《圆柱的体积》突破重难点教学设计新部编版
《圆柱的体积》教案(版)

一、教学目标1. 知识与技能:(1)让学生掌握圆柱体积的概念及计算公式。
(2)培养学生运用圆柱体积公式解决实际问题的能力。
2. 过程与方法:(1)通过观察、操作、交流等活动,引导学生发现圆柱体积的计算规律。
(2)培养学生运用数学知识进行推理、归纳的能力。
3. 情感态度与价值观:(1)激发学生学习数学的兴趣,培养其积极思考、勇于探索的精神。
(2)培养学生合作学习、乐于分享的良好品质。
二、教学重点与难点1. 教学重点:(1)圆柱体积的概念及计算公式。
(2)运用圆柱体积公式解决实际问题。
2. 教学难点:(1)圆柱体积公式的推导过程。
(2)运用圆柱体积公式进行灵活计算和解决问题。
三、教学准备1. 教具:圆柱模型、长方体模型、正方体模型、直尺、圆规等。
2. 学具:每个学生准备一个圆柱模型、一张白纸、一支笔。
四、教学过程1. 导入新课(1)教师出示圆柱模型,引导学生观察圆柱的特征。
(2)提问:同学们,你们能说出圆柱的体积是什么吗?2. 探究圆柱体积的计算方法(1)教师引导学生思考:圆柱的体积与哪些因素有关?(2)学生分组讨论,总结出圆柱体积与底面半径、高有关。
(3)教师引导学生推导圆柱体积公式:V = πr²h。
3. 运用圆柱体积公式解决问题(1)教师出示实际问题,如:一个底面半径为5cm,高为10cm的圆柱,它的体积是多少?(2)学生独立计算,分享解题过程和答案。
五、课堂小结1. 教师引导学生回顾本节课所学内容,总结圆柱体积的概念、计算公式及运用。
2. 学生分享自己在课堂上的收获和感受。
3. 教师鼓励学生课后运用圆柱体积公式解决更多实际问题,提高数学素养。
六、教学拓展1. 教师引导学生思考:圆柱的体积公式还可以应用于哪些几何图形?2. 学生分组讨论,发现圆锥和圆柱的体积公式类似,都是与底面半径和高有关。
3. 教师出示圆锥体积公式:V = 1/3πr²h,引导学生理解两者的联系和区别。
七、课堂练习1. 教师出示练习题目,要求学生独立完成。
《圆柱的体积》数学教学设计(优秀4篇)

《圆柱的体积》数学教学设计(优秀4篇)《圆柱的体积》数学教案篇一教学目标:1、使学生能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力4、渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:灵活应用圆柱的体积公式解决实际问题。
教学过程:一、复习1、复习圆柱体积的推导过程长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积高,所以圆柱的体积=底面积高,即V=Sh。
2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。
二、解决实际问题1、练习三第7题。
学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。
2、练习三第5题。
(1)指导学生变换公式:因为V=Sh,所以h=VS。
也可以列方程解答。
(2)学生选择喜爱的方法解答这道题目。
3、练习三第8题。
(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。
(2)在充分理解题意后学生独立完成,集体订正。
4、练习三第9、10题(1)学生独立审题,完成9、10两题。
(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。
利用这个底面积再求出另一个圆柱的体积。
三、布置作业完成一课三练的相关练习。
《圆柱的体积》数学教案篇二一、教学目标(一)知识与技能用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。
(二)过程与方法经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。
(三)情感态度和价值观通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。
《圆柱的体积》教学设计

《圆柱的体积》教学设计教学设计:圆柱的体积一、教学目标1. 知识与技能:学生能够理解圆柱的定义、性质和体积的公式,能够熟练计算圆柱的体积。
2. 过程与方法:通过实际操作和问题解决,培养学生的观察、分析、推理和解决问题的能力。
3. 情感态度与价值观:培养学生对数学的兴趣,发展学生的数学思维和创造性思维,增强学生的数学自信心。
二、教学重点和难点教学重点:圆柱的定义、性质和体积的计算公式。
教学难点:将所学的知识应用到实际问题中进行计算。
三、教学过程1. 导入新知识教师引导学生回顾在之前学习的几何知识中,圆的周长和面积的计算。
然后提问:“如果我们把一个圆沿着一条直线旋转一圈,形成一个圆柱体,你知道如何计算这个圆柱的体积吗?”通过提问,激发学生对圆柱体积的好奇心和求知欲。
2. 讲解圆柱的定义和性质教师通过图示和实物,向学生介绍圆柱的定义、性质和常见的实际应用场景,如石筛、汽车的活塞和钢琴等。
通过实物的展示和讲解,让学生对圆柱有一个直观的认识。
3. 计算圆柱的体积教师向学生介绍圆柱的体积计算公式:V=πr²h,然后通过例题的讲解,教导学生如何使用公式计算圆柱的体积。
在讲解的过程中,教师引导学生注意单位换算和保留有效数字的方法。
4. 小组讨论和练习教师设计小组讨论和练习环节,让学生在小组中互相讨论和交流,加深对圆柱体积计算方法的理解和掌握。
在讨论的过程中,教师可以提供不同难度的问题,让学生进行深入思考和解决。
5. 实际问题解决教师设计一些实际问题,引导学生将所学的知识应用到实际问题中进行计算,加深对知识的理解和应用能力的培养。
例如:某市政府要在一个公园里修建一个水池,该水池为圆柱形,半径为6米,深度为4米,问需要多少水才能将水池填满?通过这样的问题,学生可以将所学的知识应用到实际生活中,增强对知识的运用能力。
6. 总结和反思教师引导学生对本节课的知识进行总结和归纳,并进行思考和反思,让学生自己总结学习的体会和心得。
圆柱的体积教案优秀3篇

圆柱的体积教案优秀3篇《圆柱的体积》的教学设计篇一一、教学对象及学习内容特点分析:圆柱的体积是小学立体几何图形中的重要内容之一,是已学的长方体知识和将学的圆椎体知识的桥梁,其公式是长方体、正方体体积公式V=Sh的延续。
二、教学目的:学生能借助媒体提供的资源理解和掌握圆柱体积的计算公式。
学生能应用圆柱体积公式进行圆柱体积的计算。
学生能利用知识之间相互转化的思想探索解决新的问题。
三、教学基本指导思想、教学策略和方法:整个过程,充分利用计算机的优点,以小组学习的形式,发挥学生的主体作用,教师是学生学习过程的组织者和辅导者。
长方体的体积公式和平面图形的面积公式已学过,因此引导学生用转化的思想去学习,并创设情景,让学生自己发现问题,利用电脑、课本、实物提供的资源协商解决问题,使全体学生都成为学习的主人。
四、教学运用的主要手段、技术、材料:电脑网络、实物投影、圆柱体。
五、教学过程的设想和点评教师的教学行为学生的学习行为点评第一阶段:创设情景,设疑引趣。
教师故事引入:圆柱形状的转笔刀和浆糊笔迎着朝阳高高兴兴上学了,走着走着,它们就为哪个体积大而争论起来,转笔刀很自信地说:看我这么胖,肯定是我的体积大!浆糊笔很不服气地说:我比你高多了,一定是我的体积大!就这样你一言我一语,争论了很久还没个结果。
提问:小组讨论寻找解决这两个圆柱体积大小的方法。
1、学生小组讨论解决的方法。
2、小结归纳:解决圆柱的体积的方法:寻找一种方法,导出圆柱的体积公式,然后应用公式求圆柱的体积。
通过情景的创设,激发学生的学习热情,让他们发现问题,并通过讨论找出解决的方法,使学生从被动学习变为主动学习,学生对这节课的学习也从宏观上得到了解。
学生解决问题的方法有出人意料的回答,老师根据情况,给予恰当的鼓励性的评价,以激发学生的思维。
第二阶段:自主探究。
概括规律1、电脑提供学生探索资源:(1)平面图形(长方形、正方形、平行四边形、三角形、梯形、圆形)面积公式和立体图形(长方体、正方体)体积公式的导出过程。
圆柱的体积⑴数学教案

圆柱的体积⑴数学教案标题:圆柱的体积数学教案一、教学目标:1. 知识与技能:- 学生能够理解和掌握圆柱体的概念。
- 学生能熟练运用公式计算圆柱体的体积。
2. 过程与方法:- 通过实际操作,引导学生探索和理解圆柱体的体积公式。
- 通过问题解决,培养学生分析问题和解决问题的能力。
3. 情感态度与价值观:- 培养学生的观察力和空间想象力。
- 增强学生对数学学习的兴趣和自信心。
二、教学重难点:重点:理解并掌握圆柱体的体积公式。
难点:运用公式解决实际问题。
三、教学过程:(一)导入新课教师展示一些生活中常见的圆柱形物体,如水杯、铅笔等,提问:“这些物体有什么共同的形状?”引导学生回答出“圆柱形”。
(二)新知讲解1. 引导学生回忆学过的平面图形面积公式,特别是圆形面积公式,并提出问题:“如果将这个圆形沿直径旋转一周,会形成什么立体图形?”引发学生思考,得出结论——圆柱体。
2. 接着,教师演示如何用一个圆形绕其直径旋转一周得到一个圆柱体,让学生直观感知圆柱体的形成过程。
3. 教师介绍圆柱体的定义:以矩形的一边为轴旋转一周所形成的立体图形叫做圆柱体。
然后请学生观察并描述圆柱体的特征。
4. 提出问题:“我们已经知道如何求圆的面积,那么如何求圆柱体的体积呢?”激发学生思考。
5. 教师解释圆柱体的体积公式V=πr²h,并进行推导。
先让学生回顾圆的面积公式S=πr²,然后指出圆柱体的底面积就是圆的面积,所以底面积为πr²;又因为圆柱体的高是h,所以圆柱体的体积V就是底面积乘以高,即V=πr²h。
(三)课堂活动1. 让学生分组,每组准备一张纸,一支铅笔,一把直尺和一个圆规。
让他们按照刚才的方法制作一个圆柱体,然后测量并计算其体积。
2. 组织学生进行讨论,分享他们的实验结果,以及在计算过程中遇到的问题和解决办法。
(四)巩固练习提供一些关于圆柱体体积的题目,让学生进行解答,以此来检查他们是否掌握了本节课的知识点。
《圆柱的体积》教案【优秀7篇】

《圆柱的体积》教案【优秀7篇】作为一名优秀的教育工作者,很有必要精心设计一份教案,教案有助于学生理解并掌握系统的知识。
来参考自己需要的教案吧!为您精心收集了7篇《《圆柱的体积》教案》,在大家参考的同时,也可以分享一下给您的好友哦。
《圆柱的体积》数学教案篇一教学目标:1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、进一步提高学生解决问题的能力。
教学重、难点:1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、理解圆柱体积公式的推导过程。
教学准备:圆柱切割组合模具、小黑板。
教学过程:一、创设情境,生成问题1、什么是体积?(物体所占空间的大小叫做物体的体积。
)2、长方体的体积该怎样计算?归纳到底面积乘高上来。
3、圆的面积怎样计算?二、探索交流,解决问题1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?(启发学生思考。
)2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。
3、思考:(1)圆柱切开后可以拼成一个什么形体?(长方体)(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。
(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。
近似长方形的高就是圆柱的高,没有变化。
)4、推导圆柱体积公式小组讨论:怎样计算圆柱的体积?学生汇报讨论结果。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。
师:圆柱的体积怎样计算?用字母公式,怎样表示?板书:V=Sh5、算一算:已知一根柱子的底面半径为0.4米,高为5米。
圆柱的体积教学设计新部编版.

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《圆柱的体积》教学设计学情分析六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。
教学目标:知识与技能1、通过教学,使学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题;过程与方法:2、使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力。
情感态度与价值观3、培养学生初步的空间概念、动手能力、操作能力和逻辑思维推理能力。
教学重点:掌握和运用圆柱体积计算公式进行正确计算。
教学难点:理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。
教学准备:1、用于演示把圆柱体积转化成长方体体积的教具。
2、多媒体课件。
教学过程:一、复习导入、揭示课题谈话:前几节课我们已经认识了圆柱体,学会了计算圆柱的侧面积、底面积和表面积,今天这节课我们继续来研究圆柱的体积。
同学们回忆一下,什么叫体积?(指名回答,生:物体所占空间的大小叫做体积。
)我们学会计算哪些立体图形的体积呢?(指名学生回答,教师演示课件。
根据学生的回答,板书:长方体的体积=底面积×高)1、呈现长方体、正方体和圆柱的直观图。
2、揭题:老师为大家准备了长方体、正方体、圆柱。
其中我们学过了长方体和正方体的体积计算方法。
大家想不想知道圆柱体的体积计算方法?今天我们一起来探索圆柱体积的计算方法。
(板书课题:圆柱的体积)3、教师:在研究这个问题之前,我们先来复习一下,圆的面积是怎样计算的呢?圆的面积计算公式是怎样推导出来的?(学生:把一个圆,平均分成若干个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径。
2023最新-六年级数学教案《圆柱的体积》【优秀9篇】

六年级数学教案《圆柱的体积》【优秀9篇】作为一名教学工作者,常常要写一份优秀的教案,借助教案可以让教学工作更科学化。
那么教案应该怎么写才合适呢?这次为您整理了六年级数学教案《圆柱的体积》【优秀9篇】,如果对您有一些参考与帮助,请分享给最好的朋友。
《圆柱的体积》教案篇一教学目标1.使学生理解和掌握圆柱的体积计算公式,能运用公式计算圆柱的体积、容积,解决一些简单的实际问题。
2.渗透极限思想,发展学生的空间观念。
3、培养学生仔细计算的良好习惯。
重难点1、圆柱体体积的计算2、圆柱体体积公式的推导教学过程一、复习导入1.解答下面各题(1)圆的半径是2厘米。
圆的面积是多少平方厘米?(2)一个长方体,底面积是20平方米,高是2米,体积是多少?2.导入我们以前学过了长方体、立方体的体积的计算方法,都可以用公式V=SH进行计算,圆柱体的体积又该怎样计算呢?这节课我们一起来研究圆柱体体积的'计算方法。
(揭示课题)二、探索新知1.公式推导(1)自学课本,初步感知圆柱是怎样转化成长方体的,让学生去发现两柱体之间的联系。
(2)操作研讨:演示操作,讨论:拼成的长方体跟圆柱体有什么异同点?异:长方体变成圆柱体。
同:体积、底面积、高都相同。
(3)比较归纳在自学、操作、观察、讨论的基础上得出:圆柱体体积=圆柱底面积圆柱的高V=SH2.公式应用(1)例1.读题,学生独立解答,板演、反馈,说说列式依据与应注意的问题。
(单位)类似题练习:书本试一试和练一练请同学板演计算的过程,并说明列式的依据。
同学之间评。
(3).深入练习,书本第5题。
(4)实际应用:测量生活中常见圆柱物体:茶叶罐、搪瓷杯,学生自由选择。
量底面直径和高,并计算它的体积。
三、课堂总结回顾学习全过程,知道求圆柱体积所需要的条件。
质疑问难。
四、布置作业作业本一面。
《圆柱的体积》教案篇二教学内容:教科书第8~9页的圆柱体积公式的推导和例4,完成练习二的第1~4题。
教学目标:1、通过学生动手操作,分组交流,探究出圆柱体体积的计算方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师学科教案[ 20 – 20 学年度第__学期]
任教学科:_____________
任教年级:_____________
任教老师:_____________
xx市实验学校
《圆柱的体积》突破重难点教学设计
本节课主要任务是探索圆柱体积的计算公式。
学生在已掌握了圆柱的特征,会计算圆柱的侧面积、表面积,已初步理解长(正)方体的体积和容积的含义,掌握了长(正)方体的体积计算方法;这些知识都是学习圆柱体积的基础。
教材结构层次清楚,让学生回忆求长(正)方体的体积计算公式及圆面积公式的推导过程,再提出把圆柱转化成已学过的长(正)方体图形来求出它的体积,使学生充分经历观察、比较、归纳、概括的过程,通过教具、媒体的演示,学生实践操作拼、摆推导出圆柱的体积计算公式v圆柱=sh,发展学生的空间观念和推理能力。
教学目标:
(一)知识与技能:
1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2、探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简的的实际问题
(二)过程与方法:
1、通过观察,认识圆柱并掌握它的特征,建立空间观念。
2、培养学生的空间观念及有序的观察、分析、比较、概括的能力。
3、培养学生的迁移类推能力和动手操作能力。
(三)情感态度与价值观:
1、体会类比、转化等思想,初步发展推理能力。
2、使学生感悟到美源于生活,显示对美的追求,提高审美意识。
学习者特征分析:
六年级的学生已经掌握了一些数学基础知识和学习数学的基本方法,具备了一些基本的解决数学问题的能力和技巧。
大部分学生具有较强的自我发展意识,对有挑战性的任务很感兴趣。
这使得我们在学习活动的安排上除了关注数学的用处之外,也应当设法给学生经历做数学的机会,使他们能够在这些活动中表现自我、发展自我,从而感受到数学学习是很重要的活动,初步形成并学会数学的思考。
此外,学生已经学过长方体等基础的立体图形,因此对本节课的内容理解起来并不是很困难,关键是如何利用他们对实践及探究活动的热情,让他们在活动中建立数学模型的数学发展的过程。
教学重点难点:
圆柱体积计算公式的推导过程并能正确应用。
教学策略的选择与设计
学习过程中,通过课件创设的情境充分调动学生各知觉器官,做到"细观察、多动手、勤思考".通过观察、猜想、探究、推理、模仿、体验等方法完
成本节知识的学习。
本节课采用“问题导学,自主探索” 的教学模式,采用情境探究法、谈话法等,使学生在自主探究的过程中完成学习的任务。
教学资源选择
多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具
教学过程:
一、创设情境,激疑引入
“水是生命之源!”节约用水是我们每个公民应尽的义务。
如果一个没有拧紧的水龙头,你们看,一刻钟就滴了这么多的水。
1、出示装了水的圆柱容器。
我们想知道这一刻钟的流水量的体积是多少?你们有办法吗?(1)启发思考:容器里面的水形成了什么形状?(圆柱)(2)讨论后汇报:
①用量筒或量杯直接量出它的体积;
②用秤称出水的重量,然后进一步知道体积;
③把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。
教师引导:现在老师只有这些工具(圆柱形容器,长方形容器,半圆形容器和其他不规则容器),你怎么办?
2、创设问题情境。
(课件显示)如果要求某些建筑中圆柱形柱子的体积,或是求压路机圆柱形大前轮的体积,能用同学们想出来的办法吗?
今天,就让我们来研究解决任意圆柱体积的方法。
(板书课题:圆柱的体积)
二、经历体验,探究新知
1、回顾旧知,帮助迁移
(1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系?
启发学生回忆得出:圆柱的上下两个底面是圆形;侧面展开是长方形:所以……
(2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。
配合学生回答演示课件。
2、小组合作,探究新知
(1)启发猜想:我们要解决圆柱的体积的问题,可以怎么办?
(2)学生以小组为单位操作体验。
把圆柱的底面积分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。
使学生进一步明确分的份数越多,也就越接近长方体。
同时演示一组动画(将圆柱底面等分成32份、64等份、128等份……)学生小组汇报交流
教师根据学生汇报,课件演示。
(3)概括板书:根据圆柱与近似长方体的关系,推导公式:
长方体的体积=底面积×高
圆柱的体积=底面积×高
用字母表示计算公式V=sh
三、实践应用,巩固新知。
1、运用公式,尝试解答。
(1)出示算一算,学生读题后解答。
(2)练习:第9页试一试第1、2题。
2、实践练习。
提供在创设情景中圆柱形接水容器的内底面直径和高。
这个圆柱形容器,内底面直径是10厘米,高12厘米,水面高度10厘米。
3、课堂作业
第9页练一练第1、2题。
四、课堂小结
这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱、长方体)得出了圆柱体的体积计算公式V=Sh。
五、布置作业
六、板书设计
圆柱的体积
长方体的体积=底面积×高
圆柱的体积=底面积×高
V=S×h
长方体的体积=底面积×高
圆柱的体积=底面积×高
V=S×h。