高等数学 向量代数与空间解析几何复习
(完整版)高数期末复习题第八章空间解析几何与向量代数

第八章一、填空题8.1.1.1、点)1,3,2(-M 关于xoy 面的对称点是)1,3,2(-- .8.1.2.3、向量)2,20(),1,4,2(-=-=b a ϖϖ,则同时垂直于b a ϖϖ,的单位向量为)1,1,1(31--±. 8.1.3.1、向量=⊥-=-=c ,),,2,1(),1,1,3( 则: 且 b a c b a ϖϖϖϖ 1 . 8.1.41、点)1,2,1(M 到平面01022=-++z y x 的距离为 1 .8.1.51、. 过点02)1,2,1(=+-z y x 与平面 平行的平面方程为12=+-z y x 8.1.6.2、平面3=y 在坐标系中的位置特点是 平行xoz 面 .8.1.7.2、过三点A (2,0,0),B (0,3,0),C (0,0,4)的平面方程为1432=++z y x . 8.1.8.2、过两点)(,(2,0,1),1,2321--M M 的直线方程是12241-==-+z y x . 8.1.9.3、过点)4,2,0(且与平面2312=-=+z y z x 及都平行的直线是14322-=-=-z y x . 8.1.10.3、曲面z y x =-22在xoz 面上的截痕的曲线方程为⎩⎨⎧==02y z x . 二、选择题8.2.1.2、点)3,0,4(在空间直角坐标的位置是 ( C )A .y 轴上; B. xoy 平面上; C. xoz 平面上; D. 第一卦限内。
8.2.2.2、设AB 与u 轴交角为α,则AB 在u 轴上的投影AB j u Pr = (C )A .αcos ; B. αsin ; C. α ; D. α.8.2.3.2、两个非零向量b a ρρ与互相垂直,则 ( B )A .其必要不充分条件是0=⋅b a ϖϖ; B. 充分必要条件是0=⋅b a ϖϖ;C .充分不必要条件是0=⋅b a ϖϖ; D. 充分必要条件是0=⨯b a ϖϖ.8.2.4.2、向量),,(z y x a a a a =ϖ, ),,(z y x b b b b =ϖ 且 0=++z z y y x x b a b a b a 则 ( C )A. b a ϖϖ//;B. λλ(b a ϖϖ=为非零常数) ;C. b a ϖϖ⊥ ;D. 0ϖϖϖ=+b a .8.2.5.2、平面0633=--y x 的位置是 ( B )A .平行xoy 面;B . 平行z 轴 ; C. 垂直z 轴; D. 通过z 轴.8.2.6.2、过点131111)1,1,1(--=+=-z y x 与直线 垂直的平面方程为 ( A ) A. 1=-+z y x ; B. 2=-+z y x ;C. 3=-+z y x ;D. 0=-+z y x .8.2.7.2、直线37423L z y x =-+=-+:与平面3224=--z y x 的位置关系是( A ) A .平行; B. 直线在平面上; C. 垂直相交; D. 相交但不垂直.8.2.8.2、xoy 面上曲线369422=-y x 绕x 轴旋转一周,所得曲面方程是( C )A .369)4222=-+y z x (; B. 36)(9)42222=+-+z y z x (; C. 36)(94222=+-z y x ; D. 369422=-y x .8.2.9.2、球面2222R z y x =++与平面a z x =+交线在xoy 平面上投影曲线方程是( D )A .2222)R z y z a =++-(; B. ⎩⎨⎧==++-0)(2222z R z y z a ; C. 2222)(R x a y x =-++; D. ⎩⎨⎧==-++0)(2222z R x a y x 8.2.10.3、方程⎩⎨⎧==++13694222y z y x 表示 ( B )A .椭球面; B. 1=y 平面上椭圆;C. 椭圆柱面;D. 椭圆柱面在平面0=y 上的投影曲线.三、计算题8.3.1.2、 一平面过点)1,0,1(-,且平行于向量)0,1,1()1,1,2(-==b a ϖϖ和,求这个平面。
2017年江苏省高数复习资料第七单元 向量代数 空间解析几何

第七单元 向量代数 空间解析几何一、 向量概念及其加、减法和数乘运算 1、两点A (x 1,y 1), B (x 2,y 2)之间的距离 212212)()(y y x x d -+-=2、向量的定义:既有大小,又有方向的量。
记作: 或a向量的模:︱︱ 0向量:模为0的向量。
记作:0单位向量:模为1的向量。
记作:a 0,a =(=3、两向量相等:方向相同,模相等。
记作:a =b4、加法运算:a +b =b +a (交换律) (a +b )+c = a +(b +c ) (结合律)5、数与向量的积:记作λa (λ为常数) λa 的模:︱λa ︱=︱λ︱︱a ︱λa 的方向:当λ>0时,与a 同向,当λ<0时,与a 反向。
6、向量的坐标表示法:设向量的起点为M 1(x 1,y 1,z 1),终点为M 2(x 2,y 2,z 2),则 = (x 2-x 1)i +(y 2-y 1)j +(z 2-z 1)k︱ ︱=212212212)()()(z z y y x x -+-+-7、基本单位向量:三个坐标轴上正方向上的单位向量i ,j ,k 8、向量的加、减法与数乘运算a = a x i + a y j + a z k ,b = b x i + b y j + b z k a ±b =(a x ±b x )i +(a y ±b y )j +(a z ±b z )k λa = (λa x )i + (λa y )j + (λa z ) k例1 设向量a =8i +9j -12k ,其始点坐标为A (2,-1,7)(1) 求其终点B 的坐标(2) 如取向量a 方向且模为34的向量,求该向量的终点坐标(始点仍为A )解:(1)设终点坐标为B (x,y,z ),则有=(x-2)i +(y+1)j +(z-7)k ,令 = a ,即8i +9j -12k =(x-2)i +(y+1)j +(z-7)k ,所以有: x-2=8,y+1=9,z-7=-12,解得x=10,y=8,z=-5 故终点坐标为B (10,8,-5)(2)与a 同向的单位向量为:a 0=a ∕∣a ∣=)1298(171)12(981298222k j i k j i -+=-++-+ 与a 同向的模为34的向量为:b =34a 0=16i +18j -24k设其终点坐标为B (x,y,z ),仿(1)得x-2=16,y+1=18,z-7=-24,解得x=18,y=17,z=-17ABABM 1M 2M 1M 2 ABAB故终点坐标为B (18,17,-17) 9、方向角与方向余弦向量a 分别与x 、y 、z 三个坐标轴的正向不超过π的夹角,用α、β、γ表示,则称他们为向量a 的方向角,cos α、cos β、 cos γ称为方向余弦,且cos 2α+cos2β+cos 2γ=110、单位向量的三角表示法a 0=i cos α+j cos β+k cos γ 11、方向余弦的计算设向量a 的坐标表示为:a = x i +y j +z k ,则 222222aa cos ,cos zy x y yzy x x x++==++==βα222acos zy x z z++==γ例2 设向量a ={x,y,z}的方向角α=600,β=600且∣a ∣=3,问这种向量有几个,求之。
高等数学二第一章向量代数与空间解析几何

在 z 轴上, 则 x = y = 0
2.空间向量的坐标表示
(1)起点在原点的向量OM
z z
C
设点 M (x, y,z)
以 i, j, k分别表示沿x, y, z轴 正向的单位向量, 称为基本单位 向量.
ok xi xA
j
M yB y N
OM = OA + AN +NM
a,
b
(起点同).
b
(a,b)
规定:
a
a,
b正向间位于0到之间的那个夹角为
a,
b
的夹角,
记(1)为若(aa,, bb)同或向(,b,则a) (a,b) 0
(2) (3)
若 若
a , a ,
bb不反平向行,,则则(a(a,b,b))(0,
有MC
=
1 2
(a
b)
MA
又
b
= MC a = BD
=
1 2
(a
2MD
b)
D
b
A
a
有MD
=
1 2
(b
MB = MD
a)
1 2
(b
a)
1 2
(a
b)
C M
B
(四) 向量在轴上的投影
1. 点在轴上投影
设有空间一点A及轴
A
u, 过A作u轴的垂直平面,
即: (4 0)2 (1 0)2 (7 z)2
(3 0)2 (5 0)2 (2 z)2
解得:
z
高等数学向量代数与空间解析几何总结 ppt课件

( p与q同号 )
3、空间曲线
[1] 空间曲线的一般方程
F(x, y,z) 0 G(x, y,z) 0
[2] 空间曲线的参数方程
x x(t)
y
y(t)
z z ( t )
如图空间曲线 一般方程为
z 1 x2 y2
(x
1)2 2
y2
(1)2 2
x
1 cos 2
t 1 2
参数方程为
右 手 系 .
向量积的坐标表达式
ab(aybzazby)i (azbxaxbz)j
(axbyaybx)k
i j k ab ax ay az
bx by bz
a // b
ax ay az bx by bz
请归纳向量的数量积和向量积
在几何中的用途
(①求1)向数量量的积模(1 :)a a |a |2.
f (x, y2 z2 ) 0
(2) 曲线L绕 y 轴旋转所成的旋转曲 方面 程为
f ( x2 z2, y) 0
(1)球面 (2)圆锥面 (3)旋转双曲面
x2y2z21 x2y2z2
x2 y2 z2 a2 a2 c2 1
[2] 柱面
定义:平行于定直线并沿定曲线C移动的直线 L所形成的曲面称之.
a { a x ,a y ,a z} b { b x ,b y ,b z}
a b { a x b x , a y b y , a z b z }
( a x b x ) i ( a y b y ) j ( a z b z ) k a b { a x b x , a y b y , a z b z }
[4] 两直线的夹角
直线 L1 : 直线 L2 :
《高等数学》第七章 空间解析几何与向量代数

首页
上页
返回
下页
结束
关于向量的投影定理(2)
两个向量的和在轴上的投影等于两个向量在 该轴上的投影之和. (可推广到有限多个)
Pr j(a1 a2 ) Pr ja1 Pr ja2 .
A a1 B a2
C
u
A
B
C
首页
上页
返回
下页
结束
关于向量的投影定理(3)
Pr
ju a
M 2M 3 (5 7)2 (2 1)2 (3 2)2 6
M1M3 (5 4)2 (2 3)2 (3 1)2 6
M 2M3 M1M3
M1
M3
即 M1M 2M3 为等腰三角形 .
M2
首页
上页
返回
下页
结束
2. 方向角与方向余弦
设有两非零向量
M B
o
A
中点公式:
B
x1
2
x2
,
y1
2
y2
,
z1 z2 2
M
首页
上页
返回
下页
结束
五、向量的模、方向角、投影
1. 向量的模与两点间的距离公式
设 r (x , y , z ), 作 OM r, 则有 r OM OP OQ OR
由勾股定理得
r OM
z R
解 a 4m 3n p
4(3i 5 j 8k ) 3(2i 4 j 7k )
(5i j 4k ) 13i 7 j 15k,
在x 轴上的投影为ax
13,
考研数学高数冲刺重点内容:向量代数与空间解析几何

凯程考研集训营,为学生引路,为学员服务!
考研数学高数冲刺重点内容:向量代数
与空间解析几何
考研冲刺复习阶段对高数的复习也应该有重点,能够在大纲的基础上找到个人应该侧重的地方才能真正意义上的利用好冲刺复习时间,突破自己15考研的分数极限。
向量代数与空间解析几何
①理解向量的概念及其表示。
②掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件;掌握单位向量、方向数与方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法。
③掌握平面方程和直线方程及其求法,会利用平面直线的相互关系解决有关问题。
④理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。
⑤了解空间曲线的参数方程和一般方程;了解空间曲线在坐标平面上的投影,并会求其方程。
小提示:目前本科生就业市场竞争激烈,就业主体是研究生,在如今考研竞争日渐激烈的情况下,我们想要不在考研大军中变成分母,我们需要:早开始+好计划+正确的复习思路+好的辅导班(如果经济条件允许的情况下)。
2017考研开始准备复习啦,早起的鸟儿有虫吃,一分耕耘一分收获。
加油!。
微积分A(二)总复习(向量代数和空间解析几何)

(6) a , b , c 共面 [a , b , c ] 0 a x a y az
bx cx by cy
a x bx a y by az bz 0.
bz 0. cz
二、空间解析几何
1、空间曲面方程 (1) 空间曲面一般方程
F ( x , y , z ) 0 或 z f ( x , y ) 等。
向量代数
向量的 线性运算
向量概念
向量的 表示法
向量的积
数量积 混合积 向量积
空间解析几何 空间直角坐标系
一般方程 旋转曲面
曲线
参数方程 一般方程 参数方程
曲面
平 面
柱
面
直 线
二次曲面
一般方程
对称式方程 点法式方程
向 向量的坐标表达式、模、方向余弦、 量 单位向量、在另一向量上的投影; 空间两 代 点间的距离; 向量的垂直与平行、数量积 数 与向量积及其运算规律与性质意义 空 间 解 析 柱面、旋转曲面、二次曲面方程;空 几 何 间直线在坐标面上的投影
它满足交换律、结合律、分配律。
0 向量积 a b a b sin ( a ,^ b ) n , 0 a , b 所在平面的 n : 按“右手法则”垂直于 单位向量。 i j k a b a x a y az S a b . bx b y bz
a x a y az 0 与a 平行的单位向量为 a { , , } |a | |a | |a | 2 2 2 其中| a | a x a y az
的投影。
一、向量代数
ay ax a 的方向余弦为 cos , cos , |a | |a | az cos , 方向余弦满足 |a | cos2 cos2 cos2 1.
2019年成人高考专升本《高数》考点—向量代数与空间解析几何

【导语】那些⽐你优秀的⼈还在努⼒奋⽃着,你还有什么理由不奋进。
下⾯和⼀起学习:2019年成⼈⾼考专升本《⾼数》考点必备—向量代数与空间解析⼏何。
2019年成⼈⾼考专升本《⾼数》考点必备—向量代数与空间解析⼏何
(⼀)向量代数
1、知识范围
(1)向量的概念
向量的定义、向量的模、单位向量、向量在坐标轴上的投影、向量的坐标表⽰法、向量的⽅向余弦
(2)向量的线性运算
向量的加法、向量的减法、向量的数乘
(3)向量的数量积
⼆向量的夹⾓、⼆向量垂直的充分必要条件
(4)⼆向量的向量积、⼆向量平⾏的充分必要条件
2、要求
(1)理解向量的概念,掌握向量的坐标表⽰法,会求单位向量、⽅向余弦、向量在坐标轴上的投影。
(2)熟练掌握向量的线性运算、向量的数量积与向量积的计算⽅法。
(3)熟练掌握⼆向量平⾏、垂直的充分必要条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 向量代数与空间解析几何5.1向量既有大小又有方向的量表示:→-AB 或a (几何表示)向量的大小称为向量的模,记作||AB 、|a |、||a 1. 方向余弦:⎪⎪⎭⎫⎝⎛=||,||,||)cos ,cos ,(cos r r r z y x γβα r =(x ,y ,z ),| r |=222z y x ++ 2. 单位向量 )cos ,cos ,(cos γβα=→a 模为1的向量。
3. 模→→→⋅=++=a a z y x a 222||4. 向量加法(减法) ),,(212121z z y y x x b a ±±±=±→→5. a ·b =| a |·| b |cos θ212121z z y y x x ++=a ⊥b ⇔a ·b =0(a ·b =b ·a ) 6. 叉积、外积|a ⨯b | =| a || b |sin θ= zyxz y xb b b a a a k j ia //b ⇔a ⨯b =0.( a ⨯b= - b ⨯a ) ⇔212121z z y y x x == 7. 数乘:),,(kz ky kx ka a k ==→→例1 1||,2||==→→b a ,→a 与→b 夹角为3π,求||→→+b a 。
解 22||cos ||||2||2)()(||→→→→→→→→→→→→→→→→++=⋅+⋅+⋅=+⋅+=+b b a a b b b a a a b a b a b a θ713cos12222=+⋅⋅⋅+=π例2 设2)(=⋅⨯c b a ,求)()]()[(a c c b b a +⋅+⨯+。
解 根据向量的运算法则)()]()[(a c c b b a +⋅+⨯+=)(])()[(a c c b a b b a +⋅⨯++⨯+)(])[()(])[(a c c b a a c b b a +⋅⨯+++⋅⨯+= a c b a a c b a ⋅⨯+++⋅⨯=])[()()( a c b a c a c b a ⋅⨯+⋅⨯+⋅⨯=)()()(c b a c b a ⋅⨯+⋅⨯=)()( 4)(2=⋅⨯=c b a例3 设向量k j i a +-=,k j i b 543+-=,b a x λ+=,λ为实数,试证:当模x最小时,向量x 必须垂直于向量b 。
解 由k j i a +-=,k j i b 543+-=得50||,3||22==b a ,12=⋅b a ,于是b a b a b a x ⋅++=+=λλλ2||||)(||22222253256505024322+⎪⎭⎫ ⎝⎛+=++=λλλ 由此可知,当256-=λ时,模||x 最小,因而⎪⎭⎫ ⎝⎛--=-=255,251,257256b a x 故0)5,4,3(255,251,257=-⋅⎪⎭⎫ ⎝⎛--=⋅b x所以,当模x 最小时,向量x 必须垂直于向量b 。
8. 向量的投影Prj a b =|b |θcos 为向量b 在向量a 上的投影。
a ·b =| a |Prj a b5.2空间平面与直线 5.2.1 空间平面点法式方程:与定点),,(0000z y x p 连线和非零向量n =(a ,b ,c )垂直的点的集合。
0)()()(000=-+-+-z z c y y b x x a 。
平面的一般方程:0=+++D Cz By Ax ,n =(A ,B ,C )截距式方程:1=++cz b y a x 三点式方程 0131313121212111=---------z z y y x x z z y y x x z z y y x x 例1 求过)0,0,0(O ,)2,3,1(A ,)1,1,2(--B 点的平面方程解(1)点法式n =)7,5,1(112231--=--=⨯→→→→-→-kj i OB OA 。
则平面方程为0)0(7)0(5)0(=---+--z y x ,即075=+-z y x 。
解(2)设平面方程为0=+++D Cz By Ax ,代入)0,0,0(O 得0=D 。
代入)2,3,1(A ,)1,1,2(--B 得⎩⎨⎧=--=++02023C B A C B A 解之得A C A B 7,5=-=代入方程消去A ,得方程为075=+-z y x例2 一平面通过点)3,2,1(,它在正x 轴,正y 轴上的截距相等,问此平面在三坐标面上截距为何值时,它与三个坐标平面围成的四面体的体积最小?并写出此平面方程。
解 依题意设所求平面的截距式方程为1=++cza y a x ,由于点)3,2,1(在此平面上,故有1321=++c a a ,解之33-=a ac 。
四面体之体积32133613-⋅=-⋅⋅=a a a a a a V ,232)3()3(321---='a a a a V , 令0='V 得9,29==c a 。
例3 求过点)1,1,1(-A ,)2,2,2(--B 和)2,1,1(-C 三点的平面方程。
解 由三点式方程032333111=---+--z y x 故所求方程为0)1(6)1(9)1(3=++-+--z y x ,即023=--z y x5.2.2 空间直线方向向量:平行于一已知直线的任一向量称为直线的方向向量。
易知直线上的任一向量都平行于直线的方向向量.若设已知向量为),,(n m l v =→,则直线的对称式方程为nz z m y y l x x 000-=-=- 一般式方程:⎩⎨⎧=+++=+++022221111D z C y B x A D z C y B x A参数式方程:⎪⎩⎪⎨⎧+=+=+=.,,000pt z z nt y y mt x x例1 求过点)2,1,1(点,且与直线⎩⎨⎧+=-=5213x z x y 平行的直线方程解 将直线写成⎪⎩⎪⎨⎧+=-==5213x z x y xx ,以x 为参数,则)2,3,1(=→v ,故直线方程为223111-=-=-z y x 例 2 求过点)3,2,1(0--p 且平行于平面01326:=+--∏z y x ,又与直线532131--=+=-z y x 相交的直线方程。
解 设Q ),,(z y x 为两直线的交点,则0,//00=⋅∏→→-→-n Q P Q P ,即0)3(3)2(2)1(6=+---+z y x ,(1) 又Q 在L 上:532131--=+=-z y x(2)令(2)=t 解得x , y , z 代入(1)解得0=t ,在反代入(2)得Q 的坐标为)3,1,1(-,得直线为633221+=--=+z y x 5.3点、平面、直线的位置关系1. 点到平面的距离点),(0000z y x P 到平面Ax+By+C z+D =0得距离公式为:d =222000||CB A D Cz By Ax +++++例1 求平面0622=+-+z y x 和平面0884=-+-z y x 的交角平分面方程。
平分面上的点到两面之间距离相等,故22222814|884|221|622|++-+-=+++-+z y x z y x整理得:026147=-+-x y x 或010257=+++z y x 例2 求平行于平面9=++z y x 且与球面4222=++z y x 相切的平面方程。
解 由于所求平面与9=++z y x 平行,故可设其为0:=+++D z y x π。
因为π与球面4222=++z y x 相切,所以球心)0,0,0(到π的距离2111|000|222=+++++D ,解之,32±=D ,故所求平面方程为032=+++z y x 和032=-++z y x2. 点到直线的距离点1M 到直线L 的距离为 ||||10s s M M d ⨯=例3 求点)4,4,3(0-M 到直线122524-=--=-z y x 的距离。
解 )2,9,1(0-=→M M ,31)2(2||222=+-+=s ,于是所求距离253161153|2055|||||0=++=--=⨯=→k j i s s M M d3. 两平面之间的夹角平面1∏和平面2∏的夹角θ,cos θ=222222212121212121||CB A CB AC C B B A A ++++++1∏、2∏互相垂直相当于212121C C B B A A ++=0;1∏、2∏互相平行或重合相当于212121C C B B A A ==.4.两直线的夹角两直线的法线向量的夹角(通常指锐角)叫做两直线的夹角.直线1L 和2L 的夹角ϕcos ϕ=222222212121212121||pn m pn m p p n n m m ++++++ (5)两直线1L 、2L 互相垂直相当于212121p p n n m m ++=0; 两直线1L 、2L 互相平行或重合相当于.212121p p n n m m ==5. 直线与平面的夹角直线s =(m ,n ,p ),平面n =(A ,B ,C )夹角为ϕsin ϕ=222222||pn m CB A Cp Mn Am ++++++直线垂直于平相当于pC n B m A ==; 直线平行于或直线在平面上相当于Am+Bn+Cp =0. 6.平面束过直线L ⎩⎨⎧=+++=+++)12(0)11(,022221111D z C y B x A D z C y B x A 的平面束方程为0)(22221111=+++++++D z C y B x A D z C y B x A λ例1 求直线21132:+=-=+z y x x l 在平面08332:=-++z y x π上的投影直线的方程。
解 直线l 的方程即为⎩⎨⎧=+-=-+0132043z x y x ,故过l 的平面束方程为0)132(43=+-+-+z x y x λ即0433)21(=-+-++λλλz y x因为此平面与平面π垂直,故有0511)3,3,2()3,3,21(=-=⋅-+λλλ解得 511=λ,于是与08332=-++z y x 垂直的平面方程为045115333)5221(=-+-++z y x即031159=--+z y x ,从而所求投影直线方程为⎩⎨⎧=-++=--+08332031159z y x z y x5.4其它(旋转曲面方程)⎩⎨⎧=0),(x z y f 绕谁转谁不变,令一个用另两个变量的平方和的平方根代入故绕z 轴旋转,22y x y +±=,得0),(22=+±z y x f 为旋转曲面方程。