4.几何光学讲解

合集下载

几何光学物理光学知识点

几何光学物理光学知识点

几何光学物理光学知识点光学是研究光的传播、反射、折射、干涉和衍射现象的学科。

几何光学是光学的一个分支,主要研究光的传播直线性质和光的反射、折射的基本规律。

以下是几何光学的一些重要的知识点。

1.光的传播直线性质:光的传播遵循直线传播定律,即光在一种介质中以直线传播,称为光的直线传播性质。

2.光的反射定律:光在光滑表面上发生反射时,入射角等于反射角。

3. 光的折射定律:光从一种介质进入另一种介质时,入射角、折射角和两种介质的折射率之间满足折射定律,即n1*sin(θ1)=n2*sin(θ2),其中n1和n2分别为两种介质的折射率,θ1和θ2分别为入射角和折射角。

4.球面镜和薄透镜的成像公式:对于球面镜,成像公式为1/f=1/v+1/u,其中f为焦距,v为像距,u为物距。

对于薄透镜,成像公式为1/f=1/v-1/u。

5.凸凹透镜成像规律:凸透镜成像规律是物体距离凸透镜距离为f的位置,像无论在哪里都在凸透镜的反面,正立,放大,属于放大系统。

凹透镜成像规律是物体距离凹透镜越远,像越近,倒立,缩小,属于缩小系统。

6.光的干涉现象:光的干涉是指两束或多束光波叠加形成明暗相间的干涉条纹。

干涉分为相干光的干涉和非相干光的干涉,其中相干光干涉又分为同一光源光的干涉和不同光源光的干涉。

7.杨氏双缝干涉实验:是杨振宁做的关于光的干涉实验,实验证明了光的波动性。

8.杨氏实验的解释:杨氏双缝干涉实验的解释是光波从两个缝中通过后分别传播到屏幕上的不同位置,根据光的相位差和干涉条件,形成干涉条纹。

9.光的衍射现象:光的衍射是指光波通过一个小孔或物体边缘时,发生弯曲和扩散的现象。

根据衍射的级数,分为一级衍射、二级衍射、多级衍射。

10.衍射光栅:是利用衍射现象进行光学分析和测量的重要工具。

光栅是一种周期性结构,通过多级衍射产生许多衍射光束,形成明暗相间的衍射条纹。

11.真实像和虚像:根据物体和像的位置关系,成像可以分为真实像和虚像。

光学几何光学知识点总结

光学几何光学知识点总结

光学几何光学知识点总结光学几何光学是研究光传播的基本规律和现象的一门学科,它通过几何光学原理来描述光的传播路径和成像规律。

在这篇文章中,我们将总结光学几何光学的核心知识点,帮助读者加深对光学几何光学的理解。

1. 光传播的直线特性光学几何光学的基本假设之一是光在均匀介质中直线传播。

根据光的直线传播特性,我们可以得出光传播的两大基本规律:直线传播定律和逆向规律。

直线传播定律指出,光在均匀介质中传播的路径是直线。

这意味着当光通过一块透明介质时,光线的传播路径是直线,除非发生折射或反射。

逆向规律指出,光线的传播方向与光线的路径相反。

这意味着当光线反射或折射时,其传播方向会发生变化,但光线总是沿着路径的反方向传播。

2. 折射定律和反射定律折射定律和反射定律是光学几何光学中最重要的定律之一。

折射定律描述了光在两种不同介质之间传播时的路径变化规律。

它指出,光线在通过两种介质的交界面时,入射角和折射角之间的正弦比等于两种介质的折射率之比。

反射定律描述了光线从一种介质到同种介质的传播过程中的路径变化规律。

它指出,入射角和反射角之间的角度相等。

这两个定律为解释光在透明介质之间传播和反射的现象提供了重要的理论基础。

3. 成像规律成像规律是光学几何光学的核心内容之一,它用来描述光线经过光学系统(如透镜和反射面)后的成像规律。

对于薄透镜而言,成像规律可以用薄透镜公式来描述。

薄透镜公式指出,当光线通过一个薄透镜时,入射光线与透镜光轴的乘积等于出射光线与透镜光轴的乘积。

对于反射面而言,成像规律可以用镜面成像公式来描述。

镜面成像公式指出,当光线经过反射面时,入射角和出射角之间的角度关系与光的传播路径相对应。

这些成像规律帮助我们理解光在透镜和反射面上的成像过程,从而应用于光学仪器和光学系统的设计和优化。

4. 光的光程差和相干性光程差是光学几何光学中的重要概念之一。

它表示光线经过不同路径传播所经历的光程的差异。

光程差在干涉和衍射现象中起着关键作用。

几何光学第四章

几何光学第四章

M
N A´
——轴外光束决定 孔径光阑的位置
M´ N´
二、渐晕光阑
(Vignetting stop)
1、渐晕现象:像平面的边缘比中间暗(离轴物点)。
(渐晕光阑)
2、渐晕系数:
K
D D
一般允许达到0.5
三、照相系统的光阑总结
孔径光阑在物镜中的位置 1、根据轴外光束的像质选择孔径光阑位置; 2、轴外点成像光束宽度取决于孔径光阑、渐晕光阑均有关; 3、感光底片边框,即视场光阑; 4、孔径光阑一般为圆形,视场光阑为圆形或者矩形。
B' A'
O'2
ω
O1
O2
P'
B
入 射 窗 A O'2 O1
出 射 光 瞳
孔 径 光 阑
入 射 光 瞳
B'
P'' ω' P
O2
P'
ω
B
A'
入射窗边缘对入瞳中心的张角为物方视场角 2 ,同时也决定 了视场边缘点。视场光阑经后面光学零件所成的像即为出射窗, 出射窗对出瞳中心的张角即为像方视场角 。 ' 2
c.在光学设计时,可以合理设置孔径光阑位置用以校正像差.
d. 各光学元件的口径匹配。
4、主光线(Chief ray)
★定义:离轴物点发出的、通过孔径光阑中心的光线。 出瞳
Q 1
L1
孔径光阑 L 2
Q1
入瞳
Q 1
B
A
Q
Q
Q2
Q
A
B
C
Q 2
Q2
★ 主光线的入射、出射部分各自通过入瞳及出瞳的中心。

几何光学基础教材讲解

几何光学基础教材讲解

几何光学基础可见光,指那引起视觉的电磁波,这部分电磁波的波长范围约770-390纳米之间。

光具有波粒二象性,它有时表现为波动,有时也表现为粒子(光子)的线形运动。

几何光学就是以光的直线传播性质及光的反射和折射规律为基础,用数学方法研究光传播问题的学科。

几何光学研究的对象为光学仪器,研究一般光学仪器(透镜,凌镜,显微镜,望远镜,照相机)成像与消灭像差的问题,研究特种光学仪器(光谱仪,测距仪)的设计原理。

本章仅就几何光学中光线及其传播规律问题做一介绍。

1.光线及光线的种类在均匀介质中呈直线传播的光,就是光线。

就光的传播而言在均匀介质中是呈直线传播的;从其本身而言,均匀均匀介质中的光为一直线。

自发光点发出许多光线,我们任意取围绕一个线传播的一束光线,这一束光线就叫光束。

1.散开光线。

又称作发散光线任何发光点发出光线都是发散的,这些光线总是表现在一定的空间,总是在一定的限度内表现为空间的物理现象,从发光点射向某一方向的光总是以发光点为顶点的锥体向外传播,沿锥体向外传播的光束称为散发光束,常称为发散光线。

人们为了便于理解,又把这立体图形简化为平面图形,但在理解知识的时后,我们应该时时意设到,光是在空间意义上的光。

2.平行光线由任何一点发出的光束,经过光学仪器后,光束中的光线的相对方位改变为无相平行,成为平行光束,即平行光线。

平行光线产生见图1。

图1通常所说的平行光线是就另外的意义而言,任何光源所发出的光线,如果光距越大,就越趋于平行,当光距无限大时,即可视为平行,这种光线就称为平行光线。

在眼屈光学中,对光线的性质又作了人为的规定,并约定:5米及5米以外射来的光线,虽有发散性质,但同平行光线对眼生理光学的影响,差异实在微乎其微,故约定二者均为平行光线。

那么,5米以内光源发出的光线即为发散光线。

三.集合光线,又称会聚光线光源发出的平行光线,由一凹面镜发射(图2)或一凸透镜屈析(图3)而产生的光线,就称为集合光线。

几何光学完整PPT课件

几何光学完整PPT课件
3. 物空间(不论是实物还是虚物)介质的折射率是指实际入射光 线所在空间介质折射率,像空间(不论是实像还是虚像)介质的 折射率是指实际出射光线所在空间介质的折射率。
4. 物和像都是相对某一系统而言的,前一系统的像则是后一系统 的物。物空间和像空间不仅一一对应,而且根据光的可逆性,若 将物点移到像点位置,使光沿反方向入射光学系统,则像在原来 物点上。这样一对相应的点称为“共轭点”。
1. 共轴球面系统的结构参量: 各球面半径:r1 、 r2 …… rk-1 、 rk 相邻球面顶点间隔:d1 、 d2 …… dk-1 各球面间介质折射率:n1 、 n2 …… nk-1 、 nk n 、 k+1
精选
31
2. 转面公式
原则:前一折射面的象为后一面的物 ,前一面的象空间为后一面的物空间
4. C-球心 r-球面曲率半径 I 、I′-入、折射角
5. A 、A′-物点、象点 L、L′-物距、象距
精选
20
2. 符号法则(便于统一计算) 规定光线从左向右传播
a)沿轴线段 L、L′、r 以O为原点, 与光线传播方向相同,为“+” 与光线传播方向相反,为“-”
b)垂轴线段 h 在光轴之上,为“+” 在光轴之下,为“-”
例:某物体通过一透镜成像后在透镜内部,透镜材 料为玻璃,透镜两侧均为空气。问该像所处的空间 介质是玻璃还是空气?
4 5
6
3 2 1
位标器动平衡调试系统光源
第二章 球面与共轴球面系统
§ 2-1 光线光路计算与共轴光学系统
共轴球面系统— 光学系统一般由球面和平面组成, 各球面球心在一条直线(光轴)上。
精选
28
2. 轴向放大率:光轴上一对共轭点沿轴移动量之间的比值

几何光学知识点

几何光学知识点

几何光学知识点光学对未来社会的发展有着十分重要的作用,几何光学是光学学科中以光线为基础,研究光的传播和成像规律的一个重要的实用性分支学科。

在几何光学中,把组成物体的物点看作是几何点,把它所发出的光束看作是无数几何光线的集合,光线的方向代表光能的传播方向。

今天为大家整理了一些关于几何光学的基础,值得收藏。

基本概念:1. 光源与发光点:从物理学的观点看,任何发光的物体都可以叫作光源。

在几何光学中,把凡是发出光线的物体,不论它本身发光体或是因为被照明而漫反射光的物体,都称为光源。

如果某光源可看成几何学上的点,它只占有空间位置而无体积和线度,则称之为发光点或点光源。

2.光线与光束:光线是表示光能传播方向的几何线。

有一定关系的一些光线的集合称为光束。

3.光波波面:光也是一种电磁波。

某一时刻其振动位相相同的点所构成的面称光波波面。

在各向同性介质中,光沿着波面法线方向传播,所以可以认为光波波面的法线就是几何光学中的光线。

与波面对应的法线束就是光束。

基本定律:几何光学以下面几个基本定律为基础:1.光的直线传播定律;2.光的独立传播定律;3.光的反射定律;4.光的折射定律;5.光的全反射现象:⑴ 光线从光密介质射向光疏介质;⑵ 入射角大于临界角。

⑶ 临界角Im:6.光传播的可逆定理:当光线沿着和原来相反方向传播时,其路径不变。

7.费马原理:在A、B两点间光线传播的实际路径,与任何其他可能路径相比,其光程为极值。

实际光路所对应的光程,或者是所有光程可能值中的极小值,或者是所有光程可能值中的极大值,或者是某一稳定值。

8.马吕斯定律:垂直于波面的光线束经过任意多次折射和反射后,出射波面仍和出射光束垂直;且入射波面和出射波面上对应点之间的光程为定值。

光学中的几何光学解析

光学中的几何光学解析

光学中的几何光学解析光学是物理学的重要分支之一,它研究光的产生、传播和与物质的相互作用等现象。

而几何光学作为光学的基础,其主要研究光在介质中的传播规律以及光的成像原理。

本文将对光学中的几何光学进行解析,并探讨其应用领域。

一、光线与光的传播在几何光学中,我们将光看作一束直线上的光线。

光线沿直线传播,具有直线传播的特性。

当光线在两个介质的交界面上发生折射和反射时,我们利用折射定律和反射定律来描述光线的传播方向和路径。

1. 折射定律当光线从一个介质传播到另一个介质时,会出现折射现象。

折射定律表明了入射光线、折射光线和法线之间的关系。

根据斯涅尔定律,光线在两个介质的交界面上的入射角和折射角满足如下关系:\[ n_1\sin\theta_1 = n_2\sin\theta_2 \]其中,\( n_1 \)和\( n_2 \)分别代表两个介质的折射率,\( \theta_1 \)和\( \theta_2 \)分别代表入射角和折射角。

2. 反射定律当光线从一个介质射到另一个介质上时,会发生反射现象。

反射定律表明了入射光线、反射光线和法线之间的关系。

根据反射定律,入射角和反射角相等,即入射角等于反射角。

二、成像原理与光学器件几何光学研究了光线穿过透镜等光学器件时的成像原理。

光学器件的设计依赖于成像原理,通过调整光学器件的参数,可以实现不同的成像效果。

1. 透镜成像透镜是一种常见的光学器件,它根据折射定律使光线发生折射,从而形成图像。

根据透镜形状的不同,透镜可以分为凸透镜和凹透镜。

通过调整透镜与物体和图像的距离,可以改变成像的大小和位置。

2. 球面反射镜成像球面反射镜是另一种常见的光学器件,它通过反射光线形成图像。

球面反射镜可以分为凸面反射镜和凹面反射镜。

凸面反射镜能够使光线发散,形成实像;而凹面反射镜能够使光线汇聚,形成虚像。

三、几何光学的应用几何光学在物体成像、光学仪器设计以及光学透镜组等领域具有重要应用价值。

几何光学

几何光学

当|β|>1时,系统成一放大的像。 当|β|<1时,系统成一缩小的像。
角放大率为一对共轭光线与主光轴夹角的比值 角放大率表示折射面改变同心光束张角 大小的能力。在近轴条件下,
h P h P
u P u P
角放大率与垂轴放大率的关系:
u P u P
(7)折射率:沿光轴方向传播的光线,对 应的折射率都为正,反之为负。
二、单折射球面成像
M n d h r

Q
-P
O
D

C

根据费马原理光程 LQMQ´=光程 LQOQ´, 即光程取稳定值。 LQMQ n QM n MQ LQOQ n QO n OQ n( P ) nP
M
n
d Q -P O h r

D P´
C

由△MDC可得:
h r (r d ) r (r d 2rd ) 2rd d 由△QMD可得:
2 2 2 2 2 2
2
QM ( P d ) 2 h 2 P 2 d 2 2 Pd h 2 P 2 d 2 2 Pd 2rd d 2 P 2 2d ( r P )
光沿反方向传播,必定沿原光路返回。 二、三条定律成立的条件 (1)必须是均匀介质,即同一介质的折射 率处处相等,折射率不是位置的函数。 (2)必须是各向同性介质,即光在介质中 传播时各个方向的折射率相等,折射率不 是方向的函数。
(3)光强不能太强,否则巨大的光能量会 使线性叠加原理不再成立而出现非线性情况。 (4)光学元件的线度应比光的波长大得多, 否则不能把光束简化为光线。 三、光学成像系统的物与像 物:一个本身发光或受到光照的物体。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3.2 孔径光栏、入瞳和出瞳
物面中心点 A经系统成像于 A‘,其成像光束受限制的最小的圆 为 P,称为“孔径光栏”
P经系统前部的像为 P‘,称为入瞳,经后部的像为 P“,称为出瞳, 显然所有通过孔径光栏的光线必定都通过入瞳和出瞳。入瞳和出瞳互 为物像关系。
对于边缘的物点 B,通过入瞳的光线可能不能完全通过孔径光 栏和出瞳,称为有“渐晕”(见下文讨论),但对于一个设计得较好 的光学系统,渐晕不应该很大。
远心光路的一个用途是控制光束粗细,以适应光学元件的大小(如用在 有双折射滤光器的光路);另一个用途是当存在失焦时,像点的中心距(A"-
B")将不会改变,因此适合某些测量仪器。
4.4 近轴光路和理想光路的计算公式
4.4.1 同轴光路、近轴光路和理想光路
同轴光路是一种应用最广的光学系统,望远镜系统多属于同轴光 路。
实际的同轴光路计算要用三角函数。但如将孔径角和视场角均限 制得很小时,角度的正弦值或正切值可以用弧度值代替,于是光路计 算就大为简化,这样的光路称为“近轴光路”。
近轴光路对于光路的方案设计、外部参数计算(如焦距、截距、 像的高度、放大率、组合光学系统参数等)非常有利。
至于实际光路对于近轴光路在计算结果上的差异则可以归为光学 设计的"像差修正"的程度。
对于由多圈子镜组合起来的大型主镜,除中间一块子镜外,多数子 镜的对称轴与理论曲面的旋转轴是不重合的,称为“偏轴”曲面。
天文望远镜反射式光路常见的曲面及其组成的系 统
4.3 视场和孔径
如将光学系统看成一块没有厚度的透镜,则很容易区分“视场” 和“孔径”的不同概念。其区别在于:视场是从“镜头中心”出发向 观测物张开的角度,它表示可以观测的范围;而孔径是从物面(或像 面)上的一点出发向“镜头”张开的角度,它表示成像光束的粗细 (即反映光能量的集中程度)。
4.4.2 单球面近轴光路 1)几何量正负的规定:
轴上线段:起始点可为曲面顶点或焦点;方向与光线传播方向相 同时为正(线段包括光线截距 l、l‘、x、x’、曲面半径 r、两曲面顶点距 离Δ以及焦点的距离 等)
物体高度:处于光轴以上为正。光线与光轴的夹角:由光轴绕锐 角顺时针转到光线为正。
2)折射球面的物像关系
第四章 几何光学基本概念
望远镜作为精密光学仪器,必然涉及到“应用光学” 这门学科。应用光学不但是光学设计的基础,而且对光 学仪器的镜筒结构设计也有指导意义。本章所述“几何 光学”主要介绍应用光学中有关“近轴光路”的成像规 律的内容(如焦距、像面位置、放大率、光学系统组合 等),以及天文望远镜的常用光路。
如图几何关系,在小角度条件下有
u
u’
折射定律 i n'
i' n
n(h h) n'(h h)
rl
r l'
阿贝常数
n(1 1) n'(1 1) Q
rl
r l'
物像关系
n' n n'n l' l r
3)反射球面的物像关系
将 n'=-n,代入6式,得
11 2 1 l' l r f '
理想光路
理想光路就是能对任意宽的空间,用任意宽的光束成 完善像的光学系统,也称为“高斯光路”。对于“外部参 数”,如焦距、物(像)距和物(像)高度的计算,它与 “近轴光路”的基本上一样,只是角度要用三角函数而已。
当然实际光路不可能是“理想”的,但是可以用优化 设计方法尽量逼近理想光路,因此理想光路的理论对于光 学设计无疑是有益的。
1)场镜
为了避免各点主光线过于散开而致使后方光学元件(如透镜)尺寸太大, 中间像面上加上一块透镜,使得B'点以后的光束向光轴靠拢。这种不改变成 像光束粗细,而仅仅改变主光线方向的,置于像面附近的透镜称为“场镜”。
2)远心光路
将孔径光栏设置在最后一个透镜的前焦面上,这样各成像光束的主光线 都通过此焦点,因此出射后都平行于光轴。这时出射光瞳位于无穷远处,因 此称为“远心光路”。
如视场光栏与中间焦面不重合,则来自轴外物点 B要通过孔径光栏的光束之一部分就 会受到阻挡,即有渐晕产生。
4。3。4 主光线极其方向的控制
任意物点的成像光束中经过入瞳中心(从而经过孔径光栏中心和出瞳中心) 的光线称为“主光线”,主光线决定了成像光束的走向。
有时为I I'
反射定律是折射定律在 n=-n'时的一种特例。
4.2 天文光学常用反射曲面
天文光学常用反射曲面为“圆锥曲线旋转曲面“,圆锥曲线的方程式为
2 2Rz (1 e2 )z2 0 取减号( 0, z 0)
R R2 (1 ) 2
z
1
e 式中
2 为圆锥曲线常数:
近似计算
式中的正负号分别表示曲线的互相对称的两半部分,而实际反射 曲面只用到其中之一,考虑到使曲线的顶点处于坐标原点( ρ=0, z=0),则应取为负号。经这样处理后,再将根式部分展开为级数 而取近似,最后得
光学系统 的“外部”要素
1。入瞳,出瞳的 位置和大小,
2。物(像)面与光 瞳的距离,
3。物点与入瞳中心的连线和光轴的夹角,称为该点的"物方视场角", 像点与出瞳中心的连线和光轴的夹角,称为该点的"像方视场角"。最 边缘点的视场角即为系统的(最大)视场角,一般用 w和w'表示。
4。轴上物点对入瞳半径的张角称为"物方孔径角",一般用 u表示,轴 上像点对出瞳半径的张角称为"像方孔径角",一般用 u'表示。
4.3.3 视场光栏和渐晕
如在光路中间像面上设置光栏,并且唯有此光栏可以限制视场,则此光栏称 为“视场光栏”。视场光栏经前部光学系统所成的像称为“入射窗”,经后部 光学系统所成的像称为“出射窗”,入射窗和出射窗互为物像关系。
如视场光栏与中间焦面重合(入射窗与物面重合),则所有成像光线均能通过,没有 渐晕。
应用光学"的另一部分内容为"像差理论"。
4.1 几何光学的理论基础
1. 光的直线传播定律
在各向同性的、均匀的媒质中,光在两点之间沿 直线传播,即光线是直线。
2. 光的独立传播定律
不同的光线以不同方向经过介质的某一点时彼此 互不影响。
3. 折射定律
sin I n' sin I ' n
4. 反射定律
相关文档
最新文档