linux中断总结
Linux 内核软中断(softirq)执行分析

Linux 内核软中断(softirq)执行分析Author: sinisterEmail: sinister@Homepage:Date: 2007-01-11本文对 Linux 内核软中断的执行流程进行了分析,并尽可能的结合当前运行环境详细地写出我的理解,但这并不表明我的理解一定正确。
这本是论坛里的一篇帖子,发出来是为了抛砖引玉,如果您在阅读本文时发现了我的错误,还望得到您的指正。
今天无意中看了眼 2.6 内核的软中断实现,发现和以前我看到的大不相同(以前也是走马观花,不大仔细),可以说改动很大。
连 softirq 的调用点都不一样了,以前是三个调用点,今天搜索了一下源代码,发现在多出了ksoftirqd 后,softirq 在系统中的调用点仅是在 ISR 返回时和使用了local_bh_enable() 函数后被调用了。
网卡部分的显示调用,我觉得应该不算是系统中的调用点。
ksoftirqd 返回去调用 do_softirq() 函数应该也只能算是其中的一个分支,因为其本身从源头上来讲也还是在 ISR 返回时irq_exit() 调用的。
这样一来就和前些日子写的那份笔记(Windows/Linux /Solaris 软中断机制)里介绍的 Linux 内核部分的软中断有出处了,看来以后讨论 Linux kernel 代码一定要以内核版本为前题,要不非乱了不可。
得买本 Linux 方面的书了,每次上来直接看相关代码也不是回事,时间也不允许。
//// do_IRQ 函数执行完硬件 ISR 后退出时调用此函数。
//void irq_exit(void){account_system_vtime(current);trace_hardirq_exit();sub_preempt_count(IRQ_EXIT_OFFSET);//// 判断当前是否有硬件中断嵌套,并且是否有软中断在// pending 状态,注意:这里只有两个条件同时满足// 时,才有可能调用 do_softirq() 进入软中断。
Linux网络疑难杂症解决断网问题的几个窍门

Linux网络疑难杂症解决断网问题的几个窍门在使用Linux操作系统时,有时会遇到网络连接断开的问题,这对于依赖网络工作的人来说是非常头疼的。
本文将分享几个解决Linux网络断网问题的窍门,希望能帮助读者尽快解决这一疑难杂症。
一、检查网络硬件连接网络连接出现问题的第一步是检查网络硬件连接,包括网线、网卡和路由器等设备。
确保网线插紧,网卡连接正常,路由器无故障,从而排除硬件连接问题对网络故障的影响。
二、使用ping命令检查网络连通性使用ping命令是一种简单有效的方法,可以检查Linux主机与其他设备的网络连通性。
在终端中执行ping命令,加上目标主机的IP地址或域名,如果能够连通,则表示无问题。
如果无法连通,请检查本地网络配置或目标主机是否正常。
三、检查网络配置文件Linux系统的网络配置文件位于/etc/network/interfaces文件中。
可以通过编辑此文件来检查和修改网络配置。
确保配置文件中指定的IP地址、子网掩码、网关等参数是正确的。
如果有任何更改,请使用sudo service networking restart命令重启网络服务以使更改生效。
四、重启网络管理服务有时,网络管理服务可能出现问题,导致网络连接断开。
可以尝试重启网络管理服务以解决这个问题。
通过执行sudo service network-manager restart命令,可以重新启动网络管理服务。
请注意,此命令可能因Linux发行版的不同而有所区别,请根据您所使用的发行版进行调整。
五、禁用IPv6IPv6是一种新的网络协议,用于替代IPv4。
虽然IPv6在未来是必要的,但当前仍有些网络环境对其支持存在问题。
尝试禁用IPv6可能会解决某些网络断开的问题。
可以通过编辑/etc/sysctl.conf文件,在末尾添加以下行来禁用IPv6:```net.ipv6.conf.all.disable_ipv6 = 1net.ipv6.conf.default.disable_ipv6 = 1```保存文件后,通过执行sudo sysctl -p命令使更改生效。
Linux中request_irq()中断申请与处理说明

Linux中request_irq()中断申请与处理说明1、中断的理解中断你可以理解为就是⼀种电信号,是由硬件设备产⽣的然后发送给处理器,处理器接收到中断后,就会马上向操作系统反映此信号,之后就是系统的⼯作了。
这⾥有两个注意的地⽅,第⼀中断是随时都可以产⽣,意味着中断的处理程序随时都可以执⾏,所以得保证中断处理程序能够快速执⾏,才可能尽快的恢复中断代码执⾏,所以中断代码尽量简短。
第⼆每⼀个中断都有⾃⼰唯⼀的数字标记,这样操作系统才能对症下药2、注册中断中断处理程序中断处理程序是管理硬件的驱动程序的组成部分,每⼀设备都有相关的驱动程序,驱动程序可以通过request_irq()函数注册⼀个中断处理程序,并且激活给定的中断线,来处理指定的中断,原型如下:int request_irq(unsigned int irq,irq_handler_t handler,unsigned long flags, const char *devname, void *dev_id)第⼀个参数irq表⽰要分配的中断号,就我⽬前所接触的都是预先已经预定好的,还没试着通过探测或者动态来确定中断号第⼆个参数handler是⼀个指针,指向处理这个中断的实际中断处理程序,只要操作系统⼀接收到中断,该函数就被调⽤,这个函数稍后讨论第三个参数flags中断处理程序的标志,这个标志可以是⼀个也可以是多个,列举⼏个最重要的标志:IRQF_DISABLED: 该标志被设置后,意味内核在处理中断处理程序本⾝的时候,禁⽌了其他所有的中断。
如果不设置,中断处理程序可以与除本⾝之外的其他任何中断同时运⾏。
显⽽易见我们⼀般不去这么野蛮的设置这个标志IRQF_TIMER:为系统定时器的中断处理⽽准备的IRQF_SHARED:这个中断标志经常能遇见,这个标志意思就是多个中断处理程序之间可以共享中断线,概括起来就是没有这个标志就只能独⾃⼀个⼈占⽤,标志了,就是很多⼈可以占⽤这个中断号来第四个才参数就是⾃定义与中断设备相关的⽂本了第五个参数dev,看到第三个参数中IRQF_SHARED时候,你会不会有这样的疑问,假如现在我要释放当前共享的指定这个中断程序时候,我如何释放?会不会把其他占⽤也会删除掉,这就是第五个参数的意义,如果中断线是共享的,那么就必须传递能够代表当前设备的唯⼀信息request_irq()成功返回0,如果返回⾮0,就表⽰有错误发⽣,这个时候你可以考虑当前中断是否被占⽤了,所以可以加上IRQF_SHARED标志3、中断处理程序这⾥延续上⾯的handler指针,原型如下:Static irqreturn_t intr_handler(int irq, void *dev)这⾥唠叨⼀下,不知道⼤家⾯试时候有没有遇到像这样的题⽬__interrupt double compute_area (double radius){double area = PI * radius * radius;printf(" Area = %f", area);return area;},指出上⾯中断函数出现的错误,不知道的就认真看下⾯的 O(∩_∩)O第⼀个参数irq就是这个处理程序要响应的中断号,这个我认为现在没有多⼤意义了,因为上⾯有讲述到第五个参数的意义第⼆个参数dev是⼀个通⽤的指针,同样的,还是将上⾯讲述到的第五个参数拿过来理解。
Linux中断-简单中断,以GPIO中断为例

Linux中断-简单中断,以GPIO中断为例Linux中断基础概念中断上下⽂Linux内核的中断回调可以有两部分,即上下⽂。
当中断⽐较简单时,可以只有上⽂。
⼀般中断上⽂是指由中断产⽣的回调函数直接执⾏的部分;中断下⽂在上⽂中启⽤调度,再由内核调度。
中断上⽂:处理尽可能少的任务,特点是响应速度快中断下⽂:处理耗时任务,可以被新的中断打断中断嵌套Linux中断现在不能嵌套,之前可以中断相关的函数及命令获取中断号如果是有设备树的内核,⼀般通过节点的interrupt-parent和interrupt属性来描述中断对GPIO来说,GPIO的节点可以作为中断控制器,⼀般由BSP⼚家编写<linux/of_irq.h>//从设备树的设备节点中获取中断号unsigned int irq_of_parse_and_map(struct device_node *dev, int index);//参数:dev设备节点,index索引(节点中interrupts属性可能包含多条中断信息,通过index确认)//返回值:中断号//如果是GPIO的话,可以不从设备树中获取int gpio_to_irq(unsigned int gpio);//参数:gpio的编号//返回值:gpio对应的中断号申请中断申请中断的函数int request_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char *name,void *dev);//参数://irq:要申请中断的中断号//handler:中断处理函数//flags:中断标志//name:中断名字,可在/proc/interrupts⽂件中看到对应的名字//dev:flags为IRQF_SHARED时,dev⽤来区分不同的中断。
⼀般将dev设置为设备结构体,传递给irq_handler_t的第⼆个参数//返回值:0申请成功,其他负值申请失败;如果返回-EBUSY标识已经被申请中断标志(申请中断函数的flags参数)定义在 include/linux/interrupt.h中常见的中断标志:标志功能IRQF_SHARED多个设备共享⼀个中断线,申请中断函数的dev参数是区分它们的唯⼀标志IRQF_ONESHOT单次中断,中断执⾏⼀次就结束IRQF_TRIGGER_NONE⽆触发IRQF_TRIGGER_RISING上升沿触发IRQF_TRIGGER_FALLING下降沿触发IRQF_TRIGGER_HIGH⾼电平触发IRQF_TRIGGER_LOW低电平触发中断处理函数使⽤request_irq申请中断的时候需要中断处理函数irq_handler_t来做参数,这⾥的irq_handler_t函数可以理解为中断上⽂的回调函数,发⽣中断时内核会调⽤处理函数。
论述linux操作系统处理中断的过程。

论述linux操作系统处理中断的过程。
Linux操作系统是一种开源的、自由的、类Unix操作系统,它的内核是由Linus Torvalds和全球志愿者团队开发的。
Linux内核的一个重要功能是处理中断,它可以使操作系统在执行某个任务时,直接响应外部的事件,如键盘输入、网络数据传输等。
本文将详细介绍Linux操作系统处理中断的过程。
1. 中断的概念中断是指计算机在执行某个任务时,被外部事件所打断,暂停当前任务的执行,转而去处理其他任务的一种机制。
中断可以分为硬件中断和软件中断两种。
硬件中断是指计算机硬件设备发出的中断信号,如键盘、鼠标、网络接口卡等。
当硬件设备发出中断信号时,CPU会暂停当前任务的执行,跳转到中断服务程序中去执行处理,处理完中断后再返回原来的任务。
软件中断是指操作系统内核发出的中断信号,可以通过系统调用的方式触发,如定时器中断、系统调用等。
软件中断和硬件中断的处理方式是相同的。
2. 中断的分类根据中断的优先级,中断可以分为以下几类:① 外部中断:由硬件设备发出,如键盘输入、鼠标移动、网络数据传输等,优先级最高。
② 内部中断:由软件程序触发,如定时器中断、系统调用等,优先级次之。
③ 异常中断:由于程序执行错误或硬件故障等原因而发生的中断,优先级最低。
3. 中断的处理过程在Linux操作系统中,中断处理的过程可以分为以下几个步骤:① 中断请求:当硬件设备发出中断请求信号时,会将中断请求信号发送给中断控制器,中断控制器会将中断请求信号发送给CPU。
② 中断响应:CPU接收到中断请求信号后,会暂停当前任务的执行,跳转到中断服务程序中去执行处理。
在跳转之前,CPU会将当前任务的上下文保存到内存中,以便后续恢复任务的执行。
③ 中断处理:中断服务程序会根据中断类型进行相应的处理,如读取键盘输入、发送网络数据等。
在处理过程中,中断服务程序可以访问进程内存空间、内核内存空间等,并可以与其他设备进行交互。
10-5 Linux操作系统 - 中断、异常及系统调用

10.5.4 中断上半部分的处理 一、 中断控制器 •每个硬件设备控制器都能通过中断请求线 发出中断请求(简称IRQ) •所有设备的中断请求线又连到中断控制器 的输入端。 •在x86单CPU的机器上采用两个8259A芯片作 为中断控制器,一主一从。
•当8259A有中断信号输入同时中断信号不被 屏蔽时,主8259A向CPU发出 INT信号,请求 中断。这时如果CPU是处于允许中断状况, CPU就会发信号给8259A进入中断响应周期。 •在对8259A芯片的初始化过程中,第n号中 断在IDT表中的向量号为 n+32
•IDT中向量号的使用情况如下: 0-31 异常与非屏蔽中断使用。 32-47 可屏蔽中断使用32至47 128(0x80)实现系统调用。 其余 未使用 •保存现场 发生异常时在核心栈的程序计数器eip的 值取决于具体情况。一般情况下eip保存的 下一条指令的地址,但对于页面异常,保存 的产生异常的这条指令的地址而不是下一条 指令的地址
中断向量表IDT •IDT是中断/异常处理在内核的入口。IDT表 项还记录了一些其它信息用以安全检查。 •IDT在系统初始化时创建。 •每个中断/异常都有一个向量号,该号的值 在0-255之间,该值是中断/异常在IDT中的 索引。 •每个中断/异常均有其相应的处理函数,中 断/异常在使用前必须在IDT中注册信息以保 证发生中断/异常时能找到相应的处理函数。
struct hw_interrupt_type { const char * typename; unsigned int (*startup)(unsigned int irq); void (*shutdown)(unsigned int irq); void (*enable)(unsigned int irq); void (*disable)(unsigned int irq); void (*ack)(unsigned int irq); void (*end)(unsigned int irq); void (*set_affinity)(unsigned int irq, unsigned long mask); };
linux中断处理流程

linux中断处理流程Linux中断处理流程Linux中断处理是操作系统中的一个重要组成部分,用于响应硬件设备的事件。
在Linux中,中断可以是外部中断,如硬件设备发送的中断信号,也可以是内部中断,如软件产生的异常或系统调用。
中断处理的目的是及时响应硬件设备的事件,并采取相应的措施来处理这些事件。
一、中断的触发中断是由硬件设备发送的一个信号,用于通知操作系统某个事件的发生。
这个信号可以是一个电平的变化,一个特定的数据包,或者一个指定的硬件寄存器的变化。
当硬件设备检测到某个事件发生时,它会向处理器发送一个中断信号,处理器会立即停止当前正在执行的任务,保存当前的上下文,并跳转到中断处理程序的入口点。
二、中断处理程序的执行中断处理程序是一个特殊的函数,负责处理中断事件。
当中断发生时,处理器会跳转到中断处理程序的入口点,并执行相应的代码。
中断处理程序的执行过程可以分为以下几个步骤:1. 保存上下文:在执行中断处理程序之前,处理器需要保存当前任务的上下文,包括程序计数器、寄存器和堆栈指针等。
这样可以确保在中断处理程序执行完成后,能够正确地返回到原来的任务。
2. 中断处理程序的执行:一旦保存了上下文,处理器就会执行中断处理程序的代码。
中断处理程序根据中断的类型,执行相应的操作。
例如,对于外部中断,中断处理程序可能需要读取硬件设备的状态,处理数据包或执行特定的操作。
对于内部中断,中断处理程序可能需要处理异常或系统调用。
3. 中断处理程序的结束:当中断处理程序执行完成后,处理器会恢复之前保存的上下文,并将控制权返回给原来的任务。
这样原来的任务就可以继续执行,而不会受到中断的影响。
三、中断处理的优先级在Linux中,中断处理有不同的优先级。
这是为了确保对于紧急事件的及时处理。
中断的优先级由硬件设备决定,通常是通过一个优先级编码器来实现的。
当多个中断同时发生时,处理器会按照优先级的顺序来处理中断。
高优先级的中断会立即被处理,而低优先级的中断则会被推迟到稍后处理。
linux中断处理之IRQ中断

linux中断处理之IRQ中断本文系本站原创,欢迎转载!转载请注明出处:/------------------------------------------一:前言在前一个专题里曾分析过所有IRQ中断处理流程,经过SAVE_ALL保存硬件环境后,都会进入do_IRQ()进行处理,今天接着分析do_IRQ()处理的相关东西.分为两部中断处理程序与软中断两个大的部份进行介绍.二:中断处理程序在驱动程序中,通常使用request_irq()来注册中断处理程序.我们先从注册中断处理程序的实现说起./*irq:可断号handler:中断处理程序irqflags:中断处理标志.SA_SHIRQ:共享中断线SA_INTERRUPT:快速处理中断必须在关中断的情况下运行.SA_SAMPLE_RANDOM:该中断可能用于产生一个随机数devname dev_id:设备名称与ID*/int request_irq(unsigned int irq,irqreturn_t (*handler)(int, void *, struct pt_regs *),unsigned long irqflags,const char * devname,void *dev_id){int retval;struct irqaction * action;#if 1if (irqflags & SA_SHIRQ) {if (!dev_id)printk("Bad boy: %s (at 0x%x) called us without a dev_id!\n", devname, (&irq)[-1]);}#endif//参数有效性判断if (irq >= NR_IRQS)return -EINVAL;if (!handler)return -EINVAL;// 分配一个irqactionaction = (struct irqaction *)kmalloc(sizeof(struct irqaction), GFP_ATOMIC);if (!action)return -ENOMEM;action->handler = handler;action->flags = irqflags;cpus_clear(action->mask);action->name = devname;action->next = NULL;action->dev_id = dev_id;//将创建并初始化完在的action加入irq_desc[NR_IRQS]retval = setup_irq(irq, action);if (retval)kfree(action);return retval;}上面涉及到的irqaction结构与irq_desc[]的关系我们在上一节我们已经详细分析过了,这里不再赘述. 转进setup_irq():int setup_irq(unsigned int irq, struct irqaction * new){int shared = 0;unsigned long flags;struct irqaction *old, **p;irq_desc_t *desc = irq_desc + irq;//如果hander == no_irq_type:说明中断控制器不支持该IRQ线if (desc->handler == &no_irq_type)return -ENOSYS;sif (new->flags & SA_SAMPLE_RANDOM) {rand_initialize_irq(irq);}/** The following block of code has to be executed atomically*/spin_lock_irqsave(&desc->lock,flags);p = &desc->action;if ((old = *p) != NULL) {//判断这条中断线上的中断处理程序是否允许SHARE/* Can't share interrupts unless both agree to */if (!(old->flags & new->flags & SA_SHIRQ)) {spin_unlock_irqrestore(&desc->lock,flags);return -EBUSY;}/* add new interrupt at end of irq queue */do {p = &old->next;old = *p;} while (old);shared = 1;}//将其添加到中断处理函数链的末尾*p = new;//如果这一条线还没有被占用,初始化这条中断线//包含清标志,在8259A上启用这条中断线if (!shared) {desc->depth = 0;desc->status &= ~(IRQ_DISABLED | IRQ_AUTODETECT | IRQ_WAITING | IRQ_INPROGRESS);desc->handler->startup(irq);}spin_unlock_irqrestore(&desc->lock,flags);//在proc下建立相关的文件register_irq_proc(irq);return 0;}现在知道怎么打一个中断处理程序挂到irq_desc[NR_IRQS]数组上了,继续分析中断处理中如何调用中断处理函数.从我们开篇时说到的do_IRQ()说起.asmlinkage unsigned int do_IRQ(struct pt_regs regs){//屏蔽高位,取得中断号int irq = regs.orig_eax & 0xff; /* high bits used in ret_from_ code *///取得中断号对应的desc结构irq_desc_t *desc = irq_desc + irq;struct irqaction * action;unsigned int status;irq_enter();// 调试用,忽略#ifdef CONFIG_DEBUG_STACKOVERFLOW/* Debugging check for stack overflow: is there less than 1KB free? */{long esp;__asm__ __volatile__("andl %%esp,%0" :"=r" (esp) : "0" (THREAD_SIZE - 1));if (unlikely(esp < (sizeof(struct thread_info) + STACK_WARN))) {printk("do_IRQ: stack overflow: %ld\n",esp - sizeof(struct thread_info));dump_stack();}}#endif//更新统计计数kstat_this_cpu.irqs[irq]++;spin_lock(&desc->lock);//给8259 回一个ack.回ack之后,通常中断控制会屏蔽掉此条IRQ线desc->handler->ack(irq);//清除IRQ_REPLAY IRQ_WAITING标志status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);//设置IRQ_PENDING:表示中断被应答,但没有真正被处理status |= IRQ_PENDING; /* we _want_ to handle it *//** If the IRQ is disabled for whatever reason, we cannot* use the action we have.*/action = NULL;//中断被屏蔽或者正在处理//IRQ_DIASBLED:中断被禁用//IRQ_INPROGRESS:这个类型的中断已经在被另一个CPU处理了if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) { action = desc->action;status &= ~IRQ_PENDING; /* we commit to handling *///置位,表示正在处理中...status |= c; /* we are handling it */}desc->status = status;//没有挂上相应的中断处理例程或者不满足条件if (unlikely(!action))goto out;for (;;) {irqreturn_t action_ret;u32 *isp;union irq_ctx * curctx;union irq_ctx * irqctx;curctx = (union irq_ctx *) current_thread_info();irqctx = hardirq_ctx[smp_processor_id()];spin_unlock(&desc->lock);//通常curctx == irqctx.除非中断程序使用独立的4K堆栈.if (curctx == irqctx)action_ret = handle_IRQ_event(irq, ®s, action);else {/* build the stack frame on the IRQ stack */isp = (u32*) ((char*)irqctx + sizeof(*irqctx));irqctx->tinfo.task = curctx->tinfo.task;irqctx->tinfo.real_stack = curctx->tinfo.real_stack;irqctx->tinfo.virtual_stack = curctx->tinfo.virtual_stack;irqctx->tinfo.previous_esp = current_stack_pointer();*--isp = (u32) action;*--isp = (u32) ®s;*--isp = (u32) irq;asm volatile(" xchgl %%ebx,%%esp \n"" call handle_IRQ_event \n"" xchgl %%ebx,%%esp \n": "=a"(action_ret): "b"(isp): "memory", "cc", "edx", "ecx");}spin_lock(&desc->lock);//调试用,忽略if (!noirqdebug)note_interrupt(irq, desc, action_ret, ®s);if (curctx != irqctx)irqctx->tinfo.task = NULL;//如果没有要处理的中断了,退出if (likely(!(desc->status & IRQ_c)))break;//又有中断到来了,继续处理desc->status &= ~c;}//处理完了,清除IRQ_INPROGRESS标志desc->status &= ~IRQ_INPROGRESS;out:/** The ->end() handler has to deal with interrupts which got* disabled while the handler was running.*///处理完了,调用中断控制器的end.通常此函数会使中断控制器恢复IRQ线中断desc->handler->end(irq);spin_unlock(&desc->lock);//irq_exit():理论上中断处理完了,可以处理它的下半部了irq_exit();return 1;}这段代码比较简单,但里面几个标志让人觉的很迷糊,列举如下:IRQ_DISABLED:相应的IRQ被禁用.既然中断线被禁用了,也就不会产生中断,进入do_IRQ()了?因为电子器件的各种原因可能会产生“伪中断”上报给CPU.IRQ_PENDING:CPU收到这个中断信号了,已经给出了应答,但并末对其进行处理.回顾上面的代码,进入do_IRQ后,发送ack,再设置此标志.IRQ_ INPROGRESS:表示这条IRQ线的中断正在被处理.为了不弄脏CPU的高速缓存.把相同IRQ线的中断放在一起处理可以提高效率,且使中断处理程序不必重入举例说明:如果CPU A接收到一个中断信号.回一个ACK,设置c,假设此时末有这个中断线的中断处理程序在处理,继而会将标志位设为IRQ_ INPROGRESS.转去中断处理函数执行.如果此时,CPU B检测到了这条IRQ线的中断信号.它会回一个ACK.设置IRQ_PENDING.但时此时这条IRQ线的标志为IRQ_ INPROGRESS.所以,它会进经过goto out退出.如果cpu A执行完了中断处理程序,判断它的标志线是否为IRQ_PENDING.因为CPU B已将其设为了IRQ_PENDING.所以继续循环一次.直到循环完后,清除IRQ_INPROGRESS标志注意上述读写标志都是加锁的.linux采用的这个方法,不能不赞一个*^_^*继续看代码:asmlinkage int handle_IRQ_event(unsigned int irq,struct pt_regs *regs, struct irqaction *action){int status = 1; /* Force the "do bottom halves" bit */int ret, retval = 0;//如果没有设置SA_INTERRUPT.将CPU 中断打开//应该尽量的避免CPU关中断的情况,因为CPU屏弊本地中断,会使//中断丢失if (!(action->flags & SA_INTERRUPT))local_irq_enable();//遍历运行中断处理程序do {ret = action->handler(irq, action->dev_id, regs);if (ret == IRQ_HANDLED)status |= action->flags;retval |= ret;action = action->next;} while (action);if (status & SA_SAMPLE_RANDOM)add_interrupt_randomness(irq);//关中断local_irq_disable();return retval;}可能会有这样的疑问.如果在一根中断线上挂上了很多个中断处理程序,会不会使这一段程序的效率变得很低下呢?事实上,我们在写驱动程序的过程中,都会首先在中断处理程序里判断设备名字与设备ID,只有条件符合的设备中断才会变处理.三:软中断为了提高中断的响应速度,很多操作系统都把中断分成了两个部份,上半部份与下半部份.上半部份通常是响应中断,并把中断所得到的数据保存进下半部.耗时的操作一般都会留到下半部去处理.接下来,我们看一下软中断的处理模型:Start_kernel() à softirq_init();在softirq_init()中会注册两个常用类型的软中断,看具体代码:void __init softirq_init(void){open_softirq(TASKLET_SOFTIRQ, tasklet_action, NULL);open_softirq(HI_SOFTIRQ, tasklet_hi_action, NULL);}//参数含义:nr:软中断类型action:软中断处理函数data:软中断处理函数参数void open_softirq(int nr, void (*action)(struct softirq_action*), void *data){softirq_vec[nr].data = data;softirq_vec[nr].action = action;}static struct softirq_action softirq_vec[32] __cacheline_aligned_in_smp;struct softirq_action{void (*action)(struct softirq_action *);void *data;};在上面的代码中,我们可以看到:open_softirq()中.其实就是对softirq_vec数组的nr项赋值.softirq_vec是一个32元素的数组,实际上linux内核只使用了六项. 如下示:enum{HI_SOFTIRQ=0,TIMER_SOFTIRQ,NET_TX_SOFTIRQ,NET_RX_SOFTIRQ,SCSI_SOFTIRQ,TASKLET_SOFTIRQ}另外.如果使软中断能被CPU调度,还得要让它激活才可以.激活所使用的函数为__raise_softirq_irqoff()代码如下:#define __raise_softirq_irqoff(nr) do { local_softirq_pending() |= 1UL << (nr); } while (0)这个宏使local_softirq_pending的nr位置1好了,经过open_softirq()à local_softirq_pending()后,我们来看下软中断怎么被CPU调度.继续上面中断处理的代码.在处理完硬件中断后,会调用irq_exit().这就是软中断的入口点了,我们来看下#define irq_exit() \do { \preempt_count() -= IRQ_EXIT_OFFSET; \//注意了,软中断不可以在硬件中断上下文或者是在软中断环境中使用哦^_^//softirq_pending()的判断,注意我们上面分析过的_raise_softirqoff().它判断当前cpu有没有激活软中断if (!in_interrupt() && softirq_pending(smp_processor_id())) \do_softirq(); \preempt_enable_no_resched(); \} while (0)跟踪进do_softirq()asmlinkage void do_softirq(void){__u32 pending;unsigned long flags;//在硬件中断环境中,退出if (in_interrupt())return;//禁止本地中断,不要让其受中断的影响local_irq_save(flags);pending = local_softirq_pending();//是否有软中断要处理?if (pending)__do_softirq();//恢复CPU中断local_irq_restore(flags);}转入__do_softirq()asmlinkage void __do_softirq(void){struct softirq_action *h;__u32 pending;int max_restart = MAX_SOFTIRQ_RESTART;int cpu;pending = local_softirq_pending();//禁止软中断,不允许软中断嵌套local_bh_disable();cpu = smp_processor_id();restart:/* Reset the pending bitmask before enabling irqs *///把挂上去的软中断清除掉,因为我们在这里会全部处理完local_softirq_pending() = 0;//开CPU中断local_irq_enable();//softirq_vec:32元素数组h = softirq_vec;//依次处理挂上去的软中断do {if (pending & 1) {//调用软中断函数h->action(h);rcu_bh_qsctr_inc(cpu);}h++;pending >>= 1;} while (pending);//关CPU 中断local_irq_disable();pending = local_softirq_pending();//在规定次数内,如果有新的软中断了,可以继续在这里处理完if (pending && --max_restart)goto restart;//依然有没有处理完的软中断,为了提高系统响应效率,唤醒softirqd进行处理if (pending)wakeup_softirqd();//恢复软中断__local_bh_enable();}从上面的处理流程可以看到,软中断处理就是调用open_ softirq()的action参数.这个函数对应的参数是软中断本身(h->action(h)),采用这样的形式,可以在改变softirq_action结构的时候,不会重写软中断处理函数在进入了软中断的时候,使用了in_interrupt()来防止软中断嵌套,和抢占硬中断环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.Linux中断的注册与释放:
在<linux/interrupt.h>, , 实现中断注册接口:
int request_irq(unsigned int irq,irqreturn_t (*handler)(int, void *, struct pt_regs *),
unsigned long flags,
const char *dev_name,
void *dev_id);
void free_irq(unsigned int irq, void *dev_id);
函数参数说明
unsigned int irq:所要注册的中断号
irqreturn_t (*handler)(int, void *, struct pt_regs *):中断服务程序的入口地址。
unsigned long flags:与中断管理有关的位掩码选项,有三组值:
1. SA_INTERRUPT :快速中断处理程序,当使用它的是后处理器上所有的其他中断都被禁用。
2. SA_SHIRQ :该中断是在设备之间可共享的
3. SA_SAMPLE_RANDOM :这个位表示产生的中断能够有贡献给 /dev/random
和 /dev/urandom 使用的加密池.(此处不理解)
const char *dev_name:设备描述,表示那一个设备在使用这个中断。
void *dev_id:用作共享中断线的指针. 它是一个独特的标识, 用在当释放中断线时以及可能还被驱动用来指向它自己的私有数据区(来标识哪个设备在中断) 。
这个参数在真正的驱动程序中一般是指向设备数据结构的指针.在调用中断处理程序的时候它就会传递给中断处理程序的void *dev_id。
(这是我的理解)如果中断没有被共享, dev_id 可以设置为 NULL, 但是使用这个项指向设备结构不管如何是个好主意. 我们将在"实现一个处理"一节中看到dev_id 的一个实际应用。
中断号的查看可以使用下面的命令:“cat /proc/interrupts”。
/proc/stat 记录了几个关于系统活动的低级统计量, 包括(但是不限于)自系统启动以来收到的中断数. stat 的每一行以一个文本字串开始, 是该行的关键词; intr 标志是我们在找的.
第一个数是所有中断的总数, 而其他每一个代表一个单个 IRQ 线, 从中断 0 开始. 所有的计数跨系统中所有处理器而汇总的. 这个快照显示, 中断号 4 已使用 1 次, 尽管当前没有安装处理. 如果你在测试的驱动请求并释放中断在每个打开和关闭循环, 你可能发现/proc/stat 比 /proc/interrupts 更加有用.
以下是一个统计中断时间间隔的中断服务程序。
irqreturn_t short_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
static long mytime=0;
static int i=0;
struct net_device *dev=(struct net_device *)dev_id;
if(i==0){
mytime=jiffies;
}else
if(i<20){
mytime =jiffies- mytime;
printk("Request on IRQ %d time %d\n",irq , mytime);
mytime=jiffies;
printk("Interrupt on %s -----%d \n",dev->name,dev->irq);
}
i ;
return IRQ_HANDLED;
}
这个函数实现的只是对两次发生中断的时间间隔的统计,时间单位是毫秒
前言
在前面分析了中断的基本原理后,就可以写一个内核中断程序来体验以下,也可以借此程序继续深入来了解内核中断的执行过程
一.内核中断程序:
我们还是来看一看成程序:
在看程序之前,要熟悉如何进行模块编程,和了解module_pararm()的用法。
如果不熟悉的话请大家看,module_param()的学习和Linux内核模块编程,在此不作解释。
1.程序interrupt.c
1 /*
2 *file name :interrupt.c
3 *atuthor : john
4 */
5 #include<linux/init.h>
6 #include<linux/module.h>
7 #include<linux/kernel.h>
8 #include<linux/interrupt.h>
9
10 MODULE_LICENSE("GPL");
11 static int irq;
12 char *interface;
13 static irqreturn_t myirq_handler(int irq,void *dev);
14
15 static int __init myirq_init(void)
16 {
17 printk("the module is working!\n");
18 printk("the irq is ready for working!\n");
19 if(request_irq(irq,myirq_handler,IRQF_SHARED,interface,&irq)){
20 printk(KERN_ERR "%s interrrupt can't register %d IRQ \n",interface,irq);
21 return -EIO;
22 }
23 printk("%s request %d IRQ\n",interface,irq);
24 return 0;
25 }
26 static irqreturn_t myirq_handler(int irq,void *dev)
27 {
28 printk("%d IRQ is working\n",irq);
29 return IRQ_NONE;
30 }
31 static void __exit myirq_exit(void)
32 {
33 printk("the module is leaving!\n");
34 printk("the irq is bye bye!\n");
35 free_irq(irq,&irq);
36 printk("%s interrupt free %d IRQ\n",interface,irq);
37
38 }
39 module_init(myirq_init);
0 module_exit(myirq_exit);
41 module_param(interface,charp,0644);
42 module_param(irq,int,0644);
43
1 /*
2 *file name :interrupt.c
3 *atuthor : john
4 */
5 #include<linux/init.h>
6 #include<linux/module.h>
7 #include<linux/kernel.h>
8 #include<linux/interrupt.h>
9
10 MODULE_LICENSE("GPL");
11 static int irq;
12 char *interface;
13 static irqreturn_t myirq_handler(int irq,void *dev);
14
15 static int __init myirq_init(void)
16 {
17 printk("the module is working!\n");
18 printk("the irq is ready for working!\n");
19 if(request_irq(irq,myirq_handler,IRQF_SHARED,interface,&irq)){
20 printk(KERN_ERR "%s interrrupt can't register %d IRQ \n",interface,irq);
21 return -EIO;
22 }
23 printk("%s request %d IRQ\n",interface,irq);
24 return 0;
25 }
26 static irqreturn_t myirq_handler(int irq,void *dev)
27 {
28 printk("%d IRQ is working\n",irq);
29 return IRQ_NONE;。