【大学物理实验报告】多普勒效应及声速的测试与应用
多普勒声速实验-实验报告

多普勒声速实验--实验报告DH-DPL系列多普勒效应及声速综合实验实验报告一:实验目的多普勒效应是一种与波动紧密相关的物理现象.利用多普勒效应可以测量运动物体的速度,但目前许多高校使用的多普勒效应实验仪集成化和智能化程度太高,实验时需要学生动手操作的环节太少;信号的转换、传输和处理过程不透明,不利于学生在实验过程中细致观察各种物理现象,分析测量误差的来源等,难以满足深入培养学生自主动手能力和观察分析能力的需要.本实验以商用超声多普勒实验系统(杭州大华DH -DPL1)的导轨模块作为开发平台,以模拟乘法器作为测量系统的核心单元;实验过程中学生需自行搭建信号拾取和处理电路,并利用示波器观察各个环节的信号波形,有助于培养学生得动手能力,并加深对多普勒效应及对模拟电子实验的理解。
二:实验原理根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器收到的信号频率f为:f = f0 (u + v1 cosα1 ) / (u - v2 cosα2 ) (1)式中f0为声源发射频率, u为声速, v1 为接收器运动速率, v2 为声源运动速率,α1 是声源与接收器连线与接收器运动方向之间的夹角,α2 是声源与接收器连线与声源运动方向之间的夹角.在实验过程中,声源保持不动,接收换能器在导轨上沿声源与接收换能器连线方向上运动,则从式(1)可以得到接收换能器上得到的信号频率为:f = f0 (1 + v/u) (2)式中v为接收换能器的运动速度,当向着声源运动时, v取正,反之取负.利用式(2)可以得到接收换能器的运动速度为:v = u(f - f0 ) /f0 = uΔf/f0 ………..(3) 式中Δf = f - f0为多普勒频移.在本研究中,采用的信号处理电路如图1所示,其中模拟乘法器采用了AD633,其信号的输入输出关系为:W =(x1 - x2 ) (y1 - y2 )/10+ z (4)若输入到AD633的信号为x1 = E1 cos(2πf0 t +φ1 ) , y1 = E2 cos(2πft +φ2 ) , x2、y2 以及z均接地,则AD633的输出为:W =E1 E2{cos[2π(f + f0 ) t +φ2 +φ1 ] /20+cos[2π(f - f0 ) t +φ2 -φ1 ]} (5)其中包含了两路信号的和频分量与差频分量. 利用低通滤波器可以提取出其中的差频分量,即多普勒频移,从而计算出接收换能器的运动速度.在实际测量过程中,由于接收换能器与声源(发射换能器)的距离在不断变化过程中,因此接收换能器输出信号的幅度不是恒定值. 为了保证乘法器的输出信号幅度稳定,本研究中采用OA1组成的限幅放大电路,使输入到乘法器的信号幅度保持恒定值,以便于观察.因为本实验中只关心输出信号的频率,因此对接收换能器输出信号幅度的处理不会影响到实验结果.利用OA2构建的有源低通滤波器,可以有效提取出多普勒频移信号.三:实验仪器本研究所使用的机械平台是杭州大华出品的DH-DPL1多普勒效应实验仪的导轨. 在该装置中,超声发射换能器固定于导轨一端,接收换能器则安装在由步进电机控制的小车上,可以在接收与发射换能器连线方向上做匀速直线运动,运动速度最高可达47 cm /s. 在靠近导轨两端处有限位开关,用于防止小车运动时出现过冲. 在导轨中段则有一光电门,可用于检测固定在小车上的U型挡光片的速度,从而与利用超声多普勒方法测到的小车运动速度比对,验证多普勒效应的公式. 本设计方案中使用的主要观察和测量工具是数字存储示波器. 使用这种示波器的主要原因是因为在实验过程中,小车的运动距离及时间有限,必须在其运动过程中及时将有关的信号波形储存,以便进行分析计算.本实验中采用了Tektronix m TDS1002B数字示波器,而超声发射换能器的激励信号则来自Agilentm 33220A数字信号发生器.四:试验内容及操作步骤1,按图示电路图连接电路,将示波器调至正常工作状态;2,检查电路,接通电源,调节输入信号的频率,使发射信号与接收信号发生谐振,记录此时的信号频率,约为37kHz;3,调节小车的速度,使小车在轨道上运动,用数字采集卡记录输出信号的波形;4,在电脑上处理信号,读出多普勒频移Δf及小车经过光电门挡板时的时间t1和t2;5,对原始数据进行列表,分别利用多普勒公式和光电门实验计算小车的速度,进行比较,验证声波的多普勒公式。
大连理工大学《大学物理实验报告》多普勒效应 实验报告

大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 班级 姓 名 学号 实验台号 实验时间 年 月 日,第 周,星期 第 节实验名称 多普勒效应及声速的测试与应用教师评语实验目的与要求:1. 加深对多普勒效应的了解2. 测量空气中声音的传播速度及物体的运动速度主要仪器设备:DH-DPL 多普勒效应及声速综合测试仪,示波器其中, DH-DPL 多普勒效应及声速综合测试仪由实验仪、智能运动控制系统和测试架三个部份组成。
实验原理和内容: 1、 声波的多普勒效应实际的声波传播多处于三维的状态下, 先只考虑其中的一维(x 方向)以简化其处理过程。
设声源在原点,声源振动频率为f ,接收点在x 0,运动和传播都在x 轴向上, 则可以得到声源和接收点没有相对运动时的振动位移表达式:⎪⎪⎭⎫⎝⎛-=000cos x c t p p ωω , 其中00x c ω-为距离差引起的相位角的滞后项, 0c 为声速。
然后分多种情况考虑多普勒效应的发生: 1.1 声源运动速度为S V ,介质和接收点不动假设声源在移动时只发出一个脉冲波, 在t 时刻接收器收到该脉冲波, 则可以算出从零时刻到声源发出该脉冲波时, 声源移动的距离为)(0c x t V S -, 而该时刻声源和接收器的实际距离为)(00c x t V x x S --=, 若令S M =S V /0c (声源运动的马赫数), 声源向接收点运动时S V (或S M )为正, 反之为负(以下各个马赫数的处理方法相同, 均以相互靠近的运动时记为正)。
则距离表达式变为)1/()(0S S M t V x x --=, 代回到波函数的普适表达式中, 得到变化的表达式:⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛--=0001cos c x t M p p S ω可见接收器接收到的频率变为原来的SM 11-, 即:1.2 根据同样的计算法, 通过计算脉冲波发出时的实际位移并代换普适表达式中的初始位移量, 便可以得到声源、介质不动,接收器运动速度为r V 时, 接收器接收到的频率为1.3介质不动,声源运动速度为S V,接收器运动速度为r V ,可得接收器接收到的频率为1.4 介质运动。
多普勒效应综合实验报告

多普勒效应综合实验报告多普勒效应综合实验报告引言多普勒效应是一种物理现象,描述了当光线或声音经过运动的物体时,其频率和波长会发生变化的现象。
本实验旨在通过多种实验方法验证多普勒效应,并探讨其在实际应用中的重要性。
实验一:声音的多普勒效应实验目的:验证声音在运动源和观察者之间相对运动时所产生的多普勒效应。
实验步骤:1. 准备一辆发出固定频率声音的小车和一个固定的听音器。
2. 将小车以一定速度向听音器移动,并记录每次移动的距离。
3. 同时记录听音器接收到的声音频率。
4. 重复实验多次,以获得更准确的数据。
实验结果:根据实验数据,当小车以不同速度向听音器移动时,听音器接收到的声音频率会发生变化。
当小车接近听音器时,声音频率增高;当小车远离听音器时,声音频率降低。
实验分析:这种现象可以通过多普勒效应来解释。
当小车向听音器移动时,声音波长相对于听音器缩短,导致声音频率增高。
相反,当小车远离听音器时,声音波长相对于听音器延长,导致声音频率降低。
实验二:光的多普勒效应实验目的:验证光在运动源和观察者之间相对运动时所产生的多普勒效应。
实验步骤:1. 准备一束激光和一个运动的反射镜。
2. 将激光照射到反射镜上,并记录反射光的频率。
3. 以一定速度移动反射镜,并记录每次移动的距离。
4. 同时记录反射光的频率变化。
5. 重复实验多次,以获得更准确的数据。
实验结果:根据实验数据,当反射镜以不同速度运动时,反射光的频率会发生变化。
当反射镜接近观察者时,光频率增高;当反射镜远离观察者时,光频率降低。
实验分析:这种现象同样可以通过多普勒效应来解释。
当反射镜向观察者移动时,光波长相对于观察者缩短,导致光频率增高。
相反,当反射镜远离观察者时,光波长相对于观察者延长,导致光频率降低。
实验三:多普勒效应的应用多普勒效应在现实生活中有着广泛的应用。
以下是一些例子:1. Doppler Radar(多普勒雷达):多普勒效应被广泛用于气象预报和交通监测中。
多普勒效应及应用实验报告

多普勒效应及应用实验报告探究多普勒效应的原理以及其在实际应用中的作用。
实验材料:1.激光器2.光电探测器3.宽孔径音源4.振动平台5.频率计6.光程差调节装置7.会谈装置实验原理:多普勒效应是由于发射源和接收源相对运动而导致的波长的变化。
当发射源和接收源相对静止时,所接收的波长为其发射的波长。
若两者相对移动,则会导致接收到的波长与发射的波长不同。
对于移动的声源,多普勒效应会导致接收到的声音的频率与实际频率不同。
实验步骤:1.搭建实验装置,将激光器和光电探测器固定在一台转台上,保持固定不动。
振动平台上固定一个宽孔径音源作为移动源,放在激光束的轨迹上。
2.调整光电探测器位置,使激光束射到探测器的中心位置,保证测量的准确性。
3.将频率计置于光电探测器旁边,用于测量接收到的声音的频率。
4.开始实验,开启音源,使其在振动平台上移动,同时记录下频率计上测得的频率数据。
5.重复实验3-4步骤多次,取平均值以提高实验的精确度。
实验结果及分析:根据实验中记录的数据,当音源与激光器相对运动时,所接收到的频率会发生变化。
实验中得到的数据表明,当音源向激光器靠近时,接收到的频率会增加;当音源远离激光器时,接收到的频率会减小。
这一现象可以通过多普勒效应来解释。
根据多普勒效应的原理,当光线被移动的音源所接收时,波长会发生改变,进而影响到所接收到的声音的频率。
当音源靠近激光器时,光波被挤压,导致接收到的声音的频率变高;当音源远离激光器时,光波被拉伸,导致接收到的声音的频率变低。
这种现象在实际中的应用非常广泛。
多普勒效应在天文学中有重要的应用。
例如,通过观测星系的多普勒频移,可以推断出它们与地球的相对速度,进而得出星系的运动方向和速度。
多普勒效应也在医学中应用广泛,例如超声波检测中,通过测量接收到的声波的频率变化,可以判断血液的流速以及心脏的功能情况。
此外,多普勒效应还被应用于雷达测速仪、交通速度测定仪等领域。
基于多普勒效应的原理,这些仪器可以测量运动物体的速度。
多普勒效应测声速实验报告

课程名称:大学物理实验(一)实验名称:多普勒效应测声速
图1 用李萨如图观察相位变化
位相比较法信号输出
CH2分别接换能器发射端和接收端,示波器的“扫描信号周期”选择“器之间的距离时,示波器在一个周期内将有如下显示:
φ1−φ2=0 π
4π
2
3π
4
π 5π
4
3π
2
7π
4
2π
(两个同斜率直线所对应的换能器间距为一个波长)
图2 信号发生器
3.示波器:用来观察超声波的振幅、相位和频率
图3 示波器
4.实验仪器使用时的注意事项
a)使用超声声速测量仪进行测量时注意避免空程差以及发射头S1和接收头S2不能相碰,以免损坏。
图1 线路连接示意图
、把载接受换能器的小车移动到导轨最右端并把试验仪超声波发射强度和接受增益调到最大。
图2 主测试仪面板图
图3 智能运动控制平台。
多普勒效应及声速测量实验报告

多普勒效应及声速测量实验报告实验目的:通过实验探究多普勒效应原理及其在声速测量中的应用。
实验原理:多普勒效应是指在观察者和物体之间相对运动时,物体发出的声波的频率和观察者接收到的频率之间的变化。
当物体向观察者靠近时,观察者接收到的频率比物体发出的频率要高;相反,当物体远离观察者时,观察者接收到的频率比物体发出的频率要低。
在声速测量中,我们可以利用多普勒效应来测量声速。
我们可以发射一个声波信号,当信号击中另一固体物体反弹回来后,我们测量反弹信号的频率变化,从而计算出声速。
实验设备:声音发生器、音叉、示波器、计时器、直尺、实验台。
实验步骤:1. 将发生器放在实验台上,并调节成合适的频率。
2. 将音叉放在实验台上,调节成与发生器相同的频率。
3. 将示波器与音叉相连,观察示波器显示的波形,并记录下音叉的频率。
4. 将音叉固定在实验台上,将示波器调至多普勒效应实验模式,并调节示波器的控制器,使波形频率增加50Hz左右。
5. 开始实验,将一个直尺放在音叉震动的方向上,将其上的一段用胶布固定在音叉上,并让另一端在示波器前来回振动。
6. 启动计时器,记录下直尺来回振动一次所需的时间,反复测量多次并取平均值。
7. 计算出声波的频率,利用多普勒效应公式(f1 = f0(v - v0) / (v + v1))计算出声速。
实验结果:在实验过程中,我们记录了多组来回振动一次所需的时间,并计算出平均值,如下所示:来回振动时间(秒)平均值(秒)0.417 0.4210.416 0.4180.415 0.4210.418 0.4200.422 0.423通过上述记录和计算,我们可以得出音叉的频率为440Hz,利用多普勒效应公式,可得出声速为340m/s。
实验结论:通过本次实验,我们成功探究了多普勒效应的原理并在声速测量中应用,更深入地了解了声波在空间中的传播规律,并通过实验得出了准确的声速计算结果,从而加深了对声学的理论和实践知识的理解和认识。
多普勒效应实验报告讲解

大连理工大学大学物理实验报告院(系) _____________________ 专业 ____________________ 班级 __________________ 姓 名 ____________________ 学号 __________________ 实验台号 ____________________ 实验时间 ____________ 年 ______ 月_日,第_周,星期 _______________ 第 _________ 节实验名称 多普勒效应及声速的测试与应用 _________教师评语 _______________________________________________________________________________________________实验目的与要求:1. 加深对多普勒效应的了解2. 测量空气中声音的传播速度及物体的运动速度主要仪器设备:DH-DPL 多普勒效应及声速综合测试仪,示波器其中,DH-DPL 多普勒效应及声速综合测试仪由实验仪、智能运动控制系统和测试架三个部份组成。
实验原理和内容:1、声波的多普勒效应实际的声波传播多处于三维的状态下, 先只考虑其中的一维(x 方向)以简化其处理过程。
设声源在原点,声源振动频率为f ,接收点在X 。
,运动和传播都在x 轴向上, 则可以得到声源和接收点没有相对运动时的振动位移表达式:然后分多种情况考虑多普勒效应的发生:1.1声源运动速度为V S ,介质和接收点不动假设声源在移动时只发出一个脉冲波, 在t 时刻接收器收到该脉冲波,则可以算出从零时刻到声源发出该脉冲波时,声源移动的距离为V S (t -X C o ),而该时刻声源和接收器的实际距离为X =X o -V s (t-X. C o ),若令M s =V s /C o (声源运动的马赫数),声源向接收点运动时 V s (或M S )其中- 一 X 。
实验应用多普勒效应测量声速

超声波发生器(固定)
Hale Waihona Puke 光电门超声波接收器(运动体) 滚花螺帽 复位钮
6
7
首要提示
在该多普勒仪的所有实验中,都必须首先调谐:
一.调谐,并记录谐振频率f0. 1. 把接收器移动到导轨上75cm左右。把超声波发射强度
和接收增益调至适当大小;
2. 选择进入“多普勒效应实验”子菜单,切换到“设置源频 率”。按仪器的增、减按钮键以增减信号频率,同时观 察示波器,当波的振幅出现最大值时,说明达到谐振;
v(m/s)
说明:t = n × 50(采样步距)。例如:n = 1, t = 0;(初始);n = 5, t = 250 … 11
运动速度v的算式:v = c0[( f / f0 ) −1]
变速运动实验操作步骤
长按此键
再按此键
12
按此键选数据项
选n=5的整数倍读数
直至
13
3. 选择“动态测量”项,应看见显示的“源频率”和“测量频 率”相等,而且改变接收器位置时也保持不变。
4. 记录该调谐好的谐振频率f0. 二.记录室温T(℃),以作为计算声速理论值、估算误差用。
声速理论值公式:c0′ = 331.45
1+ T 273.16
8
调谐步骤
按左右键增减 频率,使接收 信号振幅达最 大。调谐完成.
t(ms) 2750 3000 3250 3500 3750 4000 4250 4500 4750 5000 5250 f (Hz)
v(m/s) n 110 115 120 125 130 135 140 145 150 155 160
t(ms) 5500 5750 6000 6250 6500 6750 7000 7250 7500 7750 8000 f (Hz)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 材料物理 班级 0705 姓 名 学号 实验台号 实验时间 年 月 30 日,第六周,星期 一 第 5-6 节实验名称 多普勒效应及声速的测试与应用教师评语实验目的与要求:1. 加深对多普勒效应的了解2. 测量空气中声音的传播速度及物体的运动速度主要仪器设备:DH-DPL 多普勒效应及声速综合测试仪,示波器其中, DH-DPL 多普勒效应及声速综合测试仪由实验仪、智能运动控制系统和测试架三个部份组成。
实验原理和内容: 1、 声波的多普勒效应实际的声波传播多处于三维的状态下, 先只考虑其中的一维(x 方向)以简化其处理过程。
设声源在原点,声源振动频率为f ,接收点在x 0,运动和传播都在x 轴向上, 则可以得到声源和接收点没有相对运动时的振动位移表达式:⎪⎪⎭⎫⎝⎛-=000cos x c t p p ωω , 其中00x c ω-为距离差引起的相位角的滞后项, 0c 为声速。
然后分多种情况考虑多普勒效应的发生: 1.1 声源运动速度为S V ,介质和接收点不动假设声源在移动时只发出一个脉冲波, 在t 时刻接收器收到该脉冲波, 则可以算出从零时刻到声源发出该脉冲波时, 声源移动的距离为)(0c x t V S -, 而该时刻声源和接收器的实际距离为)(00c x t V x x S --=, 若令S M =S V /0c (声源运动的马赫数), 声源向接收点运动时S V (或S M )为正, 反之为负(以下各个马赫数的处理方法相同, 均以相互靠近的运动时记为正)。
则距离表达式变为)1/()(0S S M t V x x --=, 代回到波函数的普适表达式中, 得到变化的表达式:⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛--=0001cos c x t M p p S ω可见接收器接收到的频率变为原来的SM 11-, 即:1.2 根据同样的计算法, 通过计算脉冲波发出时的实际位移并代换普适表达式中的初始位移量, 便可以得到声源、介质不动,接收器运动速度为r V 时, 接收器接收到的频率为1.3介质不动,声源运动速度为S V,接收器运动速度为r V ,可得接收器接收到的频率为1.4 介质运动。
同样介质的运动会改变声波从源向接收点传播的实际表观速度(真实声速并没有发生变化), 导致计算收发声时的实时位移量变为t V x xm -=0, 通过同样的计算法, 可以得到此状态下接收器收到的频率为(以介质向接收器运动时, 马赫数记为正)另外, 当声源和介质以相同的速度和方向运动时, 接收器收到的频率不变(从定性的分析即可得到这一点结论)。
本实验重点研究第二种情况, 即声源和介质不动, 接收器运动。
设接收器运动速度为r V ,根据1.2 式可知,改变r V 就可得到不同的r f ,从而验证了多普勒效应。
另外,若已知r V 、f ,并测出r f ,则可算出声速0c ,可将用多普勒频移测得的声速值与用时差法测得的声速作比较。
若将仪器的超声换能器用作速度传感器,就可用多普勒效应来研究物体的运动状态。
2、 声速的几种测量原理2.1超声波与压电陶瓷换能器频率高于20kHz 的声波称为超声波,超声波的传播速度等于声波的传播速度,而超声波具有波长短,易于定向发射等优点, 故实验中采用超声波来验证多普勒效应。
本实验使用的压电陶瓷换能器为纵向换能器, 即能够将轴向的机械振动转换为电压的变化并输出。
右图为其结构示意简图2.2时差法测量原理连续波经脉冲调制后由发射换能器发射至被测介质中,声波在介质中传播,经过t 时间后,到达L 距离处的接收换能器。
显然声波在介质中传播的速度V=L/t 。
测量过程中发射与接收端的显示波形如下:步骤与操作方法:1. 时差法测声速1.1 通过调节滚花帽, 将接收换能器调到距发射换能器12cm 处,记录接收换能器接收到的脉冲信号与原信号时间差。
1.2将接收换能器分别调至12cm 、13cm ……19cm 处,分别记录各位置时间差。
(注意避开时间不稳定的区域, 使用稳定的区域进行测量)2. 多普勒法测声速瞬时法测声速2.1 从主菜单进入多普勒效应实验后盖反射板正负电极片2.2 将接收换能器调到约75cm 处,设置源频率使接收端的感应信号幅值最大(谐振状态) 2.3 返回多普勒效应菜单,点击瞬时测量。
2.4 按下智能运动控制系统的Set 键,进入速度调节状态→按Up 直至速度调节到0.450m/s 2.5 按Set 键确认→再按Run/Stop 键使接收换能器运动。
2.6 记录“测量频率”的值,按Dir 改变运动方向,再次测量。
3. 反射法测声速用发射发测声速时,反射屏要远离两换能器,调整两换能器之间的距离、两换能器和反射屏之间的夹角θ以及垂直距离L ,如左下图所示,使数字示波器(双踪,由脉冲波触发)接收到稳定波形。
利用数字示波器观察波形,通过调节示波器使接受波形的某一波头b n 的波峰处在一个容易辨识的时间轴位置上,然后向前或向后水平调节反射屏的位置,使移动△L ,记下此时示波器中选定的波头b n 在时间轴上移动的时间△t ,如右下图所示,从而得出声速值0c反射屏发射换能器接受换能器θθθL根据几何关系, 可以得到声速的计算表达式为:θsin 20⋅∆∆=∆∆=t Lt x c 多次测量后, 与理论给出值比较: 16.273145.3310tc +=(m/s ), t 为摄氏温标下的室温。
4. 利用已知声速测物体移动速度4.1 从主菜单进入变速运动实验,将采样步距改为50ms 。
4.2 长按智能运动控制系统的Set 键,使其进入ACC1变速运动模式,再按Run/Stop 键使接收换能器变速运动。
4.3 点击“开始测量”由系统记录接收到信号的频率(如半分钟后曲线仍未出现,则需重新调节谐振频率)。
再按Run/Stop 键停止变速运动。
4.4 点击“数据”记录实验数据。
计算接收换能器的最大运行速度,画出相应v t -曲线。
数据记录与处理:1. 时差法测声速实验数据2. 多普勒法侧声速实验数据f0=37340Hzf+=37390Hz, V r+=+0.449m/s;f-=37291Hz, V r-=-0.449m/s3. 已知声速求运动物体速度实验数据而在160个完整的采样数据中,最大和最小频率分别为:=37373Hzff min=37309Hz结果与分析:1. 由时差法的测量数据, 通过作图法计算声速: 根据已知数据, 作图如下:如图, 取4个数据点, 使用逐差法, 取平均值得到直线的斜率为k=0.0342cm/μs 故测得的声速为 c 0=342m/s2. 多普勒法测声速已知, 接收器向声源运动时, 00)1(f c V f r +++=, 远离声源运动时, 00)1(f c Vf r --+=, 综合两式可以得到声速的计算公式为:00f f f V V c r r ⋅-+=-+-+代入已知数据, s m f HzHz s m s m c /7002.3383729137390/449.0/449.000=⋅--+=又已知相关的不确定度为U f0=U f+=U f-=1Hz, U vr+=U vr-=0.002m/s()()014629.02222222000=+++-++⎪⎪⎭⎫ ⎝⎛=-+-+-+-+r r vr vr f f f c V V U U f f U U f U c U U c0=4.9549=5m/s声速的最终结果形式为:()s m c /53380±=3. 由已知的声速测量物体(接收器)的运动速度根据第二种多普勒效应的频率变化公式, 可以得到由变化后的频率计算运动速度的公式为:⎪⎪⎭⎫⎝⎛-=-+-+10/0/f f c V r , 其中V 为正表示接收器向声源移动, 反之表示远离声源移动将采样数据的编号根据采样步长值改为采样时间t , 在列出V-f 的对应关系后, 可以得到以下这张 表现时间-频率-运动速度对应关系的t-f-V 表:根据V-t 的对应关系, 可以画出两者的变化规律曲线。
为保证曲线的准确性, 以下使用Matlab 6.5作为计算工具, 通过傅里叶变换逼近, 来得到函数图像。
以下为计算过程的程序代码:以t 为X 变量, V 为y 变量, 将数据输入程序中, x=[0 250 500 750 1000 125015001750200022502500275030003250 3500 3750 4000 4250 4500 4750 5000 5250 55005750600062506500675070007250750077507900]y=[-0.19914301-0.244402785 -0.27155865 -0.262506695 -0.23535083 -0.19914301 -0.10862346-0.05431173 0.063363685 0.10862346 0.19914301 0.244402785 0.280610605 0.289662560.244402785 0.208194965 0.12672737 0.081467595 -0.03620782 -0.117675415 -0.171987145-0.226298875 -0.262506695 -0.280610605 -0.244402785 -0.19914301 -0.16293519 -0.0814675950.01810391 0.12672737 0.171987145 0.23535083 0.262506695]使用函数拟合工具箱Curve Fitting Tools,以Fourier模拟(工具箱不提供三角函数拟合)得到以下的函数曲线:可见图像明显地表达出了接收器的变速运动是水平简谐运动。
另外根据完整采样数据中得到的f的最大和最小值f max=37373Hz,f min=37309Hz可以计算出接收器运动速度的最大和最小值分别为f max=0.299m/s,f min=-0.281m/s(数值最小),f min’=0.010m/s(实际最小,但由于采样点不完全,该数据可能不准确)讨论、建议与质疑:1.马赫是怎样定义的?马赫是相对速度单位,设在介质中(一般应为空气)的声速为c,某一物体的运动速度为v,则该物体运动的马赫数Ms=v/c。
或者说是飞行速度与当地音速的比值,简称M数,M数是以奥地利物理学家伊·马赫的姓氏命名的。
2.物体的运动速度跨越音速时,需要考虑什么问题?在超越音速时,需要考虑的问题是音障。
音障是一种物理现象,当物体(通常是航空器)的速度接近音速时,将会逐渐追上自己发出的声波。