹣8,把点A(t,0)、B(0,2)代入抛物线的表达式,得﹣t2+bt+2=0,∴﹣t2+(2t﹣8)t+2=0,即t2﹣8t+2=0,解得t=4+,∵点C(t﹣4,﹣2t)在第三象限,∴t=4+不符合题意,舍去,第21页(共23页)∴t=4﹣.【点评】本题考查了二次函数综合题,涉及三角函数、待定系数法求二次函数解析式、相似三角形的性质等知识,难度较大.25.如图,已知在△ABC 中,射线AM ∥BC ,P 是边BC 上一动点,∠APD=∠B ,PD 交射线AM 于点D .联结CD .AB=4,BC=6,∠B=60°.(1)求证:AP 2=AD •BP ;(2)如果以AD 为半径的圆A 以与A 以BP 为半径的圆B 相切.求线段BP 的长度;(3)将△ACD 绕点A 旋转,如果点D 恰好与点B 重合,点C 落在点E 的位置上,求此时∠BEP 的余切值.【考点】相似形综合题.【分析】(1)先由平行线证明∠APB=∠DAP ,再由已知条件∠APD=∠B ,证明△ABP ∽△DPA ,得出对应边成比例,即可得出结论;(2)设BP=x ,作AH ⊥BC 于H ,先根据勾股定理求出AH ,再由勾股定理得出AP 2=PH 2+AH 2,由两圆外切时,AB=|AD+BP|,得出方程,解方程即可;(3)作PM ⊥AB 于M ;先根据题意得出:AD=AB==4,解方程求出BP ,再证明△ABP为等边三角形,求出PM ,然后证明四边形ADCH 为矩形,得出BE=CD=AH=2,∠ABE=∠ADC=90°,求出BF ,即可求出∠BEP 的余切值.第22页(共23页)【解答】(1)证明:∵AM ∥BC ,∴∠APB=∠DAP ,又∵∠APD=∠B ,∴△ABP ∽△DPA ,∴,∴AP 2=AD •BP ;(2)解:设BP=x ,作AH ⊥BC 于H ,如图1所示:∵∠B=60°,∴∠BAH=30°,∴BH= AB=2,根据勾股定理得:AH==2, AP 2=PH 2+AH 2=(x ﹣2)2+(2)2=x 2﹣4x+16,∴AD==, 两圆相切时,AB=|AD+BP|,即4=|x+|,整理得:4x=|4x ﹣16|,解得:x=2,∴BP 的长度为2时,两圆内切;(3)解:根据题意得:AD=AB==4, 解得:x=4,∴BP=4,∵∠ABP=60°,AB=BP=4,∴△ABP 为等边三角形,∵AD=AB=4,CH=BC ﹣BH=4,AD ∥CH ,∠AHC=90°,∴四边形ADCH 为矩形,∴BE=CD=AH=2,∠ABE=∠ADC=90°,第23页(共23页)作PM ⊥AB 于M ,如图2所示:则PM ∥BE ,PM=2,∴PM=BE ,∴BF=FM=BM=1,∴cot ∠BEP==2.【点评】本题是相似形综合题,考查了相似三角形的判定与性质、勾股定理、两圆外切的条件、等边三角形的判定与性质、三角函数等知识;本题难度较大,综合性强,特别是(2)(3)中,需要通过作辅助线运用勾股定理和证明等边三角形、矩形才能得出结果.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市各区2019届九年级中考二模数学试卷精选汇编:压轴题专题 宝山区、嘉定区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)在圆O 中,AO 、BO 是圆O 的半径,点C在劣弧AB 上,10=OA ,12=AC ,AC ∥OB ,联结AB .(1)如图8,求证:AB 平分OAC ∠;(2)点M 在弦AC 的延长线上,联结BM ,如果△AMB 是直角三角形,请你在如图9中画出 点M 的位置并求CM 的长;(3)如图10,点D 在弦AC 上,与点A 不重合,联结OD 与弦AB 交于点E ,设点D 与点C 的距离为x ,△O EB 的面积为y ,求y 与x 的函数关系式,并写出自变量x 的取值范围.25.、∴BO AO =…………1分∴B OAB ∠=∠…………1分 ∵AC ∥OB∴B BAC ∠=∠…………1分 ∴BAC OAB ∠=∠∴AB 平分OAC ∠…………1分 (2)解:由题意可知BAM ∠不是直角,图8图8所以△AMB 是直角三角形只有以下两种情况:︒=∠90AMB 和︒=∠90ABM① 当︒=∠90AMB ,点M 的位置如图9-1……………1分 过点O 作AC OH ⊥,垂足为点H ∵OH 经过圆心 ∴AC HC AH 21== ∵12=AC ∴6==HC AH 在Rt △AHO 中,222OA HO AH =+∵10=OA ∴8=OH∵AC ∥OB ∴︒=∠+∠180OBM AMB ∵︒=∠90AMB ∴︒=∠90OBM ∴四边形OBMH 是矩形 ∴10==HM OB∴4=-=HC HM CM ……………2分 ②当︒=∠90ABM ,点M 的位置如图9-2 由①可知58=AB ,552cos =∠CAB 在Rt △ABM 中,552cos ==∠AM AB CAB ∴20=AM8=-=AC AM CM ……………2分综上所述,CM 的长为4或8.说明:只要画出一种情况点M 的位置就给1分,两个点都画正确也给1分.(3)过点O 作AB OG ⊥,垂足为点G 由(1)、(2)可知,CAB OAG ∠=∠sin sin由(2)可得:55sin =∠CAB ∵10=OA ∴52=OG ……………1分 ∵AC ∥OB ∴ADOBAE BE =……………1分 又BE AE -=58,x AD -=12,10=OB ∴xBEBE -=-121058 ∴x BE -=22580 ……………1分∴52225802121⨯-⨯=⨯⨯=xOG BE y ∴xy -=22400……………1分 自变量x 的取值范围为120<≤x ……………1分 长宁区25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域;(3)若四边形AOBD 是梯形,求AD 的长.O ACBO BA C DBAO25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8, ∴OD ⊥AB ,421==AB AC (2分)在Rt △AOC 中,︒=∠90ACO ,AO =5, ∴322=-=AC AO CO(1分)5=OD ,2=-=∴OC OD CD(1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO ,AO =5,∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-=(80<<x )(3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121 ∴OF OB OH AB AE ==⋅=524在Rt △AOF 中,︒=∠90AFO ,AO =5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG , 在Rt △GAD 中,︒=∠90DGA ,∴622=+=DG AG AD ( 3分) 综上得6514或=AD 崇明区25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)如图,已知ABC △中,8AB =,10BC =,12AC =,D 是AC 边上一点,且2AB AD AC =⋅,联结BD ,点E 、F 分别是BC 、AC 上两点(点E 不与B 、C 重合),AEF C ∠=∠,AE 与BD 相交于点G .(1)求证:BD 平分ABC ∠;(2)设BE x =,CF y =,求y 与x 之间的函数关系式; (3)联结FG ,当GEF △是等腰三角形时,求BE 的长度.25.(满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)(第25题图)ABC DGEF(备用图)ABCD(1)∵8AB =,12AC = 又∵2AB AD AC = ∴163AD =∴16201233CD =-= ……………………………1分 ∵2AB AD AC = ∴AD ABAB AC= 又∵BAC∠是公共角 ∴ADB ABC △∽△ …………………………1分∴ABD C =∠∠,BD ADBC AB= ∴203BD =∴BD CD= ∴DBC C =∠∠ ………………………1分∴ABD DBC=∠∠ ∴BD平分ABC ∠ (1)分(2)过点A 作AH BC ∥交BD 的延长线于点H∵AH BC ∥ ∴16432053AD DH AH DC BD BC ==== ∵203BD CD ==,8AH = ∴163AD DH == ∴12BH = ……1分∵AH BC ∥ ∴AH HG BE BG = ∴812BGx BG-= ∴128xBG x =+…1分 ∵BEF C EFC =+∠∠∠ 即BEA AEF C EFC +=+∠∠∠∠ ∵AEF C =∠∠ ∴BEA EFC =∠∠ 又∵DBC C =∠∠ ∴BEG CFE △∽△ ……………………………………………………………1分∴BE BGCF EC= ∴12810x x x y x +=-∴228012x x y -++= …………………………………………………………1分(3)当△GEF 是等腰三角形时,存在以下三种情况:1° GE GF = 易证23GE BE EF CF == ,即23x y =,得到4BE = ………2分2°EG EF= 易证BE CF=,即x y=,5BE =-+…………2分3° FG FE = 易证32GE BE EF CF == ,即32x y =3BE =- ………2分奉贤区25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知:如图9,在半径为2的扇形AOB 中,∠AOB=90°,点C 在半径OB 上,AC 的垂直平分线交OA 于点D ,交弧AB 于点E ,联结BE 、CD .(1)若C 是半径OB 中点,求∠OCD 的正弦值; (2)若E 是弧AB 的中点,求证:BC BO BE ⋅=2;(3)联结CE ,当△DCE 是以CD 为腰的等腰三角形时,求CD 的长.黄浦区25.(本题满分14分)如图,四边形ABCD 中,∠BCD =∠D =90°,E 是边AB 的中点.已知AD =1,AB =2.(1)设BC =x ,CD =y ,求y 关于x 的函数关系式,并写出定义域; (2)当∠B =70°时,求∠AEC 的度数; (3)当△ACE 为直角三角形时,求边BC 的长.图9备用图ABO备用图AB O25. 解:(1)过A作AH⊥BC于H,————————————————————(1分)由∠D=∠BCD=90°,得四边形ADCH为矩形.在△BAH中,AB=2,∠BHA=90°,AH=y,HB=1x-,所以222=+-,—————————————————y x21—————(1分)则()03=<<.———y x————————————(2分)(2)取CD中点T,联结TE,————————————————————(1分)则TE是梯形中位线,得ET∥AD,ET⊥CD.∴∠AET=∠B=70°.———————————————————————(1分)又AD=AE=1,∴∠AED=∠ADE=∠DET=35°.——————————————————(1分)由ET垂直平分CD,得∠CET=∠DET=35°,————————————(1分)所以∠AEC =70°+35°=105°. ——————————————————(1分) (3)当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 则在△ABH 中,∠B =60°,∠AHB =90°,AB =2, 得BH =1,于是BC =2. ——————————————————————(2分) 当∠CAE =90°时,易知△CDA ∽△BCA ,又AC =则AD CAx AC CB=⇒=⇒=—————(2分)易知∠ACE <90°.所以边BC 的长为2.——————————————————(1分)金山区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5 分)如图9,已知在梯形ABCD 中,AD ∥BC ,AB =DC =AD =5,3sin 5B =,P 是线段BC 上一点,以P 为圆心,PA 为半径的⊙P 与射线AD 的另一个交点为Q ,射线PQ 与射线CD 相交于点E ,设BP =x .(1)求证△ABP ∽△ECP ;(2)如果点Q 在线段AD 上(与点A 、D 不重合),设△APQ 的面积为y ,求y 关于x 的函数关系式,并写出定义域; (3)如果△QED 与△QAP 相似,求BP 的长.25.,PA =PQ ,∴∠PAQ =∠PQA 分)∵AD ∥BC ,∴∠PAQ =∠APB ,∠PQA =∠QPC ,∴∠APB =∠EPC ,……(1分)∵梯形ABCD 中,AD ∥BC ,AB =DC ,∴∠B =∠C ,…………………………(1分)∴△APB ∽△ECP .…………………………………………………………(1分)(2)作AM ⊥BC ,PN ⊥AD ,∵AD ∥BC ,∴AM ∥PN ,∴四边形AMPN 是平行四边形, ∴AM =PN ,AN =MP .………………………………………………………(1分)在Rt △AMB 中,∠AMB =90°,AB =5,sinB =35, ∴AM =3,BM =4,∴PN =3,AB CD图9备用图PM =AN =x -4,……………………………………(1分)∵PN ⊥AQ ,∴AN =NQ ,∴AQ =2x -8,……………………………………(1分)∴()1128322y AQ PN x =⋅⋅=⋅-⋅,即312y x =-,………………………(1分)定义域是1342x <<.………………………………………………………(1分) (3)解法一:由△QED 与△QAP 相似,∠AQP =∠EQD ,①如果∠PAQ =∠DEQ ,∵△APB ∽△ECP ,∴∠PAB =∠DEQ , 又∵∠PAQ =∠APB ,∴∠PAB =∠APB ,∴BP =BA =5.………………………(2分)②如果∠PAQ =∠EDQ ,∵∠PAQ =∠APB ,∠EDQ =∠C ,∠B=∠C ,∴∠B =∠APB ,∴ AB =AP ,∵AM ⊥BC ,∴ BM =MP =4,∴BP =8.………(2分)综上所述BP 的长为5或者8.………………………………………………(1分)解法二:由△QAP 与△QED 相似,∠AQP =∠EQD ,在Rt △APN 中,AP PQ === ∵QD ∥PC ,∴EQ EPQD PC=, ∵△APB ∽△ECP ,∴AP EPPB PC=,∴AP EQ PB QD =,①如果AQ EQQP QD =,∴AQ AP QP PB =x=,解得5x =………………………………………………………………………(2分)②如果AQ DQ QP QE =,∴AQ PBQP AP ==解得8x =………………………………………………………………………(2分)综上所述BP 的长为5或者8.…………………………………………………(1分) 静安区25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,平行四边形ABCD 中,已知AB =6,BC =9,31cos =∠ABC .对角线AC 、BD 交于点O .动点P 在边AB 上,⊙P 经过点B ,交线段PA 于点E .设BP = x . (1) 求AC 的长;(2) 设⊙O 的半径为y ,当⊙P 与⊙O 外切时, 求y 关于x 的函数解析式,并写出定义域; (3) 如果AC 是⊙O 的直径,⊙O 经过点E , 求⊙O 与⊙P 的圆心距OP 的长.25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)A 第25题图B P OCDE ·第25题备用图 ABOCD解:(1)作AH ⊥BC 于H ,且31cos =∠ABC ,AB =6, 那么2316cos =⨯=∠⋅=ABC AB BH …………(2分)BC =9,HC =9-2=7,242622=-=AH , ……………………(1分) 9493222=+=+=HC AH AC ﹒ ………(1分)(2)作OI ⊥AB 于I ,联结PO , AC =BC =9,AO∴∠OAB =∠ABC , ∴Rt △AIO 中, 31cos cos ==∠=∠AO AI ABC IAO ∴AI =1.5,IO =2322=AI ……………………(1分)∴PI =AB -BP -AI =6-x -1.5=x -29, ……………………(1分) ∴Rt △PIO 中,41539481918)29()23(2222222+-=+-+=-+=+=x x x x x OI PI OP ……(1分) ∵⊙P 与⊙O 外切,∴y x x x OP +=+-=415392 ……………………(1分) ∴y =x x x x x x -+-=-+-153364214153922 …………………………(1分)∵动点P 在边AB 上,⊙P 经过点B ,交线段PA 于点E .∴定义域:0<x ≤3…………(1分)(3)由题意得:∵点E 在线段AP 上,⊙O 经过点E ,∴⊙O 与⊙P 相交DA · 第25题图(1)BP OCHE 第25题图(2)∵AO 是⊙O 半径,且AO >OI ,∴交点E 存在两种不同的位置,OE =OA =29① 当E 与点A 不重合时,AE 是⊙O 的弦,OI 是弦心距,∵AI =1.5,AE =3,∴点E 是AB 中点,321==AB BE ,23==PE BP ,3=PI , IO =233327)23(32222==+=+=IO PI OP ……………………(2分)② 当E 与点A 重合时,点P 是AB 中点,点O 是AC 中点,2921==BC OP ……(2分) ∴33=OP 或29. 闵行区25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)如图,已知在Rt △ABC 中,∠ACB = 90o ,AC =6,BC = 8,点F 在线段AB 上,以点B 为圆心,BF 为半径的圆交BC 于点E ,射线AE 交圆B 于点D (点D 、E 不重合).(1)如果设BF = x ,EF = y ,求y 与x 之间的函数关系式,并写出它的定义域;(2)如果2ED EF =,求ED 的长;(3)联结CD 、BD ,请判断四边形ABDC 是否为直角梯形?说明理由.CBA(第25题图)CBEFDA25.解:(1)在Rt △ABC 中,6AC =,8BC =,90ACB ∠=∴10AB =.……………………………………………………………(1分)过E 作EH ⊥AB ,垂足是H ,易得:35EH x =,45BH x =,15FH x =.…………………………(1分)在Rt △EHF 中,222223155EF EH FH x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,∴(08)y x =<<.………………………………………(1分+1分)(2)取ED 的中点P ,联结BP 交ED 于点G∵2ED EF =,P 是ED 的中点,∴EP EF PD ==. ∴∠FBE =∠EBP =∠PBD . ∵EP EF=,BP 过圆心,∴BG ⊥ED ,ED =2EG=2DG .…………(1分)又∵∠CEA =∠DEB , ∴∠CAE =∠EBP =∠ABC .……………………………………………(1分)又∵BE 是公共边,∴BEH BEG ∆∆≌.∴35EH EG GD x ===.在Rt △CEA中,∵AC = 6,8BC =,tan tan AC CECAE ABC BC AC∠=∠==,∴66339tan 822CE AC CAE ⨯⨯=⋅∠===.……………………………(1分)∴9169782222BE =-=-=.……………………………………………(1分)∴6672125525ED EG x ===⨯=.……………………………………(1分)(3)四边形ABDC 不可能为直角梯形.…………………………………(1分)①当CD ∥AB 时,如果四边形ABDC 是直角梯形,只可能∠ABD =∠CDBo 在Rt △CBD 中,∵BC ∴32cos 5CD BC BCD =⋅∠=24sin 5BD BC BCD =⋅∠=∴321651025CD AB ==,328153245CE BE -==;∴CD CE ABBE≠.∴CD 不平行于AB ,与CD ∥AB 矛盾. ∴四边形ABDC 不可能为直角梯形.…………………………(2分)②当AC ∥BD 时,如果四边形只可能∠ACD =∠CDB = 90o . ∵AC ∥BD ,∠ACB = 90o , ∴∠ACB =∠CBD = 90o . ∴∠ABD =∠ACB +∠BCD > 90o . 与∠ACD =∠CDB = 90o 矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分)普陀区25.(本题满分14分)已知P 是O ⊙的直径BA 延长线上的一个动点,P ∠的另一边交O ⊙于点C 、D ,两点位于AB 的上方,AB =6,OP m =,1sin 3P =,如图11所示.另一个半径为6的1O ⊙经过点C 、D ,圆心距1OO n =. (1)当6m =时,求线段CD 的长;(2)设圆心1O 在直线AB 上方,试用n 的代数式表示m ;(3)△1POO 在点P 的运动过程中,是否能成为以1OO 为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.25.解: (1)过点O 作OH ⊥CD ,垂足为点H ,联结OC .在Rt △POH 中,∵1sin 3P =,6PO =,∴2OH =. ·· (1分)∵AB =6,∴3OC =. ············· (1分) 由勾股定理得CH =············ (1分)∵OH ⊥DC,∴2CD CH ==.········ (1分)(2)在Rt △POH 中,∵1sin 3P =, PO m =,∴3m OH =. · (1分)在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. ········· (1分)在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. ······· (1分)OAB备用图 P DOA BC图11可得 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n-=.··· (2分)(3)△1POO 成为等腰三角形可分以下几种情况:● 当圆心1O 、O 在弦CD 异侧时①1OP OO =,即m n =,由23812n n n-=解得9n =. ··· (1分)即圆心距等于O ⊙、1O ⊙的半径的和,就有O ⊙、1O ⊙外切不合题意舍去. ···················· (1分)②11O P OO =n =,解得23m n =,即23n 23812n n -=,解得n . ··· (1分)● 当圆心1O 、O 在弦CD 同侧时,同理可得 28132n m n -=.∵1POO ∠是钝角,∴只能是m n =,即28132n n n-=,解得n .(2分)综上所述,n.青浦区25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图9-1,已知扇形MON,∠MON =90,点B 在弧MN 上移动,联结BM ,作OD ⊥BM ,垂足为点D ,C 为线段OD 上一点,且OC =BM ,联结BC 并延长交半径OM 于点A ,设OA = x ,∠COM 的正切值为y .(1)如图9-2,当AB ⊥OM 时,求证:AM =AC ; (2)求y 关于x 的函数关系式,并写出定义域; (3)当△OAC 为等腰三角形时,求x 的值.NDCBNDCBNO25.解:(1)∵OD ⊥BM ,AB ⊥OM ,∴∠ODM =∠BAM =90°. (1分)∵∠ABM +∠M =∠DOM +∠M ,∴∠ABM =∠DOM .(1分) ∵∠OAC =∠BAM ,OC =BM ,∴△OAC ≌△ABM , ············ (1分) ∴AC =AM . ··············· (1分) (2)过点D 作DE //AB ,交OM 于点E . ······ (1分)∵OB =OM ,OD ⊥BM ,∴BD =DM . ······ (1分) ∵DE //AB , ∴=MD MEDM AE,∴AE =EM , ∵OMAE=)12x . ······· (1分)∵DE //AB , ∴2==OA OC DMOE OD OD , ··········· (1分) ∴2=DM OAOD OE,∴=y(0<≤x ········· (2分) (3)(i ) 当OA =OC 时, ∵111222===DM BM OC x ,在Rt △ODM中,==OD =DMy OD,∴1=x .解得2=x ,或2=x(舍). ······················· (2分)(ii )当AO =AC 时,则∠AOC =∠ACO ,∵∠ACO >∠COB ,∠COB =∠AOC ,∴∠ACO >∠AOC ,∴此种情况不存在. ··········· (1分)(ⅲ)当CO =CA 时,则∠COA =∠CAO=α,∵∠CAO >∠M ,∠M =90α︒-,∴α>90α︒-,∴α>45︒,∴290α∠=>︒BOA ,∵90∠≤︒BOA ,∴此种情况不存在.·························· (1分) 松江区25.(本题满分14分,第(1)小题4分,第(2)小题每个小题各5分)如图,已知Rt △ABC 中,∠ACB =90°,BC =2,AC =3,以点C 为圆心、CB 为半径的圆交AB 于点D ,过点A 作AE ∥CD ,交BC 延长线于点E.(1)求CE 的长;(2)P 是 CE 延长线上一点,直线AP 、CD 交于点Q.① 如果△ACQ ∽△CPQ ,求CP 的长;② 如果以点A 为圆心,AQ 为半径的圆与⊙C 相切,求CP 的长. 25.(本题满分14分,第(1)小题4分,第(2)小题每个小题各5分)解:(1)∵AE ∥CD ∴BC DC BE AE =…………………………………1分 ∵BC=DC(第25题图) C B A D E (备用图) CB AD E (第25题图)C B A DE∴BE=AE …………………………………1分设CE =x则AE =BE =x +2∵ ∠ACB =90°,∴222AC CE AE +=即229(2)x x +=+………………………1分 ∴54x = 即54CE =…………………………………1分 (2)①∵△ACQ ∽△CPQ ,∠QAC>∠P∴∠ACQ=∠P (1)分又∵AE ∥CD∴∠ACQ=∠CAE∴∠CAE=∠P ………………………………1分∴△ACE ∽△PCA ,…………………………1分∴2AC CE CP =⋅…………………………1分即2534CP =⋅∴365CP = ……………………………1分 ②设CP =t ,则54PE t =-∵∠ACB =90°,∴AP =∵AE ∥CD∴AQ EC AP EP=……………………………1分 C B AD E P Q5545454tt==--∴45AQt=-……………………………1分若两圆外切,那么145AQt==-此时方程无实数解……………………………1分若两圆内切切,那么5AQ==∴21540160t t-+=解之得2015t±=………………………1分又∵54t>∴2015t+=………………………1分徐汇区25. 已知四边形ABCD是边长为10的菱形,对角线AC、BD相交于点E,过点C作CF∥DB交AB延长线于点F,联结EF交BC于点H. (1)如图1,当EF BC⊥时,求AE的长;(2)如图2,以EF为直径作⊙O,⊙O经过点C交边CD于点G(点C、G不重合),设AE的长为x,EH的长为y;①求y关于x的函数关系式,并写出定义域;③联结EG,当D E G∆是以DG为腰的等腰三角形时,求AE的长.杨浦区25、(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图9,在梯形ABCD中,AD//BC,AB=DC=5,AD=1,BC=9,点P为边BC上一动点,作PH⊥DC,垂足H在边DC上,以点P为圆心PH为半径画圆,交射线PB于点E.(1)当圆P过点A时,求圆P的半径;(2)分别联结EH和EA,当△ABE△CEH时,以点B为圆心,r为半径的圆B与圆P相交,试求圆B的半径r的取值范围;(3)将劣弧沿直线EH翻折交BC于点F,试通过计算说明线段EH 和EF的比值为定值,并求出此定值。