空间解析几何(空间向量和参数方程)
高等数学中的空间解析几何

高等数学中的空间解析几何一、引言空间解析几何是高等数学中的重要分支之一,它研究的是空间中的点、直线、平面等几何对象的性质和相互关系。
在实际应用中,空间解析几何广泛应用于物理学、工程学、计算机图形学等领域。
本教案将从基本概念入手,逐步展开论述空间解析几何的相关内容。
二、点与向量1. 点的坐标表示- 在直角坐标系中,点的坐标表示为(x, y, z),其中x、y、z分别表示点在x轴、y轴、z轴上的投影。
- 点的坐标可以用向量表示,即P = x*i + y*j + z*k,其中i、j、k分别是x轴、y轴、z轴的单位向量。
2. 向量的基本性质- 向量的模:向量AB的模表示为|AB|,定义为AB的长度。
- 向量的方向角:向量AB的方向角表示为(α, β, γ),其中α、β、γ分别表示向量AB与x轴、y轴、z轴的夹角。
- 向量的共线性:若向量AB与向量CD平行或共线,则存在实数k,使得AB = kCD。
三、直线与平面1. 直线的方程- 点向式方程:直线L上一点P的坐标为(x0, y0, z0),且向量v = (a, b, c) 与直线L平行,则直线L的点向式方程为(x, y, z) = (x0, y0, z0) + t(a, b, c),其中t为实数。
- 参数方程:直线L上一点P的坐标为(x0, y0, z0),且向量v = (a, b, c) 与直线L平行,则直线L的参数方程为x = x0 + at,y = y0 + bt,z = z0 + ct,其中t为参数。
- 一般方程:直线L的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。
2. 平面的方程- 点法式方程:平面π上一点P的坐标为(x0, y0, z0),且法向量n = (A, B, C)垂直于平面π,则平面π的点法式方程为Ax + By + Cz + D = 0,其中D = -Ax0 -By0 - Cz0。
- 一般方程:平面π的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。
空间向量与空间解析几何的联系知识点总结

空间向量与空间解析几何的联系知识点总结空间向量和空间解析几何是高中数学中的重要内容,两者之间存在紧密的联系。
本文将对空间向量和空间解析几何的联系进行总结和阐述。
一、空间向量的概念和性质空间向量是空间中带有方向和大小的物理量,通常用箭头表示。
空间向量具有以下性质:1. 平分定理:设空间向量$\overrightarrow{AB}$平分角$\angle AOC$,则有$\overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OC}$。
2. 共线定理:若空间向量$\overrightarrow{AB}$和$\overrightarrow{AC}$共线,则存在实数$k$,使得$\overrightarrow{AB}=k\overrightarrow{AC}$。
3. 相反向量:对于任意空间向量$\overrightarrow{a}$,存在唯一一个向量$-\overrightarrow{a}$,使得$\overrightarrow{a}+(-\overrightarrow{a})=\overrightarrow{0}$。
二、空间解析几何的基本概念空间解析几何是利用坐标系统和代数方法研究空间中点、直线、平面等几何对象的学科。
其基本概念有:1. 空间直角坐标系:由三个相互垂直的坐标轴形成的坐标系。
通常用$(x, y, z)$表示空间中的点。
2. 空间直线的方程:空间直线可以用参数方程、对称方程或一般方程表示,如参数方程为:$$\begin{cases}x=x_0+mt\\y=y_0+nt\\z=z_0+pt\end{cases}$$其中$(x_0, y_0, z_0)$为直线上一点,$(m, n, p)$为方向向量。
3. 空间平面的方程:空间平面可以用点法式方程、一般方程或截距式方程表示,如点法式方程为:$$\overrightarrow{r}\cdot\overrightarrow{n}=d$$其中$\overrightarrow{r}=(x, y, z)$为平面上一点,$\overrightarrow{n}=(A, B, C)$为法向量,$d$为常数。
空间解析几何

空间解析几何空间解析几何是解析几何的一个重要分支,它是研究空间内点、直线、平面等几何元素的相互关系和性质的数学分支。
在空间解析几何中,我们通过向量和坐标等工具来描述和分析空间内的几何问题。
本文将介绍空间解析几何的基本概念、常用方法和一些实际应用。
基本概念在空间解析几何中,我们通常使用三维笛卡尔坐标系来描述空间内的几何元素。
点在空间中用其三维坐标(x,y,z)来表示,直线可用参数方程、点向式方程或标准式方程等来表示,平面则通常用点法式方程表示。
在空间解析几何中,向量是一个非常重要的概念,它能够很好地描述空间内的方向和长度。
方法和技巧解析几何中有很多方法和技巧可以应用到空间解析几何中。
例如,我们可以通过向量的线性运算来求解点到直线的距离,通过向量的数量积和向量积来判断点和直线、平面的位置关系,通过方向比值来判断两直线的平行性或垂直性等。
此外,我们还可以利用三角函数和投影的概念来解决一些空间几何中的问题。
实际应用空间解析几何不仅仅是一种理论工具,它在实际应用中也具有广泛的意义。
在工程建筑中,空间解析几何可以帮助工程师设计和规划建筑物的结构和布局;在航天航空领域,空间解析几何可以帮助科学家研究轨道、飞行路径等问题;在计算机图形学中,空间解析几何是实现三维模型和动画的重要基础。
总的来说,空间解析几何是一门极具实用性的数学分支,它在各个领域都有着广泛的应用。
通过掌握空间解析几何的基本概念和方法,我们可以更好地理解和解决空间内的几何问题,为我们的工程设计和科学研究提供有力的支持。
以上是关于空间解析几何的简要介绍,希望对读者理解和学习空间解析几何有所帮助。
愿大家在空间解析几何的世界中能够不断探索、学习和创新,为数学事业的发展贡献自己的力量。
空间解析几何

空 间
证
将直线 L1 化为参数方程
y z
2t t
2
5,
L1
L2
解 析 几 何
代入方程又Ls21解 得1,
t 1,故两直线相交于点(1,3,1).
2,1,
s2
3,1,1,
故所求平面的 法向量 可取
i jk
n s1 s2 1
2
1 1,2, 5 ,
311
所求平面的方程为 x 2 y 5z 0.
几 何
(4 )若b,c 不是共线向量, a 是 b,c 平面上的一个
向量当且仅当存在 , 使得 a b c
杨建新
空间解析几何
1 已知 a,b,c 都是单位向量,且 a b c 0, 求 ab bc ca
解 由于 a b c 0, 于是 (a b c) (a b c) 0,
a
xb |2 xb
| a |2 | | a |)
2
1 |a
|
lim
x0
2xa
b
x
x2
|
b
|2
a b | b | cos(a ^ b) 1 |a|
杨建新
空间解析几何
6、设向量 p、q、r 两两垂直,且 | p | 1,| q | 2,
|r |
3,求向量
s
p
q
r
的模及
s
(1)向量 (2) 向量 a
a
的模为
| a |
的方向角的余弦为
x2 a
y2 z2 的方向余弦。
cos cos
x
,
x2 zy2 z2 .
x2 y2 z2
cos
y ,
x2 y2 z2
空间向量与解析几何

空间向量与解析几何空间向量和解析几何是高等数学中的两个重要概念。
本文将介绍空间向量和解析几何的基本概念和相关性质,并探讨它们在几何问题中的应用。
一、空间向量的定义和性质空间向量是指具有大小和方向的有向线段,通常用箭头表示。
空间中的向量通常用字母加箭头标记,如A B⃗,其中A和B表示向量的起点和终点。
1.1 向量的表示空间向量可以用坐标表示,也可以用点和方向向量表示。
设A(x1, y1, z1)和B(x2, y2, z2)是空间中两点,则向量AB的坐标表示为A B⃗=(x2 - x1) i⃗ +(y2 - y1) j⃗ +(z2 - z1) k⃗,其中i⃗、j⃗和k⃗分别是x、y、z轴的单位向量。
1.2 向量的运算空间向量可以进行加法、减法和数乘运算。
1.2.1 向量加法若有向量A B⃗和向量C D⃗,则它们的和为A B⃗ + C D⃗ = A C⃗。
1.2.2 向量减法向量减法与向量加法类似,即A B⃗ - C D⃗ = A B⃗ + (- C D⃗)。
1.2.3 数乘运算若有向量A B⃗,实数k,则kA B⃗ = A B⃗ + A B⃗ + ... + A B⃗ (k个A B⃗)。
1.3 向量的数量积和向量积空间向量的数量积和向量积是两个重要的向量运算。
1.3.1 向量的数量积设有两个向量A B⃗和C D⃗,它们的数量积定义为A B⃗・ C D⃗ = |A B⃗| |C D⃗ | cosθ,其中θ为A B⃗和C D⃗的夹角,|A B⃗|和|C D⃗|分别为向量的模。
1.3.2 向量的向量积设有两个向量A B⃗和C D⃗,它们的向量积定义为A B⃗ × C D⃗ = |A B⃗| |C D⃗ | sinθ n⃗,其中θ为A B⃗和C D⃗的夹角,n⃗为与A B⃗和C D⃗都垂直且符合右手定则的单位向量。
二、解析几何的基本概念和性质解析几何是将几何问题转化为代数问题进行研究的数学分支,它主要运用代数方法研究空间中的几何问题。
空间解析几何

空间解析几何空间解析几何是数学中的一个重要分支,它研究的是三维空间中的几何图形和其性质。
本文将介绍空间解析几何的基本概念、常见图形以及解析方法,帮助读者更好地理解和应用空间解析几何。
一、基本概念在空间解析几何中,我们使用坐标系来描述点、直线、平面等几何对象。
一般常用的坐标系有直角坐标系和柱面坐标系。
直角坐标系中,我们使用三个坐标轴x、y、z来确定一个点的位置。
柱面坐标系中,我们使用极坐标和一个垂直轴来确定一个点的位置。
通过坐标系,我们可以得到点的坐标、距离和角度等信息。
二、常见图形1. 点:空间中的一个点可以通过其坐标表示。
例如,点A(2,3,4)表示空间中的一个点,它的x坐标为2,y坐标为3,z坐标为4。
2. 直线:空间中两个不重合的点可以确定一条直线。
直线可以用参数方程、对称式、一般式等形式表示。
3. 平面:平面是由三个不共线的点所确定的。
平面可以用一般式、点法式等形式表示。
4. 球:由空间中的一个固定点和到该点距离等于定值的所有点构成的集合称为球。
5. 圆柱体:由一个闭合的曲线和平行于该曲线的直线段所围成的曲面称为圆柱体。
圆柱体可以通过其底面半径、高和母线方程等参数表示。
三、解析方法在空间解析几何中,我们可以使用向量、点法式、平面截距式等方法来求解各种几何问题。
1. 向量:向量是空间解析几何中一个重要的工具。
它可以用来表示线段、直线的方向和长度等信息。
通过向量,我们可以进行向量加法、减法、内积、外积等运算,用来求解直线的夹角、垂直平分线等问题。
2. 点法式:点法式是求解平面方程的一种方法。
它通过平面上的一点和法向量来表示平面的方程。
利用点法式,我们可以求解平面的交点、两平面的夹角等问题。
3. 平面截距式:平面截距式可以用来表示平面上与坐标轴相交的三个截距,通过截距可以确定平面的位置和方程。
我们可以利用平面截距式来求解平面的方程、直线与平面的交点等问题。
通过以上的解析方法,我们可以将空间解析几何中的各种问题转化为代数方程或方程组求解,从而得到几何图形的性质和关系。
空间解析几何的基本概念

空间解析几何的基本概念空间解析几何作为数学中的一个重要分支,是研究空间内点、直线、平面和其他几何体之间的关系和性质的学科。
它在解决实际问题中起着重要的作用。
本文将介绍空间解析几何的基本概念,包括点、直线、平面、坐标、距离和角度等内容,以帮助读者更好地理解和应用空间解析几何。
一、点的表示与性质在空间解析几何中,点是空间中最基本的概念之一。
点可以用坐标来表示,常用的表示方法是笛卡尔坐标系。
在三维笛卡尔坐标系中,点的坐标可以用三个实数x、y、z来表示,分别代表点在x轴、y轴、z轴上的投影值。
点在空间中没有大小,只有位置,所以点之间的距离为0。
二、直线的表示与性质直线是由无数个点组成的集合,它是空间中最基本的几何对象之一。
直线可以用向量、参数方程和一般方程等形式来表示。
其中,向量表示方法常用于表示直线的方向,参数方程则可以表示直线上的任意一点。
直线还有许多性质,如直线的斜率、倾斜角和与坐标轴的交点等,这些性质在解决问题中有重要应用。
三、平面的表示与性质平面是由无数个点组成的集合,它比直线更复杂一些。
平面可以用点法式方程、一般方程和参数方程等形式来表示。
在点法式方程中,平面可以由一个点和一个法向量确定。
而在一般方程和参数方程中,平面可以分别用一般式和参数式表示。
平面与直线相交、平行或重合等情况,也是空间解析几何中需要掌握的内容。
四、坐标与距离在空间解析几何中,坐标是表示点在空间中位置的一种方法。
常用的坐标系有笛卡尔坐标系和极坐标系。
在笛卡尔坐标系中,点的位置可以用三个坐标值来表示。
而在极坐标系中,点的位置可以用径向距离和极角来表示。
距离是两个点之间的直线距离,可以通过两点坐标的差值和勾股定理来计算。
五、角度与方向角度是空间解析几何中非常重要的概念之一,它涉及到直线、平面和曲线等几何对象之间的夹角关系。
角度可以用弧度制表示,也可以用度数制表示。
在求解夹角时,常用的方法有向量夹角公式和点之间的夹角公式。
方向则是指直线或矢量的朝向,可以用方向角来表示。
空间解析几何和线性代数资料

(4)单叶双曲面 (5)圆锥面
x2 y2 z2 a2 b2 c2 1
x2 y2 z2
3、空间曲线
[1] 空间曲线的一般方程
F(x, y,z) 0 G( x, y, z) 0
与b
的夹角
c 的方向既垂直于a
,又垂直于b
,指向符合
右手系.
向量积的坐标表达式
a
b
(a ybz
azby )i
(a
z
bx
axbz ) j
(axby aybx )k
a
b
i ax
j ay
k az
bx by bz
a//
b
6、混合积
ax ay az bx by bz
ax
ax2 ay2 az2
ay
ax2
a
2 y
az2
cos
az
ax2 ay2 az2
( cos2 cos2 cos2 1 )
4、数量积 (点积、内积)
a
b
|
a
||
b
|
cos
其中
为a
与b
的夹角
数量积的坐标表达式
a
b
有序数组
z
空
间
直
角
o
坐
y
标
x
系
共有一个原点,三个坐标轴,三个坐标面,八个卦限.
两点间距离公式: 设M1 ( x1 , y1 , z1 )、M 2 ( x2 , y2 , z2 )为空间两点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设 是一个数,向量 a 与 的乘积 a 规定为 (1) 0, a 与 a 同向, | a | | a | a 0 ( 2) 0, ( 3) 0, a 与 a 反向, | a || | | a |
s ( m , n , p ) 为直线的方向向量.
中华工程资格考试网
例6.用对称式及参数式表示直线
解:先在直线上找一点. y z 2 ,得 y 0 , z 2 令 x = 1, 解方程组 y 3z 6
是直线上一点 . 再求直线的方向向量 s . 交已知直线的两平面的法向量为
4. 空间直线与平面的方程 空间平面
一般式
点法式
截距式
x y z 1 a b c
x x1 x2 x1 x3 x1 y y1 y2 y1 y3 y1
点 : ( x0 , y0 , z0 ) 法向量 : n ( A , B , C )
z z1 z 2 z1 0 z3 z1
空间直线
A1 x B1 y C1 z D1 0 一般式 A2 x B2 y C2 z D2 0
对称式
x x0 m t 参数式 y y0 n t z z0 p t ( x0 , y0 , z0 ) 为直线上一点;
a b ax bx
i
j ay by
k az bz
中华工程资格考试网
, 例 1 已知 a {11,4}, b {1,2,2},求(1) a b ;(2) a 与 b 的夹角;(3) a 在 b 上的投影. 解 (1) a b 1 1 1 ( 2) ( 4) 2 9.
2 2
2
a b 0
a x bx a y b y a z bz 0
中华工程资格考试网
运算律 (1) 交换律 (2) 结合律
a ( b) ( a ) ( b ) a ( b ) (a b)
(3) 分配律
(3) 结合律 ( a ) b a ( b ) ( a b )
中华工程资格考试网
向量积的坐标表达式
a b (a y bz a z by )i (a z bx a x bz ) j (a x by a y bx )k
其中a x ,a y , az 分别为向量在x, y, z 轴上的投影 .
中华工程资格考试网
4.向量的线性运算 (1)加法: a b c (2)减法: a b d (3)向量与数的乘法:
b
ab c
a
ab d
a prja b b prjb a
数量积的坐标表达式
a aa
2
a b a x bx a y b y a z bz
两向量夹角余弦的坐标表示式
cos
a b
a x bx a y b y a z bz a x a y az
2 2 2
bx b y bz
角形 ABC 的面积 解: 如图所示,
B
S A B C 1 AB AC
2
i 2 1 j 2 2 k 2 4
A
C
1 2
1 ( 4, 6, 2 ) 2
1 2 4 (6) 2 2 2 14 2
中华工程资格考试网
1.1.2 空间解析几何
( a x )i ( a y ) j ( a z )k
中华工程资格考试网
2 2 2 向量模长的坐标表示式 | a | a x a y a z
向量方向余弦的坐标表示式
cos
ax a x a y az ay
2 2 2
n (0, B, C ) i, 平面平行于 x 轴;
• A x+C z+D = 0 表示 平行于 y 轴的平面;
• A x+B y+D = 0 表示 平行于 z 轴的平面; • C z + D = 0 表示 平行于 xoy 面 的平面; • A x + D =0 表示 平行于 yoz 面 的平面; • B y + D =0 表示 平行于 zox 面 的平面.
(1)旋转曲面
定义:以一条平面曲线绕 其平面上的一条直线旋转 一周所成的曲面. 这条定直线叫旋转曲面的轴.
中华工程资格考试网
方程特点:
f ( x, y ) 0 设有平面曲线L : z0 (1) 曲线 L 绕 x 轴旋转所成的旋转曲面 方程为 f ( x , y 2 z 2 ) 0 (2) 曲线 L 绕 y 轴旋转所成的旋转曲面 方程为 f ( x 2 z 2 , y ) 0
2 2
2
点到平面的距离公式:
点M 0 ( x0 , y0 , z0 )到平面Ax By Cz D 0的距离为
d
Ax0 By 0 Cz0 D A B C
2 2 2
中华工程资格考试网
2、曲面
空间曲面S与三元方程 ( x, y, z) 0对应 F .
cos
a x a y az
2 2
2
cos
az a x a y az
2 2 2
( cos 2 cos 2 cos 2 1 )
中华工程资格考试网
5.数量积
a b | a || b | cos
其中 为 a 与 b 的夹角
中华工程资格考试网
线性运算的坐标表达式
a {a x , a y , a z } b {bx , b y , bz } a b {a x bx , a y b y , a z bz } (a x bx )i (a y b y ) j (a z bz )k a b {a x bx , a y b y , a z bz } (a x bx )i (a y b y ) j (a z bz )k a { a x , a y , a z }
中华工程资格考试网
b 例 2 求与 a 3i 2 j 4k , i j 2k 都垂
直的单位向量.
解
c a b ax bx
i
j ay by
k
i
j
k
az 3 2 bz 1 1 2
S=
b
中华工程资格考试网
性质
(1) a a 0 (2) a , b为非零向量, 则 a b 0 a∥ b
ax a y az bx by bz
运算律
(1) a b b a
(2) 分配律 ( a b ) c a c b c
3.向量的表示法 (1)有向线段 (模和方向余弦) (2)向量的分解式: a a x i a y j a z k
在三个坐标轴上的分向量: a x i , a y j , a z k
(3)向量的坐标表示式: 向量的坐标: a x , a y , a z
a {a x , a y , a z }
( a b )( a b )
aa
2
bb
2
a 2 a b cos b 3 2 2 ( 2 ) 2 2 3 cos 3 4 17
a b 17
中华工程资格考试网
例4. 已知三点 A(1, 2 , 3 ) , B( 3 , 4 , 5 ), C ( 2 , 4 , 7 ) , 求三
中华工程资格考试网
6. 向量积 定义:
设 a , b 的夹角为 ,
方向 : c a , c b 且符合右手规则 模 : c a b sin
向量 c
称 c 为向量 a 与 b 的向量积 , 记作
b
c ab
(叉积)
a c ab a
几何意义:右图三角形面积
1.1空间解析几何
1.1.1 向量代数
1.1.2 空间解析几何
中华工程资格考试网
1.1.1 向量代数
1.向量的概念
定义:既有大小又有方向的量称为向量.
向量的模 2.几种特殊向量 单位向量、 零向量、 相等向量、 向径. 负向量、
中华工程资格考试网
三点式
中华工程资格考试网Fra bibliotekAx By Cz D 0 ( A B C 0 )
2 2 2
特殊情形 • 当 D = 0 时, A x + B y + C z = 0 表示 通过原点的平面; • 当 A = 0 时, B y + C z + D = 0 的法向量
中华工程资格考试网
例5. 求通过 x 轴和点( 4, – 3, – 1) 的平面方程. 解: 因平面通过 x 轴 , 故 A D 0
设所求平面方程为
By Cz 0
代入已知点 (4 , 3 , 1) 得
化简,得所求平面方程
中华工程资格考试网
( 2) cos a x bx a y b y a z bz a x a y az
2 2 2
bx b y bz
2 2
2
1 , 2 ( 3) a b | b | Pr jb a
ab Pr jb a 3. |b |
3 . 4
4 10 j 5k ,
| c | 102 52 5 5 c 2 1 0 j k . c 5 5 |c |