定时器的结构和工作原理

合集下载

80c51单片机定时器计数器工作原理

80c51单片机定时器计数器工作原理

80c51单片机定时器计数器工作原理80C51单片机是一种常用的微控制器,其定时器/计数器(Timer/Counter)是实现定时和计数功能的重要组件。

以下简要介绍80C51单片机定时器/计数器的工作原理:1. 结构:定时器/计数器由一个16位的加法器构成,可以自动加0xFFFF(即65535)。

定时器/计数器的输入时钟可以来自系统时钟或外部时钟源。

2. 工作模式:定时模式:当定时器/计数器的输入时钟源驱动加法器不断计数时,可以在达到一定时间后产生中断或产生其他操作。

计数模式:当外部事件(如电平变化)发生时,定时器/计数器的输入引脚可以接收信号,使加法器产生一个增量,从而计数外部事件发生的次数。

3. 定时常数:在定时模式下,定时常数(即定时时间)由预分频器和定时器/计数器的初值共同决定。

例如,如果预分频器设置为1,定时器/计数器的初值为X,那么实际的定时时间 = (65535 - X) 预分频系数输入时钟周期。

在计数模式下,定时常数由外部事件发生的时间间隔决定。

4. 溢出和中断:当加法器达到65535(即0xFFFF)时,会产生溢出,并触发中断或其他操作。

中断处理程序可以用于执行特定的任务或重置定时器/计数器的值。

5. 控制寄存器:定时器/计数器的操作可以通过设置相关的控制寄存器来控制,如启动/停止定时器、设置预分频系数等。

6. 应用:定时器/计数器在许多应用中都很有用,如时间延迟、频率测量、事件计数等。

为了充分利用80C51单片机的定时器/计数器功能,通常需要根据实际应用需求配置和控制相应的寄存器,并编写适当的软件来处理定时器和计数器的操作。

单片机定时器实验原理

单片机定时器实验原理

单片机定时器实验原理一、概述单片机定时器是单片机的重要组成部分,它能够实现定时控制、时间间隔生成等功能。

通过单片机定时器实验,可以更好地了解单片机的内部结构和工作原理,为进一步开发单片机应用系统打下坚实的基础。

二、实验目的1. 掌握单片机定时器的结构和原理。

2. 学会使用单片机定时器进行时间间隔控制。

3. 了解单片机定时器的应用范围和限制。

三、实验原理1. 单片机定时器的结构单片机定时器通常由一个计数器和一个控制逻辑组成。

计数器负责记录脉冲数,控制逻辑负责控制计数器的计数和复位。

单片机定时器通常采用可编程计数脉冲,可以实现任意时间间隔的生成。

2. 单片机定时器的原理单片机定时器的工作原理是基于计数器的计数。

当单片机接收到一个启动信号时,计数器开始计数,当计数达到预设的时间间隔时,单片机输出相应的信号或执行相应的操作。

通过改变计数器的预设值,可以改变时间间隔的长短。

3. 单片机定时器的应用单片机定时器在许多领域都有应用,如智能家居、工业控制、通信设备等。

在智能家居中,可以通过单片机定时器控制家电设备的开启和关闭;在工业控制中,可以通过单片机定时器实现生产线的自动化控制;在通信设备中,可以通过单片机定时器实现时间戳的生成和数据传输的时间控制。

四、实验步骤1. 准备实验器材和软件环境,包括单片机、定时器芯片、编程器、开发板等。

2. 连接实验设备,并调试确保连接正常。

3. 编写实验程序,并上传到单片机中。

4. 观察并记录实验结果,分析误差原因。

5. 根据实验结果,调整程序参数,进行多次实验,直到达到满意的效果。

五、实验注意事项1. 实验过程中要保持设备连接的稳定性,避免意外断开。

2. 编程和调试过程中要确保程序正确,避免误操作导致设备损坏。

3. 注意观察实验现象,及时记录实验数据,分析实验结果。

4. 实验结束后,要清理实验现场,确保设备复位。

六、实验结果分析通过实验,我们能够得到较为准确的时间间隔控制结果。

plc定时器的工作原理

plc定时器的工作原理

plc定时器的工作原理PLC定时器是工业自动化控制系统中常用的一种设备,它的工作原理是通过控制输入信号和运算逻辑来实现定时功能。

本文将从定时器的基本原理、工作方式和应用领域等方面进行详细介绍。

一、定时器的基本原理PLC定时器是一种基于时序控制的装置,它的主要功能是按照预设的时间参数进行计时,并在满足条件时输出控制信号。

定时器一般由计数器和比较器组成,其中计数器用于计时,比较器用于比较计数器的值与预设的时间参数。

定时器的计数器可以根据不同的需求选择不同的计时单位,常见的有毫秒、秒、分钟等。

比较器通常与计数器相连,当计数器的值与预设的时间参数相等时,比较器会输出一个信号,触发相应的操作。

二、定时器的工作方式PLC定时器可以分为两种工作方式:基于触发和基于间隔。

1. 基于触发的定时器基于触发的定时器是指在接收到触发信号后开始计时,当计时器的值达到预设的时间参数时,触发器会输出一个控制信号。

这种定时器常用于需要根据外部事件触发的应用场景,如按下按钮后延时启动某个设备。

2. 基于间隔的定时器基于间隔的定时器是指定时器按照设定的时间间隔进行计时,当计时器的值达到预设的时间参数时,触发器会输出一个控制信号。

这种定时器常用于需要定时执行某些任务的应用场景,如定时检测设备状态、定时采集数据等。

三、定时器的应用领域PLC定时器广泛应用于工业自动化控制系统中,其应用领域包括但不限于以下几个方面:1. 生产线控制在生产线控制中,定时器常用于控制机械设备的启停时间,以及产品在各个工位的停留时间。

通过合理设置定时器的参数,可以实现生产线的自动化控制,提高生产效率。

2. 温度控制在温度控制系统中,定时器常用于控制加热设备的工作时间。

通过定时器的计时功能,可以实现定时开启或关闭加热设备,从而控制温度在设定范围内波动,保持恒温效果。

3. 照明控制在照明控制系统中,定时器常用于控制灯光的开关时间。

通过定时器的计时功能,可以按照预设的时间参数自动开启或关闭灯光,实现节能环保的效果。

定时器计数器的结构及工作原理课件

定时器计数器的结构及工作原理课件
定时器计数器的结构 及工作原理
xx年xx月xx日
• 定时器计数器概述 • 定时器计数器的结构 • 定时器计数器的工作原理 • 定时器计数器的应用实例 • 定时器计数器的性能指标与选择
目录
01
定时器计数器概述
定义与作用
定义
定时器计数器是一种用于测量时 间间隔的电子设备,它能够记录 和比较时间,并产生相应的控制 信号。
控制部分
触发器
根据输入信号和控制逻辑,触发定时 器开始计时。
计数控制逻辑
决定计数器的启动、暂停、复位等操 作,确保定时器按照预设要求工作。
计数部分
计数器
核心部件,用于记录输入信号的脉冲数,通常采用二进制形式进行计数。
计数器容量
决定计数器的最大计数值,影响定时器的计时范围。
输出部分
计时显示
显示当前计数值或已计时的时间,便于用户观察。
输出控制
根据计数值或预设条件,输出相应的控制信号或报警信号。
03
定时器计数器的工作原理
工作流程
启动
启动定时器计数器开始计时。
溢出/下溢
当定时器计数器的值达到预设 的上限或下限时,产生溢出或 下溢事件。
初始化
设定定时器计数器的初始值和 模式。
计时
定时器计数器根据设定的模式 进行递增或递减计数。
停止
在计时过程中,可以随时停止 定时器计数器。
工作方式
01
02
03
递增计数
定时器计数器的值从初始 值开始递增,直到达到预 设的上限。
递减计数
定时器计数器的值从初始 值开始递减,直到达到预 设的下限。
循环计数
定时器计数器的值在预设 的上限和下限之间循环递 增或递减。

机械定时器原理

机械定时器原理

机械定时器原理
机械定时器是一种基于机械结构的计时装置,用于控制电路或机械设备的开关时间。

它的工作原理是通过机械元件的运动,使得信号的通断发生变化,从而实现计时功能。

机械定时器通常由几个关键的机械部件组成,包括齿轮,摆线装置和触发装置。

首先,齿轮是机械定时器的中心部件,用于控制时间间隔。

齿轮上有不同数量的齿,当齿轮转动时,齿与触发装置进行接触,触发装置通过识别齿的数量来计算时间。

其次,摆线装置是用于引导齿轮转动的装置。

摆线装置通过一个滑动组件将连续的旋转运动转化为往复运动,使得齿轮能够逐渐累积运动并推动其他装置的运动。

最后,触发装置是机械定时器的关键组件之一,用于控制开关的状态。

触发装置根据齿轮的位置和数量来判断是否触发开关,当齿轮上的齿与触发装置接触时,会改变开关的状态。

整个机械定时器的工作流程如下:当齿轮开始转动时,摆线装置将旋转运动转化为往复运动,并推动触发装置的运动。

触发装置通过识别齿轮上的齿的数量来判断时间间隔,并在设定的时间到达时触发开关的状态改变。

总的来说,机械定时器通过齿轮、摆线装置和触发装置的相互
协作来实现计时功能。

它简单可靠,常用于各种场合,如家用电器、照明设备、工业制造等。

冰箱定时器工作原理

冰箱定时器工作原理

冰箱定时器工作原理
冰箱的定时器是一种控制器,用于管理冷却系统的工作时间和间隔。

其工作原理如下:
1. 定时器的基本构造是由计时芯片和电子电路组成。

计时芯片是一个微型集成电路,内部有一个可以准确计时的时钟。

电子电路用于连接冷却系统和计时芯片,并提供电源。

2. 当冰箱需要开始制冷时,定时器会启动。

这可以通过冰箱的温度控制系统中的传感器或开关触发。

一旦触发信号到达定时器,计时芯片开始计时。

3. 计时芯片根据预设的时间参数来确定运行时间。

这些参数可以通过接入电路进行设置,通常是通过旋钮或按钮来调节。

一旦计时器达到设定的运行时间,它会触发开关,切断电源供应给冷却系统。

4. 定时器会进入休眠状态,直到下一个制冷周期到来。

间隔时间可以通过内部设置来规定,一般是固定的,例如每隔一小时或每隔半天。

5. 当下一个制冷周期开始时,定时器会重新启动,计时芯片开始计时,冷却系统重新运行。

6. 延迟启动功能也可能包含在定时器中。

这意味着当触发信号到达定时器时,它会等待一段时间再启动冷却系统。

这个延迟时间可以通过内部设置来调节,以满足用户的需求。

总的来说,冰箱定时器通过计时芯片和电子电路的协作,控制制冷系统的工作时间和间隔,以达到节省能源和保持合适温度的目的。

定时器的工作原理

定时器的工作原理

定时器的工作原理定时器是一种常见的电子元件,它在各种电子设备中都有着重要的作用。

它能够按照预设的时间间隔来产生触发信号,从而控制设备的工作。

在本文中,我们将深入探讨定时器的工作原理,以便更好地理解它在电子领域中的应用。

定时器的工作原理其实非常简单,它主要由振荡器、分频器和触发器组成。

首先,振荡器会产生一个稳定的高频信号,然后经过分频器进行频率分频,最终得到我们需要的时间间隔。

接着,触发器会根据设定的时间间隔产生触发信号,从而控制其他电路的工作。

在振荡器中,常用的元件有晶体振荡器和RC振荡器。

晶体振荡器由晶体和放大器组成,它能够产生非常稳定的高频信号,因此在精密定时器中应用较多。

而RC振荡器则是利用电容和电阻的充放电时间来产生信号,它简单、成本低,但稳定性较差。

分频器的作用是将振荡器输出的高频信号进行分频,得到我们需要的时间间隔。

常见的分频器有二进制分频器和预置分频器,它们能够将高频信号按照2的幂次方进行分频,从而得到不同的时间间隔。

触发器则是根据设定的时间间隔产生触发信号,它有很多种工作方式,如单稳态触发器、双稳态触发器等。

在定时器中,我们常用的是双稳态触发器,它能够产生稳定的触发信号,并且具有较高的抗干扰能力。

总的来说,定时器的工作原理就是通过振荡器产生高频信号,经过分频器得到所需的时间间隔,然后触发器根据设定的时间间隔产生触发信号。

这样,定时器就能够精确地控制设备的工作,实现各种定时功能。

除了上述基本的工作原理外,定时器还可以根据具体的应用需求进行功能扩展,如加入计数器、比较器等元件,从而实现更复杂的定时控制。

在实际应用中,我们可以根据具体的需求选择不同类型的定时器,如555定时器、计时器芯片等,以满足不同的定时要求。

总之,定时器作为一种常见的电子元件,在各种电子设备中都有着重要的作用。

通过深入理解定时器的工作原理,我们可以更好地应用它,实现精确的定时控制,从而提高设备的性能和稳定性。

希望本文能够帮助读者更好地理解定时器,为实际应用提供帮助。

定时器定时的工作原理

定时器定时的工作原理

定时器定时的工作原理
定时器的工作原理是通过一个稳定的时钟源来计时,并在到达设定的时间时触发相应的事件。

具体而言,定时器一般由一个时钟、计时器、比较器和触发电路组成。

1. 时钟:定时器的时钟源一般由晶体振荡器提供,它产生一个稳定的时钟信号,通常以固定的频率振荡。

2. 计时器:计时器会根据时钟信号的输入进行计数,并保存当前的计数值。

计时器可以是二进制计数器,它能够按照二进制数进行累加计数。

3. 比较器:比较器用于比较计时器的计数值与设定的时间值。

当计时器的计数值达到设定的时间值时,比较器会输出一个触发信号。

4. 触发电路:触发电路接收比较器的输出信号,并根据需要进行相应的处理。

触发电路可以触发一个中断信号,从而通知处理器执行中断服务程序,也可以触发一个外部事件,如闹钟的响铃。

总的来说,定时器的工作原理是通过计时器和比较器的配合,利用时钟信号进行计数和比较,从而在到达设定的时间时触发相应的事件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.1 555定时器的结构和工作原理本节重点:
(1)脉冲的基本知识
(2)555电路的组成结构和工作原理
(3)555芯片引脚图
(4)555电路功能表
(5)555电路的典型应用
本节难点:
(1)555的内部电路组成和工作原理
(2)555电路的典型应用
引入:555定时器电路是一种中规模集成定时器,目前应用十分广泛。

通常只需外接几个阻容元件,就可以构成各种不同用途的脉冲电路,如多谐振荡器、单稳态触发器以及施密特触发器等。

555定时电路有TTL集成定时电路和CMOS集成定时电路,它们的逻辑功能与外引线排列都完全相同。

双极型产品型号最后数码为555,CMOS型产品型号最后数码为7555。

一、555电路的结构组成和工作原理
(1)电路组成及其引脚
(2)555的工作原理
它含有两个电压比较器,一个基本RS 触发器,一个放电开关T ,比较器
的参考电压由三只5K Ω的电阻器构成分压,它们分别使高电平比较器C1同相比
较端和低电平比较器C2的反相输入端的参考电平为Vcc 32和Vcc 3
1。

C1和C2的
输出端控制RS 触发器状态和放电管开关状态。

当输入信号输入并超过Vcc 32
时,
触发器复位,555的输出端3脚输出低电平,同时放电,开关管导通;当输入信
号自2脚输入并低于Vcc 31
时,触发器置位,555的3脚输出高电平,同时放电,
开关管截止。

D R 是复位端,当其为0时,555输出低电平。

平时该端开路或接Vcc 。

Vco 是控制电压端(5脚),平时输出Vcc 32
作为比较器A1的参考电平,当5
脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制,在不接外加电压时,通常接一个0.01F μ的电容器到地,起滤波作用,以消除外来的干扰,以确保参考电平的稳定。

T 为放电管,当T 导通时,将给接于脚7的电容器提供低阻放电电路. (3)555电路的引脚功能
二、555电路的应用
(1)用555电路构成施密特触发器
施密特触发器是数字系统中常用的电路之一,它可以把变化缓慢的脉冲波形变换成为数字电路所需要的矩形脉冲。

施密特电路的特点在于它也有两个稳定状态,但与一般触发器的区别在于这两个稳定状态的转换需要外加触发信号,而且稳定状态的维持也要依赖于外加触发信号,因此它的触发方式是电平触发。

施密特触发器电路图和波形图如图13-2-1所示,其回差电压为Vcc 3
1。

若在电压控制端⑤外接可调电压Vco (1.5~5V ),可以改变回差电压T V ∆,施密特触发器可方便的地把三角波转换成方波。

当输入信号Vcc Ui 3
1
<时,基本RS 触发器置1,即Q =0,Q=1,
输出O U 为高电平;若Ui 增加,使得Vcc Ui Vcc 32
31<<时,电路维持原态不变,输出O U 仍为高电平;如果输入信号增加
到Vcc Ui 32
≥时,RS 触发器置0,即Q=0,Q =1,输出O U 为低电平;Ui 再增加,只要满足
Vcc Ui 32≥,电路维持该状态不变。

若Ui 下降,只要满足Vcc Ui Vcc 3
2
31<<,电路状态仍
然维持不变;只有当Vcc Ui 3
1
=时,触发器再次置1,电路又翻转回输出为高电平的状态,工
作波形如图所示。

用(2)555电路构成多谐振荡器
① 电路组成: ② 工作原理:
(c )
i
u o
T +
T -
③主要参数计算:
改变1R 、2R 和C 的值,就可以改变振荡器的频率。

如果利用外接电路改变O C 端(5号端)的电位,则可以改变多谐振荡器高触发端的电平,从而改变振荡周期T 。

在实际应用中,常常需要调节1t 和2t 。

在此,引进占空比的概念。

输出脉冲的占空比为:
【例1】 图13-9所示为由555定时器构成的多谐振荡器。

已知Vcc=10v , C=0.1F μ,R1=15ΩK ,Ω=K R 242。

试求:多谐振荡器的振荡频率。

【解】:2
11
1w w t t T f +==
C R R t w )(7.0211+=
s 63101.010)2415(7.0-⨯⨯⨯+=
=2.73m
C R t w 227.0=
s 63101.010247.0-⨯⨯⨯⨯=
=1.68ms
uc DD
V 32(a) (b) 图1 用CC7555构成的多谐振荡器及工作波形
2
12
1
2112R R R R t t t q ++=+=
()C
R R C R C R R t t T )2(7.07.07.02122121+=++=+=
所以 Hz T f 3
10)68.173.2(11⨯+==
≅226.75Hz 学生联系:
(1)试用555定时器构成一个施密特触发器,画出连线图; (2)定性画出该施密特触发器的电压传输特性;
三、本节小结
(1)555电路的组成结构和工作原理 (2)555芯片引脚图 (3)555电路功能表 作业:课后习题 2、3。

相关文档
最新文档