论文中统计结果的表达及解释
统计分析结果在论文中的正确表达

二、“结果”的统计表达
4、假设检验结果的表达
(1)假设检验统计结论的表述,宜用“差异无统计 学意义”或“差异有统计学意义”,避免过去采用的 “差异无显著性”或“差异有显著性”表述方式。
保留的小数位数,应与原始数据记录的小数位数相同。 (2)计数资料的百分比保留一位小数,一般不超过两 位小数。 (3)检验统计量,如X2值、t值一般保留两位或三位 小数。
二、“结果”的统计表达
3、选择正确的统计描述指标
(1)计量资料常用 x s 描述研究结果的数据特 征,但必须注意前提是要求数据近似服从正态分布。 如数据明显偏态,应采用中位数和四分位数间距描述 数据特征。
4、论文中采用的统计分析方法和统计计算的软件名称 也要在“材料与方法”中说明。一般的常用统计方法简 单说明即可,如X2检验、t检验、单变量方差分析(ANOVA) 等,对一些特殊的统计方法,如多元回归分析、 Logistic回归分析、因子分析、生存分析、重复测量资 料方差分析等,要同时给出相应的参考文献。统计计算 软件一般给出名称即可,如EXCEL、SPSS、SAS等,但对 于一些特殊的计算,要给出软件的过程名,如重复测量 资 料 方 差 分 析 采 用 SPSS / GLM , 曲 线 回 归 拟 合 采 用 SPSS/Nonlinear.
51
27.3
86
46.0
2
1.0
48
干预前(n=173)
人数
%
22
12.7
论文中统计结果的表达及解释

中华消化外科杂志对P值规范化表述的要求根据中华医学会杂志社的要求;根据人民卫生出版社的全国高等学校教材卫生统计学第5版;报告统计学检验的结论时;对P值小于或等于检验水准一般为0.05的情况;一律描述为“差异有统计学意义”;同时写明P的具体数值或相应的不等式;在用不等式表示P值的情况下;一般情况下选用P>0.05、P<0.05和P<0.01 三种表达方式即可满足需要;无须再细分为P<0.001或<0.0001..不再采用将P<0.05描述为“差异有显着意义”或差异有显着性”;或将P<0.01描述为“差异有非常显着意义或差异有非常显着性”的表达方式..______________________________________________论文中统计结果的表达及解释摘要统计学是生物医学研究所必需的重要手段; 生物医学研究的实验设计、资料收集、数据处理分析以及结论都离不开统计学应用..生物医学研究论文主要由摘要、引言、材料与方法、结果和讨论5个部分组成; 各个部分都涉及统计结果的表达和解释; 统计学是专业结论成立与否的重要依据..统计学应用不当不仅影响论文的科学性; 还有可能得出错误的专业结论..关键词统计学科研论文统计分析统计表达近年来; 统计学在生物医学科研中的应用越来越受到重视; 统计分析结果的表达及解释已成为医学科研论文中不可缺少的重要组成部分..除论文涉及的专业如细胞与分子免疫学杂志为免疫学专业和表述的文字2个方面外; 统计学是评价论文质量优劣的重要依据; 然而国内生物医学论文中统计学应用仍存在着较为严重的问题1-4; 如2003年某大学学报拟发表论着中统计方法误用率为57%3..细胞与分子免疫学杂志虽然在国内生物医学系列杂志中具有较高的学术地位5; 但拟发表及刊出论文在科研设计、统计学分析、结果解释等方面也不同程度地存在一些问题; 作者的统计学应用水平有待进一步提高..许多生物医学杂志; 如国外着名杂志JAMA、新英格兰医学杂志NEJM和英国医学杂志BMJ等; 以及国内中华医学会系列杂志及细胞与分子免疫学杂志等; 对来稿都有统计学表达的基本要求或统计学指导原则..国际生物医学杂志编辑协会在其生物医学期刊投稿的统一要求中也包含了统计学表达的基本要求..生物医学研究性论文主要由摘要、引言、材料与方法、结果和讨论5个部分组成; 各个部分或多或少都涉及到统计结果的表达和解释问题..例如在论文的“引言”部分需要给出文献复习的综合结果; 如文献报告的组间差别及P值等..其他重要的统计表达和解释主要集中在论文的“摘要”、“材料和方法”、“结果”及“讨论”4个部分6..1 摘要“摘要”中要有表示研究结果的重要统计指标统计量的数值、可信区间及假设检验结果P值..如处理组和对照组的均数中位数、标准差标准误、率、 P值; 或2组均数率之差、 95%可信区间、 OR值及多个观察指标的相关系数等..这些数据是循证医学Meta分析的基本依据..2 材料和方法“材料和方法”中的统计学描述包括以下两个方面..2.1 描述研究设计的内容内容包括研究类型、观察对象类型、入选和剔除标准、观察方法和测量技术以及实验、试验或调查资料的搜集过程等..尤其应具体地描述研究对象的来源和选择方法如是否配对、随机抽样; 包括观察对象的基本情况、有无随机分组随机抽样、随机化分组方法、样本含量及其估计的依据等..对于非随机化分组的观察性研究含调查研究; 还应给出影响因素如年龄、性别、病情的均衡性分析结果..对于临床试验; 还需要特别说明诊断标准、疗效评价标准、病例入选标准、病例剔除标准、依从性如何、有无失访及失访的比例、有无“知情同意”、疗效评价是否采用“盲法”“单盲”、“双盲”或“多盲”等..2.2 描述统计分析方法与统计计算软件论文中用到的所有统计分析方法都要说明; 且需指出在何处用了何种方法..统计计算软件一般给出名称即可; 如SPSS、 SAS等..然而; 有些论文却把统计学当做“修饰物”; 论文中没有用到的统计分析方法也都一一罗列出来; 甚至有的形态学研究不需要统计学分析; 却也给出了“P值”..在这里; 有些作者错误地认为;只要给出了“P值”; 就标志用了统计学; 却不管统计学用得是否正确..事实上; 误用或滥用统计学不仅不能提高论文的质量; 反而会大大降低论文的科学性2.3 研究设计常见的主要问题 1研究目的不分主次; 试图通过一次试验回答多个问题; 测量指标多; 样本小; 试验前未进行样本含量估计; 对研究对象的来源和选择方法不做任何说明或只做非常简单的说明; 统计分析方法没有任何说明; 尤其是一些特殊的统计方法..例如; 动物实验没有随机化分组; 或只说明经随机化分组; 未说明具体的随机化分组方法如完全随机、配对或分层随机分组等; 2观察对比的研究轻率使用“随机选择对照”、“随机抽取健康儿童××例”等用语; 对比组间的均衡性未交代或组间不做比较; 只说明组间均衡; 未给出反映均衡性的统计指标的具体数据以及所用的统计分析方法; 3临床试验没有报告伦理学要求对随机化分组的限制与改动、受试者的代表性、依从性、是否有失访等; 疗效评价未说明是否采用“盲法”; 或只说明采用了“盲法”; 未说明是受试者遮蔽还是评价者遮蔽等; 4实验或试验的样本量非常小; 如每组3例; 却不说明任何理由等等..3 结果统计学分析结果主要用统计指标统计量表示..统计指标比较多且需分组比较时; 常常须借助统计图表..3.1 统计量在生物医学论文中; 对不同类型的研究资料需用不同的统计指标进行描述..对细胞与分子生物学实验中的常见观测指标; 如TRAIL表达、 mRNA表达水平、光密度值OD值、吸光度值A值、百分比含量及抑制率等; 常作为计量数据计量资料进行统计描述与分析..对于计量资料; 当资料为近似正态或对称分布时; 可用算术均数x和标准差s描述; 在没有变异指标或精确性指标的情况下; 不宜单独使用均数..在“±”后直接写具体数值而无标准误或标准差的符号表示; 如16.4±2.3; 容易引起混淆..配对t检验; 应给出差数的均数及标准误或标准差..当资料为偏态时; 应采用中位数Md和四分位数间距QR来描述; 而不宜用x和s..用非参数统计分析方法处理的资料; 数据的中心位置用中位数表示; 散布范围如95%的散布范围用百分位数表示..此外; 若对原始数据进行了变量转换; 则原始数据的均数及标准差不能很好地反映数据的中心位置及其散布范围; 不必将其列出..对于计数资料; 常用的统计指标有率和构成比百分比..使用百分比时; 分母要交待清楚..小样本资料不宜计算百分比..实际工作中统计指标应用常见的问题有: 计量资料不管是否近似服从正态分布; 统统用x±s描述研究结果的数据特征; 分子生物学或细胞实验如ELISA法、 MTT法、 RT PCR法、免疫细胞化学法、蛋白质印迹分析法等数据用x±s表示; 其样本量例数n在“材料和方法”或“结果”中未交代; 计数资料统计指标率和构成比百分比容易混淆; 常将构成比误用为率来说明事物发生的强度; 率和构成比的分母太小; 却计算相对数来进行描述和比较..分母太小时; 率构成比的可靠性不能保证..因此; 在这种情况下; 宜直接用绝对数进行描述而不宜计算相对数..当计量资料符合正态分布条件时; 约有68%的观察数据在x±s的范围内; 约有95%的观察数据在x±2s的范围内..当数据不符合正态分布时; 就没有这些特征了..3.2 假设检验的结果表达不仅要给出P值; 还要给出检验统计量的实际值; 如u值、t值、χ2值等..描述统计量; 如均数、率、相关系数; 无论检验结果是否有统计学意义; 均应列出..0.05水平是常用的检验水准; 但P为0.04或0.06时; 与0.05并无太大差别; 得出的结论也理应一致; 不应有本质上的差别..用P>0.05作为不“显着”统计学意义的表达方式容易使读者也包括作者误解; 由于统计软件的普及; 因此提倡报告P的具体数值精确P值; 如P=0.018或P=0.436等..如果提供精确P值实在有困难; 应给出实际的χ2值、 t值、 F值和相应的自由度; 以便他人在Meta分析时转换为精确P值..3.3 统计图表统计图表是研究结果统计表达的重要手段; 统计图便于读者直观了解研究结果; 并且提倡用图来显示个体值的散布情况; 如相关和回归分析的散点图..同一个体值不同时间的重复测量值最好连成曲线; 不同组别的个体值均值随时间变化的曲线亦可标在同一个图上..提倡采用误差条图或线图; 但由均数加减标准误绘出的误差条图; 仅能描述68%的可信区间; 不能误解为95%的可信区间..医学论文中要求采用“三线”表..数值结果按列行放置; 位数要对齐; 不要出现交换行的情况..不同类型数据如均数、标准误要有标目; 表中应列出相应的观察例数..大量统计结果的表达要运用统计表或统计图; 实际应用中统计图表还存在一些问题; 主要有: 1图形类别的选择与资料性质不符; 2纵横两轴的等距离尺度不代表等差数据算术尺度或等比数据对数尺度; 3无图例或标目; 4条图的纵轴起点不为0、横轴的刻度为算术刻度、排列顺序未按指标值大小或自然顺序排列; 5圆图各部分未按比例大小或自然顺序顺时针方向排列其他项放最后、起点位置不在12时或9时; 6统计表的标目不明确; 主辞和宾辞倒置或混淆; 表中存在斜线或竖线; 数据为“0”、无数据或缺失数据时留有空白; 同一指标小数位数精度不一致、小数点位未对齐等图表不规范问题..3.4 数据精确度一般来说; 数据精确度只要足以区分个体差异即可; 并非小数位数越多越好..表示观测结果时; 2个数的小数位数应一致; 如5.4±0.62; 应写成5.4±0.6; 平均值x与标准差s的位数; 除取决于测量仪器的精密度外; 还取决于样本内个体的变异; 一般按s3而定; 例如3825.3±610.6 g; 其中s3超过200 g; 平均值在百克的位上波动; 故应写成3.8±0.6 kg..与实际情况不符的精确度并不能增加论文的价值; 反而降低了论文的可读性与可信程度..从计算器或计算机得到的计算结果需要四舍五入..计量资料的统计指标x、 s、中位数、百分位数等要保留的小数位数; 应该与原始数据记录的小数位数相同..均数的有效位数通常不应比原始数据的有效位数多; 但标准差或标准误必要时需多增加一个位数..计数资料的百分比保留1位小数; 一般不超过2位小数; 病死率、发病率按惯例选择比例基数; 如1000‰; 10000/万和10万/10万等; 或自行选择合适的比例基数; 使率的整数部分至少有1位有效数字; 相关系数保留2位小数; 精确概率P值一般没必要给出四位小数; 有时甚至保留两位小数也可以; 检验统计量; 如χ2值、 t值保留2位小数即可..当样本数小于100时; 小数位数的多少并不能增加精确度; 应避免取过多的小数位数..注意; 以上要求仅适用于表达最终的统计结果; 数据在分析之前或分析过程中不能舍入..在表达t值、χ2值或r值时; 有2位小数就足够了..3.5 常用统计专业术语一些常用的统计专业术语; 要注意不能作为普通名词使用; 如参数parameter、可信区间confidence interval、相关correlation、发病率morbidity、患病率prevalence rate、非参数法non parametric statistics、百分位数percentile、灵敏度sensitivity、特异度specificity等..4 讨论“统计学”是“专业结论成立与否的重要依据”2..统计学分析结果的解释主要集中在论文的“讨论”部分..作者往往要在“讨论”部分引用统计结果作为支持其新发现、新结果、新观点的统计学依据; 对统计结果理解和解释上的偏差; 可能导致专业结论上的错误..4.1 假设检验结果的解释假设检验是在“无效假设”正确的前提下如施加干预以前; 组间无差别或观察对象来自同一总体; 用P值大小说明实际观察结果是否符合“无效假设”..P 值小如P<0.05; 则怀疑“无效假设”的正确性; P值大如P>0.05; 则不能拒绝“无效假设”..但不能把P值理解为处理无效的概率..要注意区分“统计学显着”和“生物学或医学显着”是2种不同的结论..不可一得到P<0.05就认为有实际意义; 而不管其生物学效应有多大..组间生物学效应很小时如DC Ag TDLNC 组比DC TDLNC组CD3+ T细胞含量仅提高了0.7%7; 大样本量也可能使统计结果“显着”..例如肝硬化患者外周血IP10水平与ALT水平的Spearman相关系数为0.2; 当n=100时; Spearman相关系数经假设检验“统计显着”P<0.05; 但IP10水平与ALT水平相互只能解释4%的变异; 实际意义已经很小..因此; 统计学意义上的“显着”并不等同于生物学上的差异“显着”..同理; 也不能一看到P>0.05就认为某2种生物学处理“无显着差异”; 甚至认为可以相互替代..即使生物学上的差异“显着”; 当观察的样本很小时; 也极有可能出现统计学上不“显着”的结果..在医学论文中; 有一些P>0.05的“阴性”结果; 检验效能不足是一个主要的原因..综上所述; 有统计学意义的检验结果并不一定意味着确有生物学效应..这里有两个原因; 一是总会有错判的危险性; P值越小错判的危险性越小; 二是假设检验为定性的检验结果是否拒绝无效假设时; 专业上是否有意义还要看统计量的大小..可信区间有助于假设检验结果的解释; 小样本时尤其如此..由于可信区间反映了研究结果的不确定性; 并可提示差别有无实际意义; 因此无论假设检验结果是否显着; 都可计算可信区间; 如两均数差值的可信区间、相关系数的可信区间等..将可信区间与不显着的结果一起列出; 特别有启示作用..4.2 关联与因果在观察性研究中; 变量间的关联association或组间差别可能是因果关系causation; 也可能是偏倚; 确定因果关系需要根据专业知识进行进一步的分析研究..例如; 有人曾观察到眼晶状体后纤维增生的新生儿; 注射促肾上腺皮质激素后; 治愈率75%; 说明促肾上腺皮质激素与患儿治愈有关联前后比较: P<0.01..但随后进行的前瞻性的临床试验发现; 患儿脱离富氧环境后; 75%患儿自然痊愈组间比较: P≈1.00..如果将观察结果解释为“注射促肾上腺皮质激素与患儿痊愈有因果联系”; 并以此作为统计学证据; 临床上大量使用促肾上腺皮质激素治疗新生儿眼晶状体后纤维增生; 会导致严重后果..在随机对照研究中; 关联和组间差别可以解释为有概率保证的因果关系..当变量都随时间而变化时; 变量间很容易出现虚假的相关关系; 必须特别加以小心..4.3 预测与诊断试验在细胞与分子生物学检测诊断实验中; 常常遇到标准曲线直线的绘制; 即需要进行回归分析..在回归分析中; 即使两变量间有显着关系; 但用回归方程从变量X推算Y的个体值; 仍可能不很精确..预测的精确程度不能根据相关或回归系数来评价; 它需按不同的X值计算预测的个体Y值的容许区间或Y值均数的可信区间..直线回归仅适用于用自变量X预测应变量Y; 而不是Y预测X..具有高灵敏度、特异度的诊断检验; 不一定能达到诊断疾病的目的; 在人群发病率很低的情况下尤其如此; 而计算患者在诊断试验阳性人数中的比率阳性预测值; PV+会更有实用价值..连续性变量也有类似诊断试验的问题..通常把“异常”值定义为该变量“正常范围”以外的数值..但如果实际患病率很低; 许多正常人的个体值在“正常范围”以外也是正常的..异常者的判定应同时根据临床上和统计上的标准..4.4 缺陷或不足要指出在研究设计和实施过程中有哪些不足..若发现缺陷; 则应考虑这些缺陷对结果和解释可能产生的影响..不能对缺陷或不足视而不见; 更不能寄希望于不被读者发现..总之; 生物医学统计学是生物医学专业结论成立与否的重要依据..生物医学研究者应重视统计研究设计及统计分析结果的表达和解释; 正确运用统计方法的前提是良好的实验设计..如果实验前没有良好的设计; 或者设计存在错误; 那么; 即使使用高级的计算机和复杂的统计方法处理数据; 也只能得到错误的结论..因此; 统计学问题的咨询应该在一个研究项目开始之前; 而不是在研究数据出来以后; 否则; 就象统计学家Fisher所告戒的一样: 实验完成后再找统计学家; 无异于请统计学家为实验进行“尸体解剖”; 统计学家或许只能告诉你实验失败的原因..。
论文的研究结果与分析解释

论文的研究结果与分析解释研究论文是学术界进行科研和知识传播的重要形式之一。
研究结果和分析解释是论文的核心内容,它们对于读者理解研究的意义和贡献起着关键作用。
本文将探讨如何准确并有效地呈现研究结果,并对研究结果进行深入分析与解释。
首先,研究结果的呈现应当准确、简洁。
在论文中,研究结果的表达形式多种多样,可以使用文字、表格、图表等形式进行展示。
通过文字可以精确地描述实验的设计、数据的采集和分析方法,但需要注意的是,文字表述应简明扼要,不拖泥带水。
此外,表格和图表可以更为直观地呈现研究结果,因此在呈现数量较大或统计性的数据时,可以适当使用这些形式。
需要注意的是,表格和图表的标题应该言简意赅,清晰明了,便于读者理解。
其次,研究结果的分析解释应该深入全面。
在进行研究结果的分析解释时,应充分考虑研究目的和研究问题,并结合相关理论和前人研究成果进行解读。
分析解释需要对研究结果进行逐项说明,包括数据的趋势、差异、相关性等。
此外,还可以通过引用其他研究结果或引用专家观点来进行对比和验证,增强研究结果的可信度。
值得一提的是,研究结果的呈现与分析解释之间存在着密切的联系。
研究结果的呈现是对数据和实验结果的客观描述,而分析解释则是对这些结果进行深入的思考和解读。
分析解释应当以研究结果为依据,但不应重复研究结果的描述。
相反,分析解释应该进一步挖掘研究结果的内在含义,解释其中的原因和机制。
此外,研究结果的分析解释应该具备一定的逻辑性和连贯性。
研究结果往往是多样的,可能包含不同的数据、观点和结论。
在进行分析解释时,应将这些不同的内容进行分类、归纳,并确保它们之间的关系和转换的合理性。
这样可以使得分析解释更加连贯,增强读者对论文的理解和接受。
综上所述,研究结果与分析解释是论文的重要组成部分。
通过准确并有效地呈现研究结果,读者可以了解到研究的基本情况和数据。
通过深入分析与解释研究结果,读者可以进一步理解研究的意义和贡献。
因此,在撰写研究论文时,研究结果和分析解释的质量和准确性是不容忽视的,它们对于论文的学术价值和影响力起着重要作用。
学术论文中的统计分析方法与结果解读

学术论文中的统计分析方法与结果解读在学术研究中,统计分析是不可或缺的一部分,它能够帮助研究者对数据进行客观、全面的分析和解读。
本文将介绍学术论文中常用的统计分析方法和如何正确解读统计结果。
一、统计分析方法1. 描述性统计分析描述性统计分析是对研究数据进行总结和概括的方法。
通过计算平均数、标准差、中位数等指标,可以对数据的特征进行描述和比较。
此外,频数分布表、直方图和饼图等图表也是常用的描述性统计手段,它们可以直观地展示数据的分布情况。
2. 探索性因子分析探索性因子分析是一种通过统计方法发现潜在变量并检查它们之间的关系的方法。
它通过主成分分析、因子旋转等技术,可以帮助研究者提取出数据中的主要因素。
因子载荷矩阵是探索性因子分析中常用的结果解读工具,它能够告诉我们每个变量对应的因子的重要性。
3. 相关性分析相关性分析用于衡量两个或多个变量之间的关系强度和方向。
常见的相关性分析方法包括皮尔逊相关系数和斯皮尔曼相关系数。
相关性分析结果通过相关系数和p值来表示,相关系数的绝对值越大,相关性越强;p值小于0.05通常认为结果显著。
4. 回归分析回归分析用于研究一个或多个自变量与一个因变量之间的关系。
简单线性回归适用于只有一个自变量的情况,而多元线性回归适用于有多个自变量的情况。
回归分析的结果通常通过回归系数、显著性水平和决定系数来解读。
5. 方差分析方差分析用于比较两个或多个样本均值之间的差异是否显著。
单因素方差分析适用于只有一个因素的情况,而多因素方差分析适用于有多个因素的情况。
方差分析的结果通过F值和p值来判断差异是否显著。
二、结果解读正确解读统计分析结果是撰写学术论文的重要一环。
以下是一些解读结果的实用指导:1. 报告统计指标在描述性统计分析中,需要报告平均数、标准差等指标。
对于主成分分析和因子分析,需要解读因子载荷矩阵,说明不同变量与潜在因子的关系强度。
在相关性分析和回归分析中,需要报告相关系数、回归系数和决定系数。
毕业论文写作中的统计分析结果

毕业论文写作中的统计分析结果在毕业论文写作中,统计分析结果是至关重要的一部分。
它们可以提供论文的可靠性和有效性,帮助读者理解研究的主要发现。
在本文中,我们将探讨毕业论文写作中如何呈现和解释统计分析结果。
【引言】在正式开始讨论统计分析结果之前,首先要明确研究目的和研究问题,以及所采用的研究方法。
此外,还需要说明数据的来源和收集方式,以及数据样本的规模和特征。
这些背景信息的提供可以帮助读者更好地理解后续的统计分析结果。
【描述数据特征】在进行统计分析之前,应该先对收集到的数据进行描述性统计分析。
可以使用各种描述性统计量,如均值、中位数、标准差等,来概括数据的特征。
此外,还可以绘制直方图、箱线图等图表来可视化数据的分布情况。
通过描述数据特征,读者可以对数据的整体情况有一个直观的了解。
【假设检验结果】在研究中,通常会提出一个或多个研究假设,并使用统计方法来检验这些假设的有效性。
在这一部分,应该明确研究假设,并详细描述所采用的统计检验方法。
可以通过展示检验统计量、自由度、显著性水平等信息来清晰地呈现假设检验的结果。
同时,也要对检验结果进行解读和解释,说明是否支持或拒绝了研究假设。
【相关性分析结果】在一些研究中,需要探究变量之间的相关性。
相关性分析可以通过计算相关系数来实现,如皮尔逊相关系数、斯皮尔曼等级相关系数等。
同样,需要明确所研究的变量,并给出相关系数的计算结果。
在解释分析结果时,要注意强调相关性不代表因果关系,需结合研究问题和理论背景进行合理解释。
【回归分析结果】回归分析是研究中常用的一种统计方法,用于探究因变量与一个或多个自变量之间的关系。
在这一部分,需要明确所采用的回归模型,并详细描述模型的参数估计结果、回归方程和拟合优度等。
解释回归分析结果时,需强调参数的显著性以及模型的可解释性,同时也要注意对结果的合理解读。
【其他统计分析结果】除了以上提到的统计方法外,还可以根据具体研究需求使用其他的统计方法,如方差分析、聚类分析、因子分析等。
科研论文中的数据解读与结果分析方法

科研论文中的数据解读与结果分析方法在科研论文中,数据解读和结果分析是至关重要的环节。
正确地解读数据,并合理分析结果,能够为研究的有效性和可信度提供支持。
本文将介绍科研论文中常用的数据解读和结果分析方法。
一、数据解读方法在科研论文中,数据解读是对实验或调查所得数据进行描述和解释的过程,以下是几种常见的数据解读方法:1. 数值描述数值描述是对数据进行直观的数值表达。
可以使用平均值、中位数、标准差等统计指标来描述数据的集中趋势和离散程度。
例如,对于一个实验组和对照组的结果,可以比较两组的平均值,并计算其差异的显著性。
2. 图表展示通过图表的形式展示数据,能够更直观地观察数据的分布规律和趋势。
常见的图表包括柱状图、折线图、散点图等。
例如,可以使用柱状图比较不同处理组的实验结果,或使用折线图显示随时间变化的趋势。
3. 统计检验统计检验是一种通过概率推断来评估数据差异的方法。
常用的统计检验方法有t检验、方差分析、卡方检验等。
通过进行统计检验,可以确定数据差异是否具有统计学意义。
二、结果分析方法结果分析是对数据解读后进行的深入分析,以下是几种常见的结果分析方法:1. 相关性分析相关性分析用于探索变量之间的关系,常用的方法有相关系数和散点图。
可以通过计算相关系数来评估变量之间的线性关系的强度和方向,或使用散点图直观地展示变量之间的关系。
2. 因素分析因素分析用于确定数据中隐藏的共同因素。
通过将多个变量进行综合分析,可以发现数据中的主要特征和结构。
因素分析常包括主成分分析和因子分析两种方法。
3. 生存分析生存分析是应用于疾病生存率、故障时间等事件发生的分析方法。
生存曲线、危险比和生存率是生存分析的重要指标。
生存分析能够帮助研究者评估不同因素对事件发生的影响。
4. 文本分析文本分析是对文本数据进行内容和语义分析的方法。
可以使用自然语言处理技术提取关键词、主题分布等信息,进一步了解数据的内在意义。
三、结果解释与讨论在论文中,除了进行数据解读和结果分析,还需要对结果进行解释和讨论。
论文中的结果呈现与解释
论文中的结果呈现与解释在论文中,结果呈现和解释是非常重要的步骤。
它们不仅展示了研究的发现,还为读者提供了理解和解释这些结果的框架。
因此,在写论文时,务必准确、清晰地呈现和解释研究结果,以便读者能够深入了解研究的重要发现和推论。
结果呈现是指以可视化和统计数据的方式将研究结果展示给读者。
常见的结果呈现方式包括表格、图表和图形等。
在选择结果呈现方式时,需根据研究类型、数据类型和研究问题的需要来进行决策。
例如,对于定量数据,可以使用柱状图、饼图或折线图等来表示不同组之间的比较或趋势关系;对于定性数据,可以使用文字描述或者词云图等方式展示。
无论采用何种方式,都应确保结果呈现清晰明了,易于理解。
此外,在结果呈现的同时,还需要进行解释和分析。
解释是为了引导读者理解结果,解释结果与研究问题之间的联系和含义。
解释通常包括对结果的简要描述、对结果与理论研究之间的关系进行分析,并提供相关的背景知识和参考文献支持。
通过解释,读者可以更好地理解结果的意义和可能的推论。
在解释结果时,还需要注意以下几点。
首先,清晰地表达结论,将结果和研究问题的回答联系起来。
其次,要进行客观地评估结果的可靠性和有效性,并指出任何潜在的局限性或偏差。
第三,尽量简洁明了地解释结果,避免使用过多的术语和专业知识,以确保读者能够理解。
最后,如果有必要,可以对结果进行比较和对比,以增强结果的解释和说明能力。
在进行结果呈现和解释时,还需要注意文章的排版与语句的通顺。
合理地使用段落结构和标题,使文章结构清晰可读。
段落之间的转换应流畅自然,避免出现过于突兀或不连贯的情况。
另外,使用简洁明了的语言表达结果和解释,避免冗长和晦涩的句子。
通过良好的排版和流畅的语句,可以提高读者的阅读体验,使他们更容易理解和接受研究的结果。
综上所述,论文中的结果呈现与解释是至关重要的。
通过清晰、准确地呈现结果,并进行详细的解释和分析,读者可以更好地理解研究的发现和推论。
同时,在排版和语句表达方面也需保持整洁美观,以确保读者能够顺畅地阅读和理解研究结果。
学术论文中如何准确叙述统计数据分析结果
学术论文中如何准确叙述统计数据分析结果在学术研究中,统计数据分析是不可或缺的一环。
准确地叙述统计数据分析结果对于论文的可信度和科学性至关重要。
本文将探讨如何在学术论文中准确叙述统计数据分析结果,以确保研究的可靠性和有效性。
首先,准确地描述统计数据的基本特征是十分重要的。
在介绍统计数据时,应该包括数据的类型(如定量或定性)、数据的来源以及数据的样本量等信息。
此外,还应该描述数据的中心趋势和离散程度,例如平均值、标准差、中位数和四分位数等。
这些基本特征可以帮助读者更好地理解数据的分布和变异情况。
其次,对于已经进行的统计分析,应该准确地叙述分析方法和结果。
在描述统计方法时,应该明确使用的方法,如描述统计、方差分析、回归分析等,并说明为什么选择了这些方法。
此外,还应该提供分析的具体步骤,包括数据的前处理、变量选择和模型构建等。
这样可以使读者了解研究的分析过程,并能够根据描述的方法进行复现。
在叙述统计结果时,应该提供足够的信息,以便读者能够理解结果的含义。
对于定量数据,可以使用均值和标准差来描述结果的集中趋势和离散程度。
对于定性数据,可以使用频数和百分比来描述不同类别的分布情况。
此外,还可以使用图表来直观地展示结果,如条形图、饼图和散点图等。
这些图表可以帮助读者更好地理解结果,并进行进一步的比较和分析。
除了描述结果的基本特征外,还应该对结果进行统计显著性检验。
在进行统计检验时,应该明确使用的检验方法,如t检验、方差分析或卡方检验等,并提供检验的结果,包括检验统计量、自由度、p值和效应大小等。
这些信息可以帮助读者判断结果的可靠性和显著性,从而对研究的结论做出合理的评估。
此外,还应该注意在叙述统计结果时避免使用过于主观的词语。
应该尽量使用客观的描述,避免使用“显著”、“重要”等词语,而是使用具体的统计指标和显著性水平来支持结论。
这样可以使结果更加客观和科学,减少主观偏见的影响。
最后,应该对统计数据分析结果进行合理的解释和讨论。
论文中的数据分析方法和结果解读的技巧
论文中的数据分析方法和结果解读的技巧在科研领域中,数据分析是非常重要的一环。
正确选择和运用数据分析方法以及准确解读结果是确保科研项目的可靠性和有效性的关键。
本文将介绍一些常用的数据分析方法和结果解读的技巧。
一、数据分析方法1. 描述性统计分析描述性统计分析是最常用的数据分析方法之一。
它通过计算各种指标,如平均值、标准差、中位数等,来描述数据的集中趋势和离散程度。
对于定量数据,可以使用频数分布表或直方图来展示数据的分布情况。
2. 相关性分析相关性分析用于研究两个或多个变量之间的关系。
通过计算相关系数,可以判断变量之间的线性相关关系的强度和方向。
常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数,具体选择哪种相关系数要根据变量的性质和分布选择。
3. t检验和方差分析t检验用于比较两个样本的均值是否有差异,而方差分析则用于比较多个样本的均值是否有差异。
它们都是用于检验平均值差异的常见方法,可应用于不同实验设计和研究对象的数据比较。
4. 回归分析回归分析用于研究自变量与因变量之间的关系,并建立预测模型。
线性回归是最常见的回归方法之一,通过求解最小二乘法估计回归方程中的参数,从而得到回归模型。
此外,还有非线性回归、逻辑回归等不同类型的回归分析方法,可根据需要选择合适的方法。
二、结果解读的技巧1. 结果的清晰呈现在结果解读中,首先要确保结果的呈现清晰明了。
可以通过图表、表格等形式将结果展示出来,同时可以加入适当的标注和注释,帮助读者更好地理解结果。
2. 结果与研究问题的联系在解读结果时,要紧密联系研究问题来进行分析。
解释结果时要明确地回答研究问题,同时还要展示结果与现有理论或研究领域的关联,以便读者更好地理解结果的意义和影响。
3. 结果的可信度评估除了呈现结果外,还要对结果的可信度进行评估。
可以通过制定实验设计、控制变量等方法来提高结果的可靠性,并通过显著性检验等统计方法来评估结果的显著性。
4. 结果的限制和推广性在解读结果时,要清楚地指出结果的限制和推广性。
统计分析结果在论文中的正确表达
2、数据的精确度:
(1)计量资料的统计指标( x、S、中位数等)要保
留的小数位数,应与原始数据记录的小数位数相同。
(2)计数资料的百分比保留一位小数,一般不超过两 位小数。
(3)检验统计量,如X2值、t值一般保留两位或三位 小数。
二、“结果”的统计表达
3、选择正确的统计描述指标
(1)计量资料常用 xs 描述研究结果的数据特征, 但必须注意前提是要求数据近似服从正态分布。如数 据明显偏态,应采用中位数和四分位数间距描述数据 特征。
(2)分类资料常用的统计描述指标有率和构成比。 医学文献中率与构成比应用主要问题:①分母太小。 分母太小时,率(构成比)的可靠性差,此时宜用绝 对数描述而不宜计算率(构成比); ②将构成比误 用为率来说明事物发生的强度。
2
1.
也要在“材料与方法”中说明。一般的常用统计方法简 (1)对研究对象的来源和选择方法不做任何说明或只做非常简单的说明。
(4)对统计分析方法不做任何说明,尤其对一些特殊的统计方法。
(4)对统计分析方法不做任何说明,尤其对一些特殊的统计方法。
单 86
51
说46. 27.
明
即
可
,
如
X2
检
验
、
t
检
验
、
单
105
56.
描述研究结果的数据特征,但必须注意前提是要求数据近似服从正态分布。
一、“材料与方法”的统计表达
一、“材料与方法”的统计表达
5、 “材料与方法”统计表达常见的问题 (1)对研究对象的来源和选择方法不做任何说明
或只做非常简单的说明。例如,动物实验只说明 经随机化分组,未说明具体的随机化分组方法(如 完全随机、配对或分层随机分组等)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
论文中统计结果的表达及解释TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】《中华消化外科杂志》对P值规范化表述的要求根据中华医学会杂志社的要求,根据人民卫生出版社的全国高等学校教材《卫生统计学》第5版,报告统计学检验的结论时,对P值小于或等于检验水准(一般为的情况,一律描述为“差异有统计学意义”,同时写明P的具体数值或相应的不等式,在用不等式表示P值的情况下,一般情况下选用P>、P<和P<三种表达方式即可满足需要,无须再细分为P<或<。
不再采用将P<描述为“差异有显着意义”(或差异有显着性)”,或将P<描述为“差异有非常显着意义(或差异有非常显着性)”的表达方式。
______________________________________________论文中统计结果的表达及解释【摘要】统计学是生物医学研究所必需的重要手段, 生物医学研究的实验设计、资料收集、数据处理分析以及结论都离不开统计学应用。
生物医学研究论文主要由摘要、引言、材料与方法、结果和讨论5个部分组成, 各个部分都涉及统计结果的表达和解释, 统计学是专业结论成立与否的重要依据。
统计学应用不当不仅影响论文的科学性, 还有可能得出错误的专业结论。
【关键词】统计学科研论文统计分析统计表达近年来, 统计学在生物医学科研中的应用越来越受到重视, 统计分析结果的表达及解释已成为医学科研论文中不可缺少的重要组成部分。
除论文涉及的专业(如细胞与分子免疫学杂志为免疫学专业)和表述的文字2个方面外, 统计学是评价论文质量优劣的重要依据, 然而国内生物医学论文中统计学应用仍存在着较为严重的问题[1-4], 如2003年某大学学报拟发表论着中统计方法误用率为57%[3]。
细胞与分子免疫学杂志虽然在国内生物医学系列杂志中具有较高的学术地位[5], 但拟发表及刊出论文在科研设计、统计学分析、结果解释等方面也不同程度地存在一些问题, 作者的统计学应用水平有待进一步提高。
许多生物医学杂志, 如国外着名杂志JAMA、新英格兰医学杂志(NEJM)和英国医学杂志(BMJ)等, 以及国内中华医学会系列杂志及细胞与分子免疫学杂志等, 对来稿都有统计学表达的基本要求或统计学指导原则。
国际生物医学杂志编辑协会在其《生物医学期刊投稿的统一要求》中也包含了统计学表达的基本要求。
生物医学研究性论文主要由摘要、引言、材料与方法、结果和讨论5个部分组成, 各个部分或多或少都涉及到统计结果的表达和解释问题。
例如在论文的“引言”部分需要给出文献复习的综合结果, 如文献报告的组间差别及P值等。
其他重要的统计表达和解释主要集中在论文的“摘要”、“材料和方法”、“结果”及“讨论”4个部分[6]。
1 摘要“摘要”中要有表示研究结果的重要统计指标(统计量)的数值、可信区间及假设检验结果(P值)。
如处理组和对照组的均数(中位数)、标准差(标准误)、率、 P值, 或2组均数(率)之差、 95%可信区间、 OR值及多个观察指标的相关系数等。
这些数据是循证医学Meta分析的基本依据。
2 材料和方法“材料和方法”中的统计学描述包括以下两个方面。
描述研究设计的内容内容包括研究类型、观察对象类型、入选和剔除标准、观察方法和测量技术以及实验、试验或调查资料的搜集过程等。
尤其应具体地描述研究对象的来源和选择方法(如是否配对、随机抽样), 包括观察对象的基本情况、有无随机分组(随机抽样)、随机化分组方法、样本含量及其估计的依据等。
对于非随机化分组的观察性研究(含调查研究), 还应给出影响因素(如年龄、性别、病情)的均衡性分析结果。
对于临床试验, 还需要特别说明诊断标准、疗效评价标准、病例入选标准、病例剔除标准、依从性如何、有无失访及失访的比例、有无“知情同意”、疗效评价是否采用“盲法”(“单盲”、“双盲”或“多盲”)等。
描述统计分析方法与统计计算软件论文中用到的所有统计分析方法都要说明, 且需指出在何处用了何种方法。
统计计算软件一般给出名称即可, 如SPSS、 SAS等。
然而, 有些论文却把统计学当做“修饰物”, 论文中没有用到的统计分析方法也都一一罗列出来, 甚至有的形态学研究不需要统计学分析, 却也给出了“P值”。
在这里, 有些作者错误地认为, 只要给出了“P值”, 就标志用了统计学, 却不管统计学用得是否正确。
事实上, 误用或滥用统计学不仅不能提高论文的质量, 反而会大大降低论文的科学性!研究设计常见的主要问题 (1)研究目的不分主次, 试图通过一次试验回答多个问题, 测量指标多, 样本小, 试验前未进行样本含量估计, 对研究对象的来源和选择方法不做任何说明或只做非常简单的说明, 统计分析方法没有任何说明, 尤其是一些特殊的统计方法。
例如, 动物实验没有随机化分组, 或只说明经随机化分组, 未说明具体的随机化分组方法(如完全随机、配对或分层随机分组等); (2)观察对比的研究轻率使用“随机选择对照”、“随机抽取健康儿童××例”等用语, 对比组间的均衡性未交代或组间不做比较, 只说明组间均衡, 未给出反映均衡性的统计指标的具体数据以及所用的统计分析方法; (3)临床试验没有报告伦理学要求对随机化分组的限制与改动、受试者的代表性、依从性、是否有失访等, 疗效评价未说明是否采用“盲法”, 或只说明采用了“盲法”, 未说明是受试者遮蔽还是评价者遮蔽等; (4)实验或试验的样本量非常小, 如每组3例, 却不说明任何理由等等。
3 结果统计学分析结果主要用统计指标(统计量)表示。
统计指标比较多且需分组比较时, 常常须借助统计图表。
统计量在生物医学论文中, 对不同类型的研究资料需用不同的统计指标进行描述。
对细胞与分子生物学实验中的常见观测指标, 如TRAIL表达、 mRNA表达水平、光密度值(OD值)、吸光度值(A值)、百分比含量及抑制率等, 常作为计量数据(计量资料)进行统计描述与分析。
对于计量资料, 当资料为近似正态(或对称)分布时, 可用算术均数x和标准差s描述; 在没有变异指标或精确性指标的情况下, 不宜单独使用均数。
在“±”后直接写具体数值而无标准误或标准差的符号表示, 如±, 容易引起混淆。
配对t检验, 应给出差数的均数及标准误(或标准差)。
当资料为偏态时, 应采用中位数Md和四分位数间距QR来描述, 而不宜用x和s。
用非参数统计分析方法处理的资料, 数据的中心位置用中位数表示, 散布范围(如95%的散布范围)用百分位数表示。
此外, 若对原始数据进行了变量转换, 则原始数据的均数及标准差不能很好地反映数据的中心位置及其散布范围, 不必将其列出。
对于计数资料, 常用的统计指标有率和构成比(百分比)。
使用百分比时, 分母要交待清楚。
小样本资料不宜计算百分比。
实际工作中统计指标应用常见的问题有: 计量资料不管是否近似服从正态分布, 统统用x±s描述研究结果的数据特征; 分子生物学或细胞实验(如ELISA法、 MTT法、 RT PCR法、免疫细胞化学法、蛋白质印迹分析法等)数据用x±s表示, 其样本量(例数)n在“材料和方法”或“结果”中未交代; 计数资料统计指标率和构成比(百分比)容易混淆, 常将构成比误用为率来说明事物发生的强度; 率和构成比的分母太小, 却计算相对数来进行描述和比较。
分母太小时, 率(构成比)的可靠性不能保证。
因此, 在这种情况下, 宜直接用绝对数进行描述而不宜计算相对数。
当计量资料符合正态分布条件时, 约有68%的观察数据在x±s的范围内, 约有95%的观察数据在x±2s的范围内。
当数据不符合正态分布时, 就没有这些特征了。
假设检验的结果表达不仅要给出P值, 还要给出检验统计量的实际值, 如u值、 t 值、χ2值等。
描述统计量, 如均数、率、相关系数, 无论检验结果是否有统计学意义, 均应列出。
水平是常用的检验水准, 但P为或时, 与并无太大差别, 得出的结论也理应一致, 不应有本质上的差别。
用P>作为不“显着”(统计学意义)的表达方式容易使读者(也包括作者)误解, 由于统计软件的普及, 因此提倡报告P的具体数值(精确P值), 如P=或P=等。
如果提供精确P值实在有困难, 应给出实际的χ2值、 t值、 F值和相应的自由度, 以便他人在Meta分析时转换为精确P值。
统计图表统计图表是研究结果统计表达的重要手段, 统计图便于读者直观了解研究结果, 并且提倡用图来显示个体值的散布情况, 如相关和回归分析的散点图。
同一个体值不同时间的重复测量值最好连成曲线, 不同组别的个体值(均值)随时间变化的曲线亦可标在同一个图上。
提倡采用误差条图(或线图), 但由均数加减标准误绘出的误差条图, 仅能描述68%的可信区间, 不能误解为95%的可信区间。
医学论文中要求采用“三线”表。
数值结果按列(行)放置, 位数要对齐, 不要出现交*换行的情况。
不同类型数据(如均数、标准误)要有标目, 表中应列出相应的观察例数。
大量统计结果的表达要运用统计表或统计图, 实际应用中统计图表还存在一些问题, 主要有: (1)图形类别的选择与资料性质不符; (2)纵横两轴的等距离尺度不代表等差数据(算术尺度)或等比数据(对数尺度); (3)无图例或标目; (4)条图的纵轴起点不为0、横轴的刻度为算术刻度、排列顺序未按指标值大小(或自然顺序)排列; (5)圆图各部分未按比例大小或自然顺序顺时针方向排列(其他项放最后)、起点位置不在12时或9时; (6)统计表的标目不明确, 主辞和宾辞倒置或混淆, 表中存在斜线或竖线, 数据为“0”、无数据或缺失数据时留有空白, 同一指标小数位数(精度)不一致、小数点(位)未对齐等图表不规范问题。
数据精确度一般来说, 数据精确度只要足以区分个体差异即可, 并非小数位数越多越好。
表示观测结果时, 2个数的小数位数应一致, 如±, 应写成±, 平均值(x)与标准差(s)的位数, 除取决于测量仪器的精密度外, 还取决于样本内个体的变异, 一般按s3而定, 例如± g, 其中s3超过200 g, 平均值在百克的位上波动, 故应写成± kg。
与实际情况不符的精确度并不能增加论文的价值, 反而降低了论文的可读性与可信程度。
从计算器或计算机得到的计算结果需要四舍五入。
计量资料的统计指标(x、s、中位数、百分位数等)要保留的小数位数, 应该与原始数据记录的小数位数相同。
均数的有效位数通常不应比原始数据的有效位数多, 但标准差或标准误必要时需多增加一个位数。
计数资料的百分比保留1位小数, 一般不超过2位小数; 病死率、发病率按惯例选择比例基数, 如1000‰, 10000/万和10万/10万等, 或自行选择合适的比例基数, 使率的整数部分至少有1位有效数字; 相关系数保留2位小数; 精确概率P值一般没必要给出四位小数, 有时甚至保留两位小数也可以; 检验统计量, 如χ2值、 t值保留2位小数即可。