圆柱的体积教案

合集下载

《圆柱的体积》教案(版)

《圆柱的体积》教案(版)

一、教学目标1. 知识与技能:(1)让学生掌握圆柱体积的概念及计算公式。

(2)培养学生运用圆柱体积公式解决实际问题的能力。

2. 过程与方法:(1)通过观察、操作、交流等活动,引导学生发现圆柱体积的计算规律。

(2)培养学生运用数学知识进行推理、归纳的能力。

3. 情感态度与价值观:(1)激发学生学习数学的兴趣,培养其积极思考、勇于探索的精神。

(2)培养学生合作学习、乐于分享的良好品质。

二、教学重点与难点1. 教学重点:(1)圆柱体积的概念及计算公式。

(2)运用圆柱体积公式解决实际问题。

2. 教学难点:(1)圆柱体积公式的推导过程。

(2)运用圆柱体积公式进行灵活计算和解决问题。

三、教学准备1. 教具:圆柱模型、长方体模型、正方体模型、直尺、圆规等。

2. 学具:每个学生准备一个圆柱模型、一张白纸、一支笔。

四、教学过程1. 导入新课(1)教师出示圆柱模型,引导学生观察圆柱的特征。

(2)提问:同学们,你们能说出圆柱的体积是什么吗?2. 探究圆柱体积的计算方法(1)教师引导学生思考:圆柱的体积与哪些因素有关?(2)学生分组讨论,总结出圆柱体积与底面半径、高有关。

(3)教师引导学生推导圆柱体积公式:V = πr²h。

3. 运用圆柱体积公式解决问题(1)教师出示实际问题,如:一个底面半径为5cm,高为10cm的圆柱,它的体积是多少?(2)学生独立计算,分享解题过程和答案。

五、课堂小结1. 教师引导学生回顾本节课所学内容,总结圆柱体积的概念、计算公式及运用。

2. 学生分享自己在课堂上的收获和感受。

3. 教师鼓励学生课后运用圆柱体积公式解决更多实际问题,提高数学素养。

六、教学拓展1. 教师引导学生思考:圆柱的体积公式还可以应用于哪些几何图形?2. 学生分组讨论,发现圆锥和圆柱的体积公式类似,都是与底面半径和高有关。

3. 教师出示圆锥体积公式:V = 1/3πr²h,引导学生理解两者的联系和区别。

七、课堂练习1. 教师出示练习题目,要求学生独立完成。

数学《圆柱的体积》教案教学设计

数学《圆柱的体积》教案教学设计

数学《圆柱的体积》优秀教案教学设计一、教学目标:知识与技能目标:让学生掌握圆柱体积的计算公式,能运用公式计算圆柱的体积。

过程与方法目标:通过观察、操作、探究等环节,培养学生的空间想象力、逻辑思维能力和解决问题的能力。

情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学与生活的紧密联系。

二、教学重点与难点:重点:圆柱体积公式的推导过程和应用。

难点:圆柱体积公式的记忆和灵活运用。

三、教学准备:教师准备:圆柱体积的课件、实物模型、计算器等。

学生准备:笔记本、笔、小组合作学习资料。

四、教学过程:环节一:导入新课利用课件展示生活中的圆柱物体,如饮料瓶、圆柱形笔筒等,引导学生观察这些物体的特征,引出圆柱的概念。

环节二:探究圆柱体积公式1. 教师展示圆柱体积的课件,引导学生观察圆柱的体积变化规律。

2. 学生分组讨论,探讨如何计算圆柱的体积。

3. 各小组汇报讨论成果,教师点评并总结圆柱体积的计算公式。

环节三:巩固知识1. 教师布置练习题,让学生运用圆柱体积公式计算相关问题。

2. 学生独立完成练习题,教师巡回指导。

3. 全班交流答案,教师点评解答过程。

环节四:拓展与应用1. 教师出示实际问题,让学生运用圆柱体积公式解决。

2. 学生小组合作,探讨解决问题的方法。

3. 各小组汇报解答过程,教师点评并总结。

五、课后作业:1. 请学生总结圆柱体积公式的推导过程和应用。

2. 完成课后练习题,巩固圆柱体积的计算方法。

3. 观察生活中的圆柱物体,记录其体积和底面半径、高之间的关系。

教学反思:本节课通过观察、操作、探究等环节,使学生掌握了圆柱体积的计算方法,能够在实际问题中灵活运用。

但在教学过程中,要注意引导学生观察生活中的圆柱物体,加深对圆柱体积公式的理解和记忆。

针对不同学生的学习情况,给予个别化指导,提高教学效果。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况、小组合作表现等,评价学生的学习态度和积极性。

《圆柱的体积》教学设计6篇

《圆柱的体积》教学设计6篇

《圆柱的体积》教学设计6篇《圆柱的体积》教学设计6篇《圆柱的体积》教学设计1 教材简析:本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积,第十一册圆柱的体积公开课。

教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比拟找两个图形之间的关系,可推导出圆柱的体积计算公式。

教学目的:1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。

2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。

3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的才能4.借助实物演示,培养学生抽象、概括的思维才能。

教具:圆柱的体积公式演示教具,多媒体课件教学过程:一、情景引入1、出示圆柱形水杯。

〔1〕老师在杯子里面装满水,想一想,水杯里的水是什么形状的?〔2〕你能用以前学过的方法计算出这些水的体积吗?〔3〕讨论后汇报:把水倒入长方体容器中,量出数据后再计算。

〔4〕说一说长方体体积的计算公式。

2、创设问题情景。

〔课件显示〕假如要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚刚那样的方法吗?刚刚的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。

〔出示课题:圆柱的体积〕〔设计意图:问题是思维的动力。

通过创设问题情景,可以引导学生运用已有的生活经历和旧知,积极考虑,去探究和解决实际问题,并能制造认知冲突,形成"任务驱动"的探究气氛。

〕二、新课教学:设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,如今能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来讨论这个问题。

板书课题:圆柱的体积。

1.探究推导圆柱的体积计算公式。

《圆柱的体积》数学教案设计

《圆柱的体积》数学教案设计

《圆柱的体积》数学教案设计一、教学目标1. 让学生理解圆柱体积的概念,掌握圆柱体积的计算公式。

2. 培养学生运用数学知识解决实际问题的能力。

3. 培养学生的空间想象能力和动手操作能力。

二、教学内容1. 圆柱体积的概念。

2. 圆柱体积的计算公式。

3. 圆柱体积公式的应用。

三、教学重点与难点1. 教学重点:圆柱体积的概念,圆柱体积的计算公式及应用。

2. 教学难点:圆柱体积公式的推导过程,圆柱体积在实际问题中的应用。

四、教学方法1. 采用直观演示法,让学生通过观察、操作,理解圆柱体积的概念。

2. 采用探究法,引导学生通过小组合作、讨论,推导出圆柱体积的计算公式。

3. 采用案例教学法,让学生通过解决实际问题,运用圆柱体积公式。

五、教学准备1. 圆柱模型、正方体模型、长方体模型。

2. 圆柱体积计算公式海报。

3. 实际问题案例。

教案内容请参考下述格式:【引入部分】1. 引导学生观察圆柱模型、正方体模型、长方体模型,提问:这些立体图形有什么共同特点?它们各自的体积如何计算?2. 学生回答后,总结:今天我们要学习的是圆柱的体积。

【自主学习】1. 学生自主探究圆柱体积的概念,思考:什么是圆柱的体积?2. 学生分享探究成果,教师总结圆柱体积的概念。

【课堂讲解】1. 教师讲解圆柱体积的计算公式,引导学生理解公式中各部分的含义。

2. 学生跟随教师一起推导圆柱体积的计算公式。

【动手操作】1. 学生分组进行动手操作,使用圆柱模型测量并计算体积。

2. 学生展示操作成果,教师点评并指导。

【应用拓展】1. 教师出示实际问题案例,引导学生运用圆柱体积公式解决问题。

2. 学生分组讨论,分享解题思路和答案。

【课堂小结】1. 教师带领学生回顾本节课所学内容,总结圆柱体积的概念、计算公式及应用。

2. 学生谈收获,教师给予鼓励和评价。

【课后作业】1. 学生回家后,完成课后练习,巩固圆柱体积的知识。

2. 家长签字确认,教师批改并反馈。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。

数学圆柱的体积教案优秀8篇

数学圆柱的体积教案优秀8篇

数学圆柱的体积教案优秀8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!数学圆柱的体积教案优秀8篇作为一名老师,很有必要精心设计一份教案,教案是保证教学取得成功、提高教学质量的基本条件。

《圆柱的体积》教案【优秀7篇】

《圆柱的体积》教案【优秀7篇】

《圆柱的体积》教案【优秀7篇】作为一名优秀的教育工作者,很有必要精心设计一份教案,教案有助于学生理解并掌握系统的知识。

来参考自己需要的教案吧!为您精心收集了7篇《《圆柱的体积》教案》,在大家参考的同时,也可以分享一下给您的好友哦。

《圆柱的体积》数学教案篇一教学目标:1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、进一步提高学生解决问题的能力。

教学重、难点:1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、理解圆柱体积公式的推导过程。

教学准备:圆柱切割组合模具、小黑板。

教学过程:一、创设情境,生成问题1、什么是体积?(物体所占空间的大小叫做物体的体积。

)2、长方体的体积该怎样计算?归纳到底面积乘高上来。

3、圆的面积怎样计算?二、探索交流,解决问题1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?(启发学生思考。

)2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。

3、思考:(1)圆柱切开后可以拼成一个什么形体?(长方体)(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。

(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。

近似长方形的高就是圆柱的高,没有变化。

)4、推导圆柱体积公式小组讨论:怎样计算圆柱的体积?学生汇报讨论结果。

长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。

师:圆柱的体积怎样计算?用字母公式,怎样表示?板书:V=Sh5、算一算:已知一根柱子的底面半径为0.4米,高为5米。

《圆柱的体积》教案优秀5篇

《圆柱的体积》教案优秀5篇

《圆柱的体积》教案优秀5篇《圆柱的体积》教案篇一教学目标:1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。

2.方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。

3情感、态度、价值观:创设情境,激发学生学习的积极性。

让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。

教学重点和难点:圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。

教具:圆柱的体积公式演示教具,圆柱的体积公式演示课件教学过程:一、教学回顾1、交代任务:这节课我们来学习《圆柱的体积》。

2、回忆导入(1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?(2)、我们都学过那些立体图形的体积公式。

二、积极参与探究感受1、猜测圆柱的。

体积和那些条件有关。

(电脑演示)2、.探究推导圆柱的体积计算公式。

小组合作讨论:(1)将圆柱体切割拼成我们学过的什么立体图形?(2)切拼前后的两个物体什么变了?什么没变?(3)切拼前后的两个物体有什么联系?课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份?),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。

①把圆柱拼成长方体后,形状变了,体积不变。

(板书:长方体的体积=圆柱的体积)②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。

配合回答,演示课件,闪烁相应的部位,并板书相应的内容。

)③圆柱的体积=底面积×高字母公式是V=Sh(板书公式)2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?3、要用这个公式计算圆柱的体积必须知道什么条件?三、练习1、填空(1)、圆柱体通过切拼转化成近似的()体。

这个长方体的底面积等于圆柱体的(),这个长方体的高等于圆柱体()。

《圆柱的体积》教案(15篇)

《圆柱的体积》教案(15篇)

《圆柱的体积》教案(15篇)《圆柱的体积》教案1教学目标:1、使同学掌控圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。

2、让同学经受观测、操作、争论等数学活动过程,理解圆柱体积公式的推导过程,引导同学探讨问题,体验转化和极限的思想。

3、在图形的变换中,培育同学的迁移技能、规律思维技能,并进一步进展其空间观念,领悟学习数学的方法,激发同学爱好,渗透事物是普遍联系的唯物辨证思想。

教学重点:圆柱体积计算公式的推导过程并能正确应用。

教学难点:借助教具演示,弄清圆柱与长方体的关系。

教具预备:多媒体课件、长方体、圆柱形容器假设干个;同学预备推导圆柱体积计算公式用学具。

教学设想:《圆柱的体积》是同学在有了圆柱、圆和长方体的相关的基础上进行教学的。

在知识与技能上,通过对圆柱的详细讨论,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经受和体验中思索,培育同学科学的思维方法;贴近同学生活实际,创设情境,解决问题,表达数学知识从生活中来到生活去的理念,激发同学的学习爱好和对科学知识的求知欲,使同学乐于探究,擅长探究。

教学过程:一、创设情境,激疑引入水是生命之源!节省用水是我们每个公民应尽的义务。

前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。

1、出示装了水的圆柱容器。

〔1〕启发思索:容器里面的水形成了什么外形?〔圆柱〕你能知道这些水的体积?〔2〕争论后汇报生1:用量筒或量杯径直量出它的体积;生2:用秤称出水的重量,然后进一步知道体积;生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。

师:现在老师只有这些工具〔圆柱形容器,长方形容器,半圆形容器和其他不规章容器〕,你怎么办?生1:把水到入长方体容器中生2:我们学过了长方体的体积计算,只要量出长、宽、高就行[设计意图:通过本环节,给同学创设一个生活中的情境,提出问题,学习身边的数学,激起同学的学习爱好;依据需要渗透圆柱体〔新问题〕和长方体〔已知〕的知识联系为所学内容作了铺垫的预备]2、创设问题情境。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱的体积教案
教学内容:圆柱体积公式的推导
教学目的:
1. 通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积
公式,使学生理解圆柱的体积公式的推导过程。

2.能够运用公式正确地计算圆柱的体积。

教具准备:圆柱的体积公式演示课件
教学过程:
一、复习回顾
1、圆柱的侧面积怎么求?
(圆柱的侧面积=底面周长×高。

)
2、长方体的体积怎样计算?
学生回答,教师引导学生想到长方体和正方体体积的统一公式“底面积×高”。

板书:长方体的体积=底面积×高
3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高?
二、回忆导入
师:请大家想一想,我们在学习圆的面积时,是怎样把因变成已学过的图形再计算面积的?
让学生回忆,说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

师:今天将要学习的圆柱的体积大家能不能把圆柱转化成我们已经学过的图形来求出它的体积?
学生相互讨论,思考应怎样进行转化。

说出自己想到的方法。

师:这节课我们就让我们一起来研究圆柱的体积。

板书课题:圆校的体积
三、新课讲授
师:看到这个标题你想知道的什么?
学生回答后老师出示教学目标及重难点
1、圆柱体积计算公式的推导。

师出示一个圆柱,让学生观察底面提问:“大家看,这是不是一圆?”(是。

)“这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?”
学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。

然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。

展示给学生看,问:现在把底面切成了16份,应该怎样把它拼成一个长方形?
学生回答后,老师操作演示,“大家看,圆柱的底面被拼成了什么图形?”生:长方形。

师:大家再看看整个圆柱,它又被拼成了什么形状?
(有点接近长方体:)
师:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。

师:把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求?
引导学生想到由于体积没有发生变化,所以可以通过求切拼后的长方体的体积来求圆柱的体积。

师:“长方体的体积等于什么?”让全班学生齐答,教师接着板书:“长方体的体积=底面积×高”。

师:请大家观察,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系?
通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

板书:圆柱的体积=底面积×高
师:如果用V表示圆柱的体积,S表示圆柱的底面积,H表示圆柱的高,可以得到圆柱的体积公式;V=SH(板书)
2、公式应用
出示例4。

(1)教师指名学生分别回答下面的问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?
通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。

(2)出示下面几种解答方案,让学生判断哪个是正确的?
①V=SH=50×2.1=105
答:它的体积是105立方厘米。

②2.1米;210厘米
V=SH=50×210=10500
答:它的体积是10500立方厘米。

③50平方厘米=0,5平方米
V=SH=0.5×2,1=1.05
答:它的体积是1.05立方米。

④50平方厘米=0.005平方米
V=SH=0.005×2.1=0.0105立方米
答:它的体积是0.0105立方米。

先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。

对不正确的说说错在什么地方。

四、巩固练习:
1、做“做一做”的第1题。

让学生独立做后集体订正。

2、完成练习八的1、2题
这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。

要求学生审题后,知道底面直径的要先求出底面积,再求圆柱的体积。

3、能力扩展
五:课堂总结:
通过这节课的学习,你有什么收获?你是怎样联系学过的知识进行学习的。

六:布置作业:
练习十一的第1—2题。

这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。

要求学生审题后,知道底面直径的要先求出底面积,再求圆柱的体积。

相关文档
最新文档