Matlab拟合工具箱CFtool使用指南
cftool 用法

cftool是MATLAB的曲线拟合工具箱,使用方法如下:
1. 在MATLAB的命令窗口中输入cftool,打开Curve Fitting Tool。
2. 选择要拟合的数据,设置拟合名字,选择X数据和Y数据。
3. 在左侧的选项卡中选择要使用的拟合模型类型,例如Custom Equations、Exponential、Fourier等。
4. 根据选择的模型类型,输入相应的参数,例如自定义函数中的参数a、b等。
5. 点击Apply按钮,在Results框中得到拟合结果,包括拟合曲线的参数和拟合曲线。
6. 可以通过点击Fitting窗口中的New fit按钮,按照同样的步骤进行新的拟合操作。
需要注意的是,cftool只能进行单个变量的曲线拟合,即待拟合的公式中,变量只能有一个。
对于混合型的曲线,例如y=a*x+b/x,工具箱的拟合效果并不好。
Matlab曲线拟合工具箱

Matlab曲线拟合工具箱一、单一变量的曲线逼近Matlab有一个功能强大的曲线拟合工具箱 cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。
下面结合我使用的Matlab R2007b 来简单介绍如何使用这个工具箱。
假设我们要拟合的函数形式是 y=A*x*x + B*x, 且A>0,B>0 。
1、在命令行输入数据:》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475];》y=[5 10 15 20 25 30 35 40 45 50];2、启动曲线拟合工具箱》cftool3、进入曲线拟合工具箱界面“Curve Fitting tool”(1)点击“Data”按钮,弹出“Data”窗口;(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图;(3)点击“Fitting”按钮,弹出“Fitting”窗口;(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有:Custom Equations:用户自定义的函数类型Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) + c*exp(d*x)Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) + b1*sin(x*w)Gaussian:高斯逼近,有8种类型,基础型是a1*exp(-((x-b1)/c1)^2)Interpolant:插值逼近,有4种类型,linear、nearestneighbor、cubic spline、shape-preservingPolynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~Power:幂逼近,有2种类型,a*x^b 、a*x^b + cRational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是a1*sin(b1*x + c1)Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)选择好所需的拟合曲线类型及其子类型,并进行相关设置:——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待估计参数的上下限等参数;——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations线性等式”和“General Equations构造等式”两种标签。
cftool拟合对数函数表达式

cftool拟合对数函数表达式
Matlab中拟合对数函数是指用Matlab来拟合数据点集合。
如果点组够多,并且各个点的误差比较小,使用Matlab的curve fitting功能可以很容易地拟合出一个对数函数表达式,而无需了解任何数学原理。
一、Matlab拟合对数函数的实现步骤:
1. 下载并安装Matlab。
2. 打开Matlab,输入“cftool”打开curve fitting工具箱,然后从数据菜单中选择“回归分析->形状类型选择”,在出现的窗口中选择对数函数,点击下一步。
3. 在弹出的窗口中回答“x”和“y”标签,将原始数据代入,点击完成,弹出新窗口,显示拟合曲线。
4. 点击“coefficients”按钮,调出拟合参数窗口,显示参数估计值。
5. 打开命令窗口,输入函数表达式,即将Matlab的cftool拟合的参数估计值代入,便可以得到函数表达式。
二、Matlab拟合对数函数的优点:
1. 运算简便,节省时间,结果准确精确。
2. 计算函数可以快速且容易地由数据得出。
3. 对数函数可以方便地根据不同需求进行修改,使其达到最优状态。
4. 拟合后的函数有较高的预测准确率,可以被应用于模拟和分析工作中。
cftool的应用

Matlab非线性拟合工具箱cftool本文来自: MATLAB爱好者论坛作者: admin日期: 2009-6-3 11:06 阅读: 4361人打印收藏Matlab, cftool, 非线性, 工具箱, 拟合一、单一变量的曲线逼近Matlab有一个功能强大的曲线拟合工具箱 cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。
下面结合我使用的 Matlab R2007b 来简单介绍如何使用这个工具箱。
假设我们要拟合的函数形式是 y=A*x*x + B*x, 且A>0,B>0 。
1、在命令行输入数据:》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475];》y=[5 10 15 20 25 30 35 40 45 50];2、启动曲线拟合工具箱》cftool3、进入曲线拟合工具箱界面“Curve Fitting tool”(1)点击“Data”按钮,弹出“Data”窗口;(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图;(3)点击“Fitting”按钮,弹出“Fitting”窗口;(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有:Custom Equations:用户自定义的函数类型Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) + c*exp(d*x) Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) + b1*sin(x*w) Gaussian:高斯逼近,有8种类型,基础型是 a1*exp(-((x-b1)/c1)^2)Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preservingPolynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree~Power:幂逼近,有2种类型,a*x^b 、a*x^b + cRational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是 a1*sin(b1*x + c1) Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)选择好所需的拟合曲线类型及其子类型,并进行相关设置:——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待估计参数的上下限等参数;——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations线性等式”和“General Equations构造等式”两种标签。
matlab拟合曲面步骤

matlab拟合曲面步骤:
在MATLAB中拟合曲面,可以按照以下步骤进行:
1.加载数据:在MATLAB命令行中,使用load命令加载需要拟合的数据。
2.打开曲线拟合工具:键入cftool打开曲线拟合工具箱。
3.选择数据:在曲线拟合工具箱中,选择X Date(X数据)、Y Date(Y数据)和Z Date
(Z数据)进行曲面拟合。
4.选择模型类型:使用“适合类别”下拉列表选择不同的模型类型,例如:Polynomial
(多项式模型)。
5.尝试不同的适合选项:为用户选择的模型尝试不同的适合选项。
6.生成代码:选择File > Generate Code(文件> 生成代码)。
曲面拟合应用程序在
编辑器中创建一个包含MATLAB代码的文件,以便在交互式会话中重新创建所有拟合和绘图。
7.拟合曲面:使用曲面拟合应用程序或fit函数,将三次样条插值拟合到曲面。
matlab curve fitting tool 拟合椭圆

matlab curve fitting tool 拟合椭圆在MATLAB 中,Curve Fitting Toolbox(曲线拟合工具箱)可以用于拟合椭圆。
下面是一些简要的步骤,演示如何使用Curve Fitting Toolbox 来拟合椭圆。
1.打开Curve Fitting 工具箱:在MATLAB 命令窗口中输入cftool并按Enter 打开Curve Fitting 工具箱。
2.导入数据:在Curve Fitting 工具箱中,选择"File" 菜单,然后选择"Import Data"。
导入包含椭圆数据的文件,确保文件的格式正确。
3.选择拟合类型:在Curve Fitting 工具箱的左侧面板中,选择"Ellipse/Circle" 作为拟合类型。
4.调整拟合选项:在右侧面板中,选择"Ellipse/Circle" 选项卡,根据数据的性质调整拟合选项,例如,选择椭圆拟合的参数。
5.拟合椭圆:点击"Fit" 按钮执行拟合操作。
6.查看结果:查看拟合结果,包括拟合曲线和相关的统计信息。
Curve Fitting 工具箱通常会显示拟合参数,如椭圆的中心、半长轴、半短轴等。
7.导出拟合对象:如果需要在MATLAB 中进一步使用拟合对象,可以导出拟合对象。
在Curve Fitting 工具箱中,选择"Export"菜单,并选择"To Workspace"。
这是一个简单的步骤示例,实际拟合椭圆可能需要调整不同的选项,具体取决于你的数据和需求。
Curve Fitting 工具箱提供了丰富的选项,以满足各种曲线拟合需求。
打开matlab拟合工具箱

1.打开CFTOOL工具箱。
在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行2.2.输入两组向量x,y。
首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。
输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。
例如在命令行里输入下列数据:x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33];y = [0.012605; 0.013115; 0.016866; 0.014741; 0.022353; 0.019278; 0.041803; 0.038026;0.038128; 0.088196];3.4. 3.数据的选取。
打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。
关闭Data对话框。
此时Curve Fitting Tool 窗口中显示出这一数据组的散点分布图5.6.7.4.曲线拟合(幂函数power)。
点击Fitting...按钮,出现Fitting对话框,Fitting对话框分为两部分,上面为Fit Editor,下面为Table of Fits,有时候窗口界面比较小,Fit Editor部分会被收起来,只要把Table of Fits 上方的横条往下拉就可以看见Fit Editor。
matlab曲线拟合自定义函数

matlab曲线拟合自定义函数曲线拟合是数据分析的常见任务之一,它旨在找到一个数学模型,能够最好地描述已有数据集中的趋势。
在MATLAB中,可以使用曲线拟合工具箱中的函数对曲线进行拟合。
本文将介绍如何使用MATLAB进行曲线拟合,包括自定义函数的拟合过程。
曲线拟合的目标是找到一个函数,使得该函数能够最好地表示已有数据的分布规律。
在MATLAB中,可以通过拟合曲线与已有数据的残差最小化来实现。
一般来说,拟合曲线的函数形式可以选择线性函数、多项式函数、指数函数、对数函数等。
在进行曲线拟合之前,首先需要准备数据。
MATLAB可以通过导入外部数据文件或手动输入数据来获取数据集。
数据集通常是一组x和y 的数值,其中x是自变量,y是因变量。
接下来,我们需要选择一个合适的拟合函数。
如果已知数据的分布规律,可以选择与该规律相符的函数。
如果不确定数据的分布规律,可以选择多项式函数进行拟合,然后根据数据的特点进行调整。
在MATLAB中,可以通过使用curve fitting工具箱中的cftool 函数来进行曲线拟合。
cftool提供了一个交互式的界面,可以方便地进行参数估计和拟合效果的可视化。
使用cftool进行曲线拟合的步骤如下:1.打开MATLAB的命令窗口,输入cftool,然后按Enter键打开拟合工具箱。
2.在打开的界面中,选择"拟合"选项卡,然后选择合适的拟合函数。
如果需要自定义函数进行拟合,可以选择"自定义模型"选项卡,并在"函数形式"框中输入函数表达式。
3.在"输入数据"选项卡中,输入已有的数据集。
数据集可以通过"导入数据"按钮从外部文件导入,也可以直接手动输入。
4.点击"拟合"按钮,等待MATLAB计算出最佳拟合结果。
5.在"拟合结果"选项卡中,可以查看拟合曲线的参数估计结果和误差分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
matlab拟合工具箱使用
1.打开CFTOOL工具箱
在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。
也可以在命令窗口中直接输入"cftool",打开工具箱。
2.输入两组向量x,y
首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。
输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保
这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。
例如在命令行里输入下列数据:
x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33];
y = [0.012605; 0.013115; 0.016866; 0.014741; 0.022353;
0.019278; 0.041803; 0.038026; 0.038128; 0.088196];
3.选取数据
打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。
关闭Data对话框。
此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。
4.拟合曲线(幂函数power)。
点击Fitting...按钮,出现Fitting对话框,Fitting对话框分为两部分,上面为Fit Editor,下面为Table of Fits,有时候窗口界面比较小,Fit Editor部分会被收起来,只要把Table of Fits 上方的横条往下拉就可以看见Fit Editor。
在Fit Editor里面点击New Fit按钮,此时其下方的各个选框被激活,在Data Set选框中选中刚才建立的x-y数据组,然后在Type of fit选框中选取拟合或回归类型,各个类型的拟合或回归相应的分别是:
Custom Equations 用户自定义函数
Expotential e指数函数
Fourier 傅立叶函数,含有三角函数
Gaussian 正态分布函数,高斯函数
Interpolant 插值函数,含有线性函数,移动平均等类型的拟合Polynomial 多项式函数
Power 幂函数
Rational 有理函数(不太清楚,没有怎么用过)
Smooth Spline ??(光滑插值或者光滑拟合,不太清楚)Sum of sin functions正弦函数类
Weibull 威布尔函数(没用过)
在这个Type of fit选框中选择好合适的类型,并选好合适的函数形式。
于是点击Apply按钮,就开始进行拟合或者回归了。
此时在Curve Fitting Tool窗口上就会出现一个拟合的曲线。
这就是所要的结果。
在上面的例子中,选择sum of sin functions中的第一个函数形式,点击Apply按钮,就可以看见拟合得到的正弦曲线。
5.查看拟合结果信息
在Fitting对话框中的Results文本框中显示有此次拟合的主要统计信息,主要有
General model of sin1:
....... (函数形式)
Coefficients (with 95% conffidence range) (95%致信区间内的拟合常数)
a1=... ( ... ...) (等号后面是平均值,括号里是范围)
....
Godness of fit: (统计结果)
SSE: ... (方差)
R-squared: ... (决定系数,不知道做什么的)
Adjusted R-squared: ... (校正后的决定系数,如何校正的不得而知)
RMSE: ... (标准差)
上面的例子中经过拟合得到的函数最后为
y=3.133*x^(-1.007)-0.004233
6.拟合分析(Analysis)。
7.导出图片
另外要说的是,如果想把这个拟合的图像导出的话,在Curve Fitting Tool窗口的File菜单下选Print to Figure,此时弹出一个新的图像窗口,里面是你要导出的图像,在这个figure窗口的File 菜单里再选Export,选择好合适的格式,一般是jpeg,选择好路径,点击OK就可以了。
出来的图像可以在Word等编辑环境中使用,就不多说了。
要修改图像的性质,如数据点的大小、颜色等等的,只需要在对象上点右键,就差不多可以找到了。
另外使用程序来进行曲线拟合:
p=polyfit(xdata,ydata,n) n为选取的方法
a=polyval(p,xdata) 进行曲线拟合后计算所得到得值
可以将拟合曲线与源曲线画出来:
plot(xdata,ydata,'b*',xdata,a,'r-')
legend('ydata','fit');
(注:可编辑下载,若有不当之处,请指正,谢谢!)。