高等数学空间向量与空间解析几何

合集下载

高等数学下册第八章 向量代数与空间解析几何

高等数学下册第八章 向量代数与空间解析几何

离.因为
PA 32 ( y 1)2 (z 2)2 , PB 42 ( y 2)2 (z 2)2 ,
PC 02 ( y 5)2 (z 1)2 ,
所以 32 ( y 1)2 (z 2)2 42 ( y 2)2 (z 2)2 02 ( y 5)2 (z 1)2 ,
零向量: 模为 0 的向量,
向量相等、向量平行向量共线、负向量、向量共面.
DMU
第一节 向量的线性运算与空间直角坐标系
向量线性运算的几何表达 ➢加法
平行四边形法则:
b ab
(a b) c
c
bc
三角形法则: a ab
a (b c) ab b
b a
a
运算规律 : 交换律 a b b a
结合律 ( a b ) c a (b c ) a b c
解 4u 3v 4 2a b 2c 3 a 4b c 5a 16b 11c.
例 如果平面上一个四边形的对角线互相平分试用向量证明
这是平行四边形
证 ABOBOA , DC OCOD 而 OC OA OD OB
所以
DC OA OB OB OA AB
这说明四边形 ABCD 的对边 AB CD 且 AB // CD 从而四边形
第八章
向量代数与空间解析几何
第一部分 向量代数 第二部分 空间解析几何
在三维空间中: 空间形式 — 点, 线, 面
数量关系 — 坐标, 方程(组) 基本方法 — 坐标法; 向量法
DMU
第八章 向量代数与空间解析几何
第一节 向量的线性运算与空间直角坐标系 第二节 数量积 向量积 混合积 第三节 平面及其方程 第四节 空间直线及其方程 第五节 曲面方程 第六节 空间曲线方程

向量与空间解析几何

向量与空间解析几何

向量与空间解析几何向量与空间解析几何是高等数学中的重要分支,它们是研究空间中点、直线、平面等几何对象的数学工具。

向量是空间中的一个重要概念,它可以用来表示空间中的位移、速度、加速度等物理量,同时也可以用来描述空间中的几何对象。

空间解析几何则是利用向量的概念,通过坐标系和代数方法来研究空间中的几何问题。

本文将从向量的定义、运算、坐标表示以及空间解析几何的基本概念和应用等方面进行详细介绍。

一、向量的定义和运算向量是空间中的一个重要概念,它可以用来表示空间中的位移、速度、加速度等物理量,同时也可以用来描述空间中的几何对象。

向量的定义如下:定义1:向量是具有大小和方向的量,用一个有向线段来表示。

向量的大小称为向量的模,用符号 a 表示,方向则由有向线段的方向确定。

向量的起点和终点分别称为向量的始点和终点,用符号a和b表示。

向量的表示方法有多种,如箭头表示法、坐标表示法、分量表示法等。

向量的运算包括加法、减法、数乘和点乘等。

其中,向量的加法和减法定义如下:定义2:向量的加法:设向量a和b的始点相同,则向量a+b的终点为向量a的终点和向量b的终点的连线的终点。

定义3:向量的减法:设向量a和b的始点相同,则向量a-b的终点为向量a 的终点和向量-b的终点的连线的终点。

向量的数乘定义如下:定义4:向量的数乘:设k为实数,则向量ka的模为k · a ,方向与向量a 的方向相同(当k>0时)或相反(当k<0时)。

向量的点乘定义如下:定义5:向量的点乘:设向量a=(a1,a2,a3)和向量b=(b1,b2,b3),则向量a·b=a1b1+a2b2+a3b3。

向量的点乘有很多重要的性质,如交换律、分配律、结合律等,这些性质在空间解析几何中有着重要的应用。

二、向量的坐标表示向量的坐标表示是空间解析几何中的重要概念,它将向量与坐标系联系起来,使得向量的运算可以通过代数方法来进行。

在三维空间中,我们通常采用右手坐标系来表示向量,其中x轴、y轴和z轴分别垂直于彼此,并且满足右手定则。

空间向量与空间解析几何的联系知识点总结

空间向量与空间解析几何的联系知识点总结

空间向量与空间解析几何的联系知识点总结空间向量和空间解析几何是高中数学中的重要内容,两者之间存在紧密的联系。

本文将对空间向量和空间解析几何的联系进行总结和阐述。

一、空间向量的概念和性质空间向量是空间中带有方向和大小的物理量,通常用箭头表示。

空间向量具有以下性质:1. 平分定理:设空间向量$\overrightarrow{AB}$平分角$\angle AOC$,则有$\overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OC}$。

2. 共线定理:若空间向量$\overrightarrow{AB}$和$\overrightarrow{AC}$共线,则存在实数$k$,使得$\overrightarrow{AB}=k\overrightarrow{AC}$。

3. 相反向量:对于任意空间向量$\overrightarrow{a}$,存在唯一一个向量$-\overrightarrow{a}$,使得$\overrightarrow{a}+(-\overrightarrow{a})=\overrightarrow{0}$。

二、空间解析几何的基本概念空间解析几何是利用坐标系统和代数方法研究空间中点、直线、平面等几何对象的学科。

其基本概念有:1. 空间直角坐标系:由三个相互垂直的坐标轴形成的坐标系。

通常用$(x, y, z)$表示空间中的点。

2. 空间直线的方程:空间直线可以用参数方程、对称方程或一般方程表示,如参数方程为:$$\begin{cases}x=x_0+mt\\y=y_0+nt\\z=z_0+pt\end{cases}$$其中$(x_0, y_0, z_0)$为直线上一点,$(m, n, p)$为方向向量。

3. 空间平面的方程:空间平面可以用点法式方程、一般方程或截距式方程表示,如点法式方程为:$$\overrightarrow{r}\cdot\overrightarrow{n}=d$$其中$\overrightarrow{r}=(x, y, z)$为平面上一点,$\overrightarrow{n}=(A, B, C)$为法向量,$d$为常数。

空间向量与解析几何

空间向量与解析几何

空间向量与解析几何空间向量和解析几何是高等数学中的两个重要概念。

本文将介绍空间向量和解析几何的基本概念和相关性质,并探讨它们在几何问题中的应用。

一、空间向量的定义和性质空间向量是指具有大小和方向的有向线段,通常用箭头表示。

空间中的向量通常用字母加箭头标记,如A B⃗,其中A和B表示向量的起点和终点。

1.1 向量的表示空间向量可以用坐标表示,也可以用点和方向向量表示。

设A(x1, y1, z1)和B(x2, y2, z2)是空间中两点,则向量AB的坐标表示为A B⃗=(x2 - x1) i⃗ +(y2 - y1) j⃗ +(z2 - z1) k⃗,其中i⃗、j⃗和k⃗分别是x、y、z轴的单位向量。

1.2 向量的运算空间向量可以进行加法、减法和数乘运算。

1.2.1 向量加法若有向量A B⃗和向量C D⃗,则它们的和为A B⃗ + C D⃗ = A C⃗。

1.2.2 向量减法向量减法与向量加法类似,即A B⃗ - C D⃗ = A B⃗ + (- C D⃗)。

1.2.3 数乘运算若有向量A B⃗,实数k,则kA B⃗ = A B⃗ + A B⃗ + ... + A B⃗ (k个A B⃗)。

1.3 向量的数量积和向量积空间向量的数量积和向量积是两个重要的向量运算。

1.3.1 向量的数量积设有两个向量A B⃗和C D⃗,它们的数量积定义为A B⃗・ C D⃗ = |A B⃗| |C D⃗ | cosθ,其中θ为A B⃗和C D⃗的夹角,|A B⃗|和|C D⃗|分别为向量的模。

1.3.2 向量的向量积设有两个向量A B⃗和C D⃗,它们的向量积定义为A B⃗ × C D⃗ = |A B⃗| |C D⃗ | sinθ n⃗,其中θ为A B⃗和C D⃗的夹角,n⃗为与A B⃗和C D⃗都垂直且符合右手定则的单位向量。

二、解析几何的基本概念和性质解析几何是将几何问题转化为代数问题进行研究的数学分支,它主要运用代数方法研究空间中的几何问题。

《高等数学》第七章 空间解析几何与向量代数

《高等数学》第七章 空间解析几何与向量代数

首页
上页
返回
下页
结束
关于向量的投影定理(2)
两个向量的和在轴上的投影等于两个向量在 该轴上的投影之和. (可推广到有限多个)
Pr j(a1 a2 ) Pr ja1 Pr ja2 .
A a1 B a2
C
u
A
B
C
首页
上页
返回
下页
结束
关于向量的投影定理(3)
Pr
ju a
M 2M 3 (5 7)2 (2 1)2 (3 2)2 6
M1M3 (5 4)2 (2 3)2 (3 1)2 6
M 2M3 M1M3
M1
M3
即 M1M 2M3 为等腰三角形 .
M2
首页
上页
返回
下页
结束
2. 方向角与方向余弦
设有两非零向量
M B
o
A
中点公式:
B
x1
2
x2
,
y1
2
y2
,
z1 z2 2
M
首页
上页
返回
下页
结束
五、向量的模、方向角、投影
1. 向量的模与两点间的距离公式
设 r (x , y , z ), 作 OM r, 则有 r OM OP OQ OR
由勾股定理得
r OM
z R
解 a 4m 3n p


4(3i 5 j 8k ) 3(2i 4 j 7k )


(5i j 4k ) 13i 7 j 15k,
在x 轴上的投影为ax
13,

空间解析几何与向量代数高等数学

空间解析几何与向量代数高等数学

第八章空间解析几何与向量代数 公共数学教研室空间解析几何主要研究空间几何图形, 把数学研究的两个基本对象“数”和“形”统一起来, 达到用代数方法解决几何问题, 用几何方法解决代数问题.本章引进向量及其代数运算, 讨论向量的各种运算规律, 介绍空间曲面和空间曲线, 以向量为工具来研究平面和空间直线, 最后介绍二次曲面.8.1 向量及其线性运算 8.2 向量的数量积8.3 向量的向量积混合积 8.4 平面及其方程8.5 空间直线及其方程 8.6 直线平面之间的关系 8.7 曲面及其方程8.8 空间曲线和向量函数8.1 向量及其线性运算vector and linear operation8.1.1 空间直角坐标系在空间中任取一点O, 作互相垂直的数轴Ox, Oy, Oz, 分别叫做x 轴 (横轴), y 轴 (纵轴), z 轴 (竖轴), 统称坐标轴, 三个坐标轴符合右手法则. 这样的三条坐标轴组成一个空间直角坐标系, 点O 叫做坐标原点 (或原点).三条坐标轴中的任意两条确定一个平面, 分别称为xOy 面, yOz 面及zOx 面. 三个坐标面把空间分成八个部分, 每一部分叫做一个卦限.x 轴, y 轴, z 轴上点的坐标分别表示为 (0, 0, z ), (0, y , 0), (0, 0, z ); xOy 面, yOz 面, zOx 面上点的坐标分别表示为 (x , y , 0), (0, y , z ), (x , 0, z ).22212212121||()()().M M x x y y z z =-+-+- 设有序数 (x , y , z ) 与空间点 M 一一对应, 依次称 x , y 和 z 为点M 的横坐标, 纵坐标和竖坐标. 点 M 通常记为 M (x , y , z ).空间中两点M 1 (x 1, y 1, z 1), M 2 (x 2, y 2, z 2) 间的距离公式为设 M 为空间中一点, 过 M 作三个平面分别垂直于 x 轴, y 轴, z 轴, 与 x 轴, y 轴, z 轴的交点依次为 P , Q , R , 这三个点在 x 轴, y 轴, z 轴的坐标依次为 x , y , z . 于是 M 唯一地确定了一个有序数组 (x , y , z ); 反之, 一有序数组 (x , y , z ) 唯一确定空间一点 M . 这样, 就建立了空间的点 M 和有序数组 (x , y , z ) 之间的一一对应关系. x z y ⑻O⑷⑶⑵⑴⑺⑹⑸R P QO x z y8.1.2 向量的概念及其坐标表示只有大小的量称为数量 (或标量), 如时间, 温度, 长度等. 既有大小又有方向的量称为向量 (或矢量), 例如位移 , 速度 , 加速度 , 力 等.s v a F 向量包含两个要素 — 大小和方向. 有向线段也具有这两个要素, 因此可用有向线段 表示向量, 其大小是有向线段的长度, 其方向是从 A 到 B 的方向, A 是向量的起点, B 是向量的终点. 若记 则称 为的一个几何表示 . AB ,v AB AB v 向量 的大小, 叫做向量的模或长度, 记为v ||.v向量仅由其大小和方向确定, 与其位置无关, 故向量被称为自由向量. 因此, 若两个向量大小相等, 方向相同, 称这两个向量相等.将两个向量移到同一始点, 如果它们位于一条直线上, 且两个终点分布在始点的同一侧, 则称这两个向量方向相同; 如果它们位于一条直线上, 且两个终点分布在始点的两侧, 则称这两个向量方向相反. 长度是零的向量称为零向量, 记为 , 零向量的方向可以认为是任意的.如图, 向量 位置不同, 但它们的长度相同, 且它们所在的线段有相同的斜率,即它们的方向相同, 所以,,OP AB CD P (2, 1)O C (1, 3)D (3, 4)A (- 3, - 3)B (- 2, - 2)x y .OP AB CD == 向量具有平移不变性, 若将向量 平移, 使其起点与原点 O 重合, 终点位于 P , 则 故 可由 P 的座標確定.AB ,AB OP = AB 定义 8-1 一个二元有序实数组 {a , b } 称为一个二维向量, 二维向量的全体记作 V 2. 一个三元有序实数组 {a , b , c } 称为一个三维向量. 三维向量的全体记作 V 3, 其中实数 a , b , c 称为向量的分量, 也称为向量的坐标.2121{,}v x x y y =-- 定义 8-2 若 M 1 (x 1, y 1), M 2 (x 2, y 2) 为平面上两点, 则二维向量 表示由有向线段 所表示的向量. 12M M 212121{,,}v x x y y z z =--- 若 M 1 (x 1, y 1, z 1), M 2 (x 2, y 2, z 2) 为空间中两点, 则三维向量表示由有向线段 所表示的向量. 12M M 22212212121||||()()()v M M x x y y z z ==-+-+-给定向量任意取定 A (x 0, y 0, z 0), 记 B = (x + x 0, y + y 0, z + z 0), P = P (x , y , z ),则{,,},r x y z = .r AB OP == 称为点 P (x , y , z ) 的位置向量,{,,}r x y z = 222|||{,,}|r x y z x y z ==++ 222||02(1) 5.AB =++-= 例 1 已知 A (1, 0, 2), B (1, 2, 1) 是空间两点, 求向量 和它的模.AB 解{11,20,12}{0,2,1},AB =---=-对三维向量 8.1.3 向量的线性运算 定义 8-3 设 是两个二维向量, 称向量 {a x + b x , a y + b y }为向量 和的和, 记作 即{,},{,}x y x y a a a b b b == a b ,a b + {,}{,}{,}.x y x y x x y y a b a a b b a b a b +=+=++ {,,},{,,},x y z x y z a a a a b b b b == 类似有{,,}{,,}{,,}.x y z x y z x x y y z z a b a a a b b b a b a b a b +=+=+++几何上, 向量加法服从三角形法则及平行四边形法则.A yx O B a x b x a y b y a b a b + A y O a x a y b y C xB b x a b a b +定义 8-4 设向量 c 为实数, 称向量 { c a x , c a y } 为向量 与数量 c 的乘积. 记作 即其模{,},x y a a a = a ,c a {,}{,},x y x y c a c a a c a c a == ||||||.c a c a = 对于三维向量, 类似有c {a x , a y , a z } = {c a x , c a y , c a z }. c > 0 时, c 与平行, 且方向相同; c < 0 时 c 与 平行, 且方向相反.a a a a 称 为 的负向量.(1)a a -=- a 与 的和称为 与的差, 记为 b a b - a .a b -证 仅需证明必要性. 设则存在 λ, 使得 ,a b .b a λ= 若又有则 故 所以 λ = μ .,b a μ= ()0,a λμ-= |||||0|0,a λμ-== 定理 1 设 是两个向量, 且 则 的充分必要条件是存在唯一常数 λ 使得 ,a b a b .b a λ= 0≠a向量的加法运算和数乘运算统称为向量的线性运算. 向量的线性运算满足下列法则 :(1) (交换律) .a b b a +=+ (2) (结合律) ()().a b c a b c ++=++ (4) ()0.a a +-= (6) ().a a a λμλμ+=+ (7) ()().a a λμλμ= (8) 1.a a ⋅= (5) ().ab a b λλλ+=+ (3) a a =+0由于向量的加法符合交换律和结合律, 故 n 个向量相加可写成,||.||a a a e a a e a == 12.n a a a +++ n 个向量相加复合多边形法则 : 使前一向量的终点与后一向量的起点重合, 相继作向量 再以第一向量的起点为起点, 最后一向量的终点为终点作一向量, 这个向量即和向量.12,,,,n a a a 模为 1 的向量称为单位向量. 记非零向量 的单位化向量为则a ,a eV 3 中, 与 x 轴, y 轴, z 轴的正向同向的单位向量记为{1,0,0},{0,1,0},{0,0,1}.i j k === 称 为 V 3 中的一组标准基.,,i j k a 设 则 可由 线性表示, 即{,,},x y z a a a a = ,,i j k {1,0,0}{0,1,0}{0,0,1}.x y z x y z a a a a a i a j a k =++=++ {1,0},{0,1}i j == 二维的情形,是 V 2 的一组标准基.例 2 设 求{1,1,3},{2,1,2},a b =-=- (1) 32;c a b =- (2) 用标准基 表示向量,,i j k ;c (3) 求与同方向的单位向量.c 解 (1)323{1,1,3}2{2,1,2}{34,32,94}{1,1,5}.c a b =-=---=--+-=-- (2)5.c i j k =--+ 所以 222(3)||(1)(1)533,c =-+-+= {1,1,5}.||33c c e c ==--解 作 12(),OP OP OP OP λ-=- 例 3 设两点 P 1 (x 1, y 1, z 1), P 2 (x 2, y 2, z 2). 在线段 P 1 P 2 上求一点 P (x , y , z ), 使由 P 分成的两个有向线段 的的比为定数 λ ( ≠ - 1), 即 12,P P PP 12.P P PP λ= O P 1P 2P 11112222{,,},{,,},{,,},OP x y z OP x y z OP x y z === 由于 及12,P P PP λ= 1122,,P P OP OP PP OP OP =-=-121212,,.111x x y y z z x y z λλλλλλ+++===+++所以 12(1),OP OP OP λλ+=+ 这就是定比分点公式.得到 121OP OP OP λλ+=+ ,得点 P 的坐标例 4 证明平行四边形的对角线互相平分.11(),22AE AC AB BC ==+ 解 设 ABCD 为平行四边形, AC , BD 的中点分别 为 E 及 F , 则D A FE B C 由定比分点公式 (λ = 1) 得1(),2AF AB AD =+ 即 E 与 F 重合, 即 AC 与 BD 互相平分.11()().22AF AB AD AB BC AE =+=+= 所以。

高等数学第七章 向量代数与空间解析几何

高等数学第七章 向量代数与空间解析几何

第七章向量代数与空间解析几何空间解析几何是多元函数微积分学必备的基础知识.本章首先建立空间直角坐标系,然后引进有广泛应用的向量代数,以它为工具,讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容.第一节空间直角坐标系平面解析几何是我们已经熟悉的,所谓解析几何就是用解析的,或者说是代数的方法来研究几何问题.坐标法把代数与几何结合起来.代数运算的基本对象是数,几何图形的基本元素是点.正如我们在平面解析几何中所见到的那样,通过建立平面直角坐标系使几何中的点与代数的有序数之间建立一一对应关系.在此基础上,引入运动的观点,使平面曲线和方程对应,从而使我们能够运用代数方法去研究几何问题.同样,要运用代数的方法去研究空间的图形——曲面和空间曲线,就必须建立空间内点与数组之间的对应关系.一、空间直角坐标系空间直角坐标系是平面直角坐标系的推广.过空间一定点O,作三条两两互相垂直的数轴,它们都以O为原点.这三条数轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴),统称坐标轴.它们的正方向按右手法则确定,即以右手握住z轴,右手的四个手指指向x轴的正向以π2角度转向y轴的正向时,大拇指的指向就是z轴的正向(图7-1),这样的三条坐标轴就组成了一空间直角坐标系Oxyz,点O叫做坐标原点.图7-1三条坐标轴两两分别确定一个平面,这样定出的三个相互垂直的平面:xOy,yOz,zOx,统称为坐标面.三个坐标面把空间分成八个部分,称为八个卦限,上半空间(z>0)中,从含有x 轴、y轴、z轴正半轴的那个卦限数起,按逆时针方向分别叫做Ⅰ,Ⅱ,Ⅲ,Ⅳ卦限,下半空间(z<0)中,与Ⅰ,Ⅱ,Ⅲ,Ⅳ四个卦限依次对应地叫做Ⅴ,Ⅵ,Ⅶ,Ⅷ卦限(图7-2).图7-2确定了空间直角坐标系后,就可以建立起空间点与数组之间的对应关系.设M为空间的一点,过点M作三个平面分别垂直于三条坐标轴,它们与x轴、y轴、z 轴的交点依次为P、Q、R(图7-3).这三点在x轴、y轴、z轴上的坐标依次为x,y,z.这样,空间的一点M就惟一地确定了一个有序数组(x,y,z),它称为点M的直角坐标,并依次把x,y和z叫做点M的横坐标,纵坐标和竖坐标.坐标为(x,y,z)的点M通常记为M(x,y,z).图7-3反过来,给定了一有序数组(x,y,z),我们可以在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分别作x轴,y轴与z 轴的垂直平面,这三个平面的交点M就是具有坐标(x,y,z)的点(图7-3).从而对应于一有序数组(x,y,z),必有空间的一个确定的点M.这样,就建立了空间的点M和有序数组(x,y,z)之间的一一对应关系.如图7-3所示x轴,y轴和z轴上的点的坐标分别为P(x,0,0),Q(0,y,0),R(0,0,z);xOy面,yOz面和zOx面上的点的坐标分别为A(x,y,0),B(0,y,z),C(x,0,z);坐标原点O的坐标为O(0,0,0).它们各具有一定的特征,应注意区分.二、空间两点间的距离设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d,我们过M1,M2各作三个分别垂直于三条坐标轴的平面.这六个平面围成一个以M1,M2为对角线的长方体(图7-4).根据勾股定理,有图7-4|M 1M 2|2=|M 1N |2+|NM 2|2=|M 1P |2+|M 1Q |2+|M 1R |2.由于|M 1P |=|P 1P 2|=|x 2-x 1|,|M 1Q |=|Q 1Q 2|=|y 2-y 1|,|M 1R |=|R 1R 2|=|z 2-z 1|,所以d =|M 1M 2|=212212212)()()(z z y y x x -+-+-,这就是两点间的距离公式.特别地,点M (x,y,z )与坐标原点O (0,0,0)的距离为d =|OM |=222z y x ++。

《高等数学》课件第7章 空间解析几何与向量代数

《高等数学》课件第7章 空间解析几何与向量代数
右手定则,即以右手握住z 轴,当右手的四个手指从 x轴正向以 角度转向 y 轴正向时,大拇指的指向就是z
2 轴的正向.

yOz面

xOy面
x
Ⅶ Ⅷ
z zOx面


•O
y
Ⅵ Ⅴ
二、空间两点间的距离公式
空间两点间的距离:P1( x1, y1, z1 )、P2( x2 , y2 , z2 )
z
P2
P1
ki j,
j i k, k j i , i k j.
(a ybz azby )i (azbx axbz ) j (axby a ybx )k
设 a ax i ay j az k , b bx i by j bz k , 则 ( ax i ay j az k ) (bx i by j bz k ) i j jk ki 0
(2) 结合律 ( a ) b a ( b ) ( a b )
向量积的坐标表达式

a
axi
ay j
azk,
b bxi by j bzk
ab
(a
x
i
a
y
j
az k
)
(bxi
by
j
bzk )
i i j j k k 0,
i j k,
jk i,
第 七 章 向空 量间 代解 数析 几 何 与
目录
第一节 空间直角坐标系 第二节 向量及其线性运算 第三节 向量的坐标 第四节 向量的数量积与向量积 第五节 平面及其方程 第六节 空间直线及其方程 第七节 常见曲面的方程及图形
第一节 空间直角坐标系
一、空间直角坐标系简介
三条垂直相交且具有相同长度单位的数轴,构成一 个空间直角坐标系,交点O称为坐标原点,这三条轴分别 叫做z 轴(横轴)、y 轴(纵轴)和x轴(竖轴).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档