余弦定理及其应用
余弦定理和正弦定理的应用

余弦定理和正弦定理的应用余弦定理和正弦定理是初中数学中非常重要的定理,它们在解决三角形相关问题时起到了至关重要的作用。
在本文中,我将为大家详细介绍余弦定理和正弦定理的应用,并通过实例来说明它们的实用性和重要性。
一、余弦定理的应用余弦定理是用来求解三角形的边长或角度的定理。
它的数学表达式为:c² = a²+ b² - 2abcosC,其中a、b、c为三角形的边长,C为夹角。
1. 求解三角形的边长假设我们已知一个三角形的两边和它们之间的夹角,想要求解第三边的长度。
这时,我们可以利用余弦定理来解决这个问题。
例如,已知一个三角形的两边长分别为5cm和8cm,夹角为60°,我们可以利用余弦定理来计算第三边的长度。
根据余弦定理,我们可以得到c² = 5² + 8² - 2×5×8×cos60°,即c² = 25 + 64 -80cos60°。
进一步计算可得c² = 89 - 80cos60°,再开方可得c ≈ 2.92cm。
因此,这个三角形的第三边长约为2.92cm。
2. 求解三角形的角度除了求解边长外,余弦定理还可以用来求解三角形的角度。
例如,已知一个三角形的三边长分别为3cm、4cm和5cm,我们可以利用余弦定理来计算它的夹角。
根据余弦定理,我们可以得到cosC = (3² + 4² - 5²) / (2×3×4),即cosC = (9 + 16 - 25) / 24。
计算可得cosC = 0,因此C的值为90°。
通过以上两个例子,我们可以看到余弦定理在求解三角形边长和角度时的实用性和重要性。
它为我们解决各种三角形相关问题提供了有力的工具。
二、正弦定理的应用正弦定理是用来求解三角形的边长或角度的定理。
大一数学余弦定理知识点

大一数学余弦定理知识点余弦定理是数学中的一项重要理论,广泛应用于几何和三角学问题的解决中。
它描述了三角形的边长与角度之间的关系,为解决各类三角形问题提供了有效的工具。
以下是关于大一数学中余弦定理的知识点介绍。
一、余弦定理的表达式余弦定理可以用以下表达式表示:c² = a² + b² - 2abcosC其中,a、b、c分别表示三角形的三条边长,C表示夹角C的角度。
二、余弦定理的适用条件余弦定理适用于任何三角形,无论是否是直角三角形或锐角三角形。
只要给定三角形的三边长度和一个角度,即可利用余弦定理计算其他边长或角度。
三、余弦定理的应用1. 解决三角形的边长问题:利用余弦定理可以求解三角形中的任意一条边长,只需要已知其他两条边长和夹角的度数。
通过将已知数据代入余弦定理的表达式中,可以计算出未知边的长度。
2. 解决三角形的角度问题:除了求边长,余弦定理还可以用于计算三角形中的角度。
通过将已知数据代入余弦定理中,可以求解未知角度的度数。
3. 判断三角形的形状:根据余弦定理,可以判断三角形的形状。
当余弦定理中两个边长的平方之和等于第三条边长的平方时,即满足a² + b² = c²的情况下,三角形为直角三角形。
而当两个边长的平方之和小于第三条边长的平方时,三角形为钝角三角形。
反之,当两个边长的平方之和大于第三条边长的平方时,三角形为锐角三角形。
四、示例分析为了更好地理解余弦定理的应用,我们举一个具体的例子进行分析。
假设有一个三角形,边长分别为a=5,b=7,夹角C的度数为60°,现在我们想求解第三边c的长度。
根据余弦定理的表达式:c² = a² + b² - 2abcosC代入已知数据,我们可以得到:c² = 5² + 7² - 2*5*7*cos60°化简后得到:c² = 25 + 49 - 70*cos60°由于cos60°=0.5,代入计算可得:c² = 25 + 49 - 70*0.5继续计算得出:c² = 74最后求平方根可得:c ≈ 8.602因此,根据余弦定理,当a=5,b=7,夹角C为60°时,第三边c约等于8.602。
余弦定理的应用与推导过程

余弦定理的应用与推导过程余弦定理是三角形中常用的定理,用于计算三边关系以及三角形的内角。
本文将介绍余弦定理的应用以及推导过程。
一、基本概念在开始介绍余弦定理之前,需要先了解一些基本概念。
对于一个三角形ABC,边a对应的顶点为A,边b对应的顶点为B,边c对应的顶点为C。
角A对应的边为a,角B对应的边为b,角C对应的边为c。
二、余弦定理的应用1. 计算两边夹角的余弦值余弦定理可以帮助我们计算两边夹角的余弦值。
假设已知三角形的三边长度为a、b、c,我们可以根据余弦定理计算出角A的余弦值。
公式如下:cosA = (b² + c² - a²) / (2bc)同样的方式可以计算角B和角C的余弦值。
2. 计算三角形的面积余弦定理还可以用于计算三角形的面积。
假设已知三角形的三边长度为a、b、c,可以利用余弦定理求得其中一个角的余弦值,然后应用三角形面积公式进行计算。
三角形的面积公式为:S = (1/2) * b * c * sinA其中,A为夹角的大小,sinA为A角的正弦值。
3. 判断三角形类型通过余弦定理可以判断三角形的类型。
当已知三边长度为a、b、c 时,若满足a² + b² > c²,则说明该三角形为锐角三角形;若满足a² + b² = c²,则说明该三角形为直角三角形;若满足a² + b² < c²,则说明该三角形为钝角三角形。
三、余弦定理的推导过程余弦定理的推导过程依据的是三角形中的角余弦定理。
假设三角形ABC的三边分别为a、b、c,夹角分别为A、B、C。
根据角余弦定理,我们有以下关系:cosA = (b² + c² - a²) / (2bc)cosB = (a² + c² - b²) / (2ac)cosC = (a² + b² - c²) / (2ab)这就是余弦定理的推导过程。
三角形的余弦定理

三角形的余弦定理三角形的余弦定理是解决三角形问题中一个重要的数学定理,它能够帮助我们计算三角形的边长和角度。
余弦定理是利用三角形中的余弦函数来表示三角形的边长之间的关系。
在本文中,我们将详细介绍余弦定理的原理和应用,并通过实例来加深理解。
1、余弦定理的原理三角形的余弦定理可以用如下公式来表示:c² = a² + b² - 2abcosC其中,a、b、c分别表示三角形任意两边和角C所对应的边。
该定理可以帮助我们计算三角形的边长和角度。
2、余弦定理的应用(1)已知三角形两边和夹角,求第三边。
假设已知三角形两边分别为a和b,夹角为C,我们通过余弦定理可以很容易地求得第三边c的长度,即:c = √(a² + b² - 2abcosC)。
例如,已知三角形两边分别为5cm和7cm,夹角为60°,我们可以通过余弦定理计算出第三边的长度c = √(5² + 7² - 2×5×7×cos60°) ≈8.86cm。
(2)已知三角形三边,求夹角。
假设已知三角形三边分别为a、b和c,我们可以通过余弦定理计算出夹角C的大小,即:cosC = (a² + b² - c²) / (2ab)。
例如,已知三角形三边分别为3cm、4cm和5cm,我们可以通过余弦定理计算出夹角C的大小:cosC = (3² + 4² - 5²) / (2×3×4) = 0.25,那么夹角C ≈ acos0.25 ≈ 75.52°。
3、余弦定理的实例例题一:已知三角形两边分别为6cm和8cm,夹角为45°,求第三边的长度。
解题过程:根据余弦定理,可知第三边c = √(6² + 8² - 2×6×8×cos45°) ≈ √(36 +64 - 2×6×8×0.7071) ≈ √3 ≈ 9.58cm。
余弦定理在生活中的应用

余弦定理在生活中的应用一、余弦定理内容回顾1. 对于三角形ABC,设a、b、c分别为角A、B、C所对的边,则余弦定理有以下三种形式:- a^2=b^2+c^2-2bccos A- b^2=a^2+c^2-2accos B- c^2=a^2+b^2-2abcos C2. 余弦定理的作用- 已知三角形的两边及其夹角,可以求出第三边。
- 已知三角形的三边,可以求出三角形的三个角。
二、在测量中的应用1. 测量不可到达两点间的距离- 例:A、B两点被一个池塘隔开,无法直接测量它们之间的距离。
我们可以在池塘外选一点C,测得AC = m米,BC=n米,∠ ACB=θ。
- 根据余弦定理AB^2=AC^2+BC^2-2AC· BC·cos∠ ACB,即AB=√(m^2)+n^{2-2mncosθ}。
这样就可以计算出A、B两点间的距离。
2. 测量建筑物的高度- 假设要测量一座大楼的高度h。
在大楼底部的水平地面上选一点A,在距离A 点d米的地方再选一点B,然后测量出∠ BAC=α,∠ ABC = β。
- 设大楼高度h对应的边为BC,根据三角形内角和为180^∘,可得∠ACB=180^∘-α-β。
- 在 ABC中,已知AB = d,根据正弦定理(AB)/(sin∠ ACB)=(BC)/(sin∠BAC),可求出BC的长度。
再根据h = BCsinβ求出大楼的高度。
这里正弦定理求出BC的过程中,若先求出sin∠ ACB=sin(α + β),在计算BC时可能会涉及到较为复杂的三角函数运算。
如果我们用余弦定理,先根据AC^2=AB^2+BC^2-2AB· BC·cos∠ABC,设AC = x,则x^2=d^2+BC^2-2d· BC·cosβ,再结合(h)/(x)=tanα,联立方程求解h,有时会更简便。
三、在导航中的应用1. 飞机航线规划- 飞机从机场A飞往机场B,由于风向等因素,飞机实际飞行的路线是一个三角形的路径。
初中余弦定理及其应用知识点

初中余弦定理及其应用知识点余弦定理是初中数学中的一个重要定理,用于解决不规则三角形中的角度和边长关系问题。
通过理解和运用余弦定理,我们可以解决很多实际问题,如测量无法直接测量的距离、计算航海中的航线等。
本文将介绍余弦定理的概念和公式,并且讨论其在实际应用中的一些知识点。
概述余弦定理是三角形中的一个关键定理,用于计算三角形中的边长和角度关系。
对于任意三角形ABC,设边a、b、c的对应的角分别为A、B、C,则余弦定理可以表示为:c² = a² + b² - 2ab·cosCb² = a² + c² - 2ac·cosBa² = b² + c² - 2bc·cosA通过这个定理,我们可以计算出未知边长或角度,解决各种复杂的三角形问题。
应用示例1. 确定未知边长如果我们已知一个三角形的两个边长和它们之间的夹角,可以使用余弦定理来计算第三条边的长度。
例如,已知一个三角形的两个边长分别为5cm和7cm,夹角为60°,我们可以使用余弦定理来计算第三条边的长度:c² = 5² + 7² - 2×5×7×cos60°,计算结果为c² = 54,因此c≈7.35cm。
2. 计算夹角如果我们已知一个三角形的三条边长,可以使用余弦定理来计算任意一个角的大小。
例如,已知一个三角形的三条边长分别为3cm、4cm和5cm,我们可以使用余弦定理来计算角A的大小:cosA = (4² + 5² -3²) / (2×4×5),计算结果为cosA = 0.6,因此角A的大小为cos^(-1)(0.6)≈53.13°。
3. 判断三角形的形状通过余弦定理,我们可以判断一个三角形是锐角三角形、直角三角形还是钝角三角形。
余弦定理与正弦定理的应用

余弦定理与正弦定理的应用余弦定理和正弦定理是数学中的两个重要的三角函数定理,它们在解决各种几何和数学问题时具有广泛的应用。
本文将介绍余弦定理和正弦定理的公式及其应用,帮助读者更好地理解和运用这两个定理。
一、余弦定理的应用余弦定理是解决三角形中边和角之间关系的重要定理。
设三角形的三边分别为a、b、c,对应的角分别为A、B、C,那么根据余弦定理可以得出以下公式:a² = b² + c² - 2bc·cosAb² = a² + c² - 2ac·cosBc² = a² + b² - 2ab·cosC余弦定理可以用来求解未知边长或角度的问题。
下面通过几个实际问题来展示余弦定理的应用。
【例1】已知一个三角形的两边长度分别为5cm和6cm,夹角为60°,求第三边的长度。
解:根据余弦定理,可得c² = 5² + 6² - 2×5×6·cos60°c² = 25 + 36 - 60c² = 61c = √61因此,第三边的长度约为7.81cm。
【例2】已知一个三角形的两边长度分别为7cm和9cm,夹角为30°,求夹角的余弦值。
解:根据余弦定理,可得cosA = (7² + 9² - 2×7×9·cos30°) / (2×7×9)cosA = (49 + 81 - 63) / 126cosA = 67 / 126所以,夹角A的余弦值约为0.532。
二、正弦定理的应用正弦定理是另一个求解三角形边与角关系的重要定理。
与余弦定理类似,设三角形的三边分别为a、b、c,对应的角分别为A、B、C,那么根据正弦定理可以得出以下公式:a / sinA =b / sinB =c / sinC通过正弦定理可以求解未知边长或角度的问题。
余弦定理和正弦定理的应用

余弦定理和正弦定理的应用余弦定理和正弦定理是解决三角形问题中常用的数学定理。
它们可以帮助我们求解三角形的边长、角度和面积等。
本文将分别介绍余弦定理和正弦定理的应用,并通过实例来说明它们的具体使用方法。
一、余弦定理的应用余弦定理是一个用来描述三角形边长和夹角之间关系的定理。
在任意三角形ABC中,假设边长分别为a、b、c,而对应的夹角为A、B、C,则余弦定理可以表示为:c² = a² + b² - 2ab·cosC1. 求解三角形边长假设我们已知一个三角形的两个边长a和b,以及它们夹角C的大小。
我们可以通过余弦定理来求解第三个边长c。
例如,已知三角形ABC中,边AB的长度为5,边AC的长度为8,而夹角B的大小为60度。
按照余弦定理,我们可以用下式来计算边BC的长度:BC² = AB² + AC² - 2·AB·AC·cosB代入具体数值,即可求得:BC² = 5² + 8² - 2·5·8·cos60°BC² = 25 + 64 - 80·0.5BC² = 89 - 40BC² = 49BC = √49 = 7因此,边BC的长度为7。
2. 求解三角形夹角在某些情况下,我们已知三角形的三个边长,但需要求解其中一个夹角的大小。
余弦定理同样可以解决这个问题。
例如,已知三角形ABC的边长分别为a=4、b=7、c=9。
我们想要求解夹角C的大小。
根据余弦定理,我们可以得到:c² = a² + b² - 2ab·cosC代入具体数值,我们可以得到:9² = 4² + 7² - 2·4·7·cosC81 = 16 + 49 - 56·cosC16 + 49 - 81 = 56·cosC-16 = 56·cosCcosC = -16 / 56 = -0.2857由于余弦函数的定义域为[-1, 1],该结果无解,即无法构成三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
余弦定理及其应用
【教学目标】
【知识与技能目标】
(1)了解并掌握余弦定理及其推导过程.
(2)会利用余弦定理来求解简单的斜三角形中有关边、角方面的问题.
(3)能利用计算器进行简单的计算(反三角).
【过程与能力目标】
(1)用向量的方法证明余弦定理,不仅可以体现向量的工具性,更能加深对向量知识应用的认识.
(2)通过引导、启发、诱导学生发现并且顺利推导出余弦定理的过程,培养学生观察与分析、归纳与猜想、抽象与概括等逻辑思维能力.
【情感与态度目标】
通过三角函数、余弦定理、向量数量积等知识间的联系,来体现事物之间的普遍联系与辩证统一.
【教学重点】
余弦定理的证明及应用.
【教学难点】
(1)用向量知识证明余弦定理时的思路分析与探索.
(2)余弦定理在解三角形时的应用思路.
【教学过程】
一、引入
问:在R t △ABC 中,若C=090,三边之间满足什么关系? 答:222b a c += 问:若C ≠090,三边之间是否还满足上述关系?
答:应该不会有了!
问:何以见得? 答:假如b a ,不变,将A 、B 往里压缩,则C <090,且222b a c +<;
同理,假如b a ,不变,将A 、B 往外拉伸,则C >090,且222b a c +>. 师:非常正确!那么,这样的变化有没有什么规律呢?
答:规律肯定会有,否则,您就不会拿它来说事了.
问:仔细观察,然后想想,到底会有什么规律呢?
答:有点象向量的加法或减法,→→→+=a c b 或→→→-=c b a .
A
C
B
a
b
c A C B a b c
【探求】 设△ABC 的三边长分别为c b a ,,,
由于→→→+=BC AB AC
B
ac c a b a B ac c BC
B B
C AB AB b BC
BC BC AB AB AB AC BC AB BC AB AC AC cos 2cos 2)180cos(22)
()(2222
220222-+=+-=+-+=∴•+•+•=+•+=•∴→→→→→→→→→→→→→→→→→即即
问:仔细观察这个式子,你能否找出它的内在特点?
答:能!式子中有三边一角,具体包括如下三个方面:
第一、左边是什么边,右边就是什么角;
第二、左边有什么边,右边就没有什么边;
第三、边是平方和,乘积那里是“减号”.
师:很好!那么,你能否仿照这个形式写出类似的另外两个?
答:可以!它们是:A bc c b a cos 2222-+=和C abc b a c cos 2222-+=.
【总结】这就是我们今天要讲的余弦定理,现在,让我们来继续研究它的结构特点以及其应用问题.
板书课题 余弦定理及其应用
二、新课
(一)余弦定理的文字表述:
三角形的任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的两倍.
(二)余弦定理的另一种表述形式:
bc a c b A 2cos 222-+=;ac b c a B 2cos 222-+=;ab
c b a C 2cos 2
22-+= (三)归纳
1. 熟悉定理的结构,注意“平方”“夹角”“余弦”等;
2. 每个式子中都有四个量,知道其中的三个就可以求另外的一个;
3. 当夹角为090(即三角形为直角三角形)时即为勾股定理 (特例).
A C
B a b c
(四)余弦定理的适用范围
1. 已知三边求角;
2. 已知两边及其夹角求第三边.
三、应用
例1.在△ABC 中,已知3,5,7===c b a ,求这个三角形的最大内角.
【分析】根据大边对大角的原则,知:A 为最大.
解:C B A c b a >>⇒>>由,
2
1352499252cos 222-=⨯⨯-+=-+=bc a c b A ,∴A =0120, 即该三角形的最大内角等于0120.
练习1.已知△ABC 的三边长分别是37,4,3===c b a ,求三角形的最大内角. 答案:0
120. 思考:?
形状,如何判断该三角形的,,的三边长为已知 c b a ABC ∆ 提示:求出与最大边相对应的角的余弦值,再与0进行比较,判定标准如下:
①若>0,则为锐角三角形;
②若=0,则为直角三角形;
③若<0,则为钝角三角形.
例2.在△ABC 中,,4
,26,32π
=+==B c a 求b 及A . 【分析】已知两边夹角,可以用公式B ac c a b cos 2222-+=直接求出b ;然后用公式bc
a c
b A 2cos 2
22-+=即可求出角A . 解:由B ac c a b cos 2222-+=得:
,84cos )26(322)26()32(222=+⨯⨯-++=π
b 解得22=b ; 又∵b
c a c b A 2cos 222-+=21)
26(222)32()26()22(222=+⨯⨯-++=, ∴A=3
π.
例3.已知△ABC 中,)13(:6:2::+=c b a ,解此三角形.
【分析】知道边的比值,可以设其公约数为k,因为,在后面的运算中又可以同时约分将其约掉,原则上一般先求最小的角;当然,也可以先求最大的角. 解法一:设其三边的公约数为k ,则k c k b k a )13(,6,2+===, 由bc a c b A 2cos 222-+=得2
2)13(62)2(])13[()6(cos 222=+⨯⨯-++=k k k k k A ∴045=A ; 由ac b c a B 2cos 2
22-+=得21
)13(22)6(])13[()2(cos 2
22=+⨯⨯-++=k k k k k B ,
∴B=060; 因此C=0000075)6045(180)(180=+-=+-B A .
解法二:设其三边的公约数为k ,则k c k b k a )13(,6,2+===, 由ab c b a C 2cos 222-+=得k k k k k C 622])13[()6()2(cos 2
22⨯⨯+-+= 即426cos -=C ,(此时可用计算器的第二功能求42
6
-的反余弦)
00000075cos )3045cos(30sin 45sin 30cos 45cos 2
1
22
23
22426=+=-=⨯-⨯=-又因为 ∴C=075; 由ac b c a B 2cos 222-+=得21
)13(22)6(])13[()2(cos 222=+⨯⨯-++=k k k k k B ,
∴B=060;∴A=0000045)7560(180)(180=+-=+-C B .
例4.已知△ABC 中,B c b c b a A 及求,,8,7,1200=+==.
【分析】这种题型一般都要归结为解方程组.
解:由A bc c b a cos 2222-+=得0222120cos 27bc c b -+=,
即4922=++bc c b 1549849)(22=-=⇒=-+⇒bc bc c b ,
由⎩⎨⎧==⎩⎨⎧==⇒⎩⎨⎧==+5
335158
c b c b bc c b 或,分类讨论如下:
⑴当5=b 时,3,7==c a ,由ac b c a B 2cos 222-+=得: 14
11372537cos 222=⨯⨯-+=B 02.38=⇒B ⑵当3=b 时,5,7==c a ,由ac
b c a B 2cos 2
22-+=得: 14
13572357cos 222=⨯⨯-+=B 08.21=⇒B 即02.38,3,5===B c b 或0
8.21,5,3===B c b 练习2.在△ABC 中,15,8,2==+=+ac c a B C A ,求b .
提示:∵060=B ,193)(cos 22222=-+=-+=ac c a B ac c a b ,∴19=b .
练习3.在棱长为1的正方体1111D C B A ABCD -中,M 、N 分别为11B A 与1BB 的中点,那么直线AM 与CN 所成角的余弦值是( )
5
2)(53)(1010)(2
3
)(D C B A
提示:取1CC AB 、中点F E 、,连F B E B 11和,则26,2511==
=EF F B E B ; 答案:(D)
四、课堂小结: 略
五、反思 略
六、课后练习 略
七、实践活动 参阅《解三角形》
B 1
(练习3图) A 1 A B C 1 D 1
C D
M
N。