[整理]matlab拟合工具箱的使用.
matlab拟合工具箱

Matlab的曲线拟合工具箱CFtool使用简介一、单一变量的曲线逼近Matlab有一个功能强大的曲线拟合工具箱cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。
下面结合我使用的Matlab R2007b 来简单介绍如何使用这个工具箱。
假设我们要拟合的函数形式是y=A*x*x + B*x, 且A>0,B>0 。
1、在命令行输入数据:》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475];》y=[5 10 15 20 25 30 35 40 45 50];2、启动曲线拟合工具箱》cftool3、进入曲线拟合工具箱界面“Curve Fitting tool”(1)点击“Data”按钮,弹出“Data”窗口;(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图;(3)点击“Fitting”按钮,弹出“Fitting”窗口;(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有:∙Custom Equations:用户自定义的函数类型∙Exponential:指数逼近,有2种类型,a*exp(b*x) 、a*exp(b*x) + c*exp(d*x)∙Fourier:傅立叶逼近,有7种类型,基础型是a0 + a1*cos(x*w) + b1*sin(x*w)∙Gaussian:高斯逼近,有8种类型,基础型是a1*exp(-((x-b1)/c1)^2)∙Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preserving ∙Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~∙Power:幂逼近,有2种类型,a*x^b 、a*x^b + c∙Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型∙Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)∙Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是a1*sin(b1*x + c1)∙Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)选择好所需的拟合曲线类型及其子类型,并进行相关设置:——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待估计参数的上下限等参数;——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations 线性等式”和“General Equations构造等式”两种标签。
Matlab曲线拟合工具箱cftool功能

Matlab的曲线拟合工具箱CFtool功能一、单一变量的曲线逼近Matlab有一个功能强大的曲线拟合工具箱cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。
下面结合我使用的Matlab R2007b 来简单介绍如何使用这个工具箱。
假设我们要拟合的函数形式是y=A*x*x + B*x, 且A>0,B>0 。
1、在命令行输入数据:》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475]》y=[5 10 15 20 25 30 35 40 45 50]2、启动曲线拟合工具箱》cftool3、进入曲线拟合工具箱界面“Curve Fitting tool”(1)点击“Data”按钮,弹出“Data”窗口;(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图;(3)点击“Fitting”按钮,弹出“Fitting”窗口;(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有:Custom Equations:用户自定义的函数类型Exponential:指数逼近,有2种类型,a*exp(b*x) 、a*exp(b*x) + c*exp(d*x) Fourier:傅立叶逼近,有7种类型,基础型是a0 + a1*cos(x*w) + b1*sin(x*w) Gaussian:高斯逼近,有8种类型,基础型是a1*exp(-((x-b1)/c1)^2)Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape- preservingPolynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~ Power:幂逼近,有2种类型,a*x^b 、a*x^b + cRational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是a1*sin(b1*x + c1)Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)选择好所需的拟合曲线类型及其子类型,并进行相关设置:——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待估计参数的上下限等参数;——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations线性等式”和“General Equations构造等式”两种标签。
matlab拟合工具箱的使用

matlab拟合工具箱使用2011-06-17 12:531.打开CFTOOL工具箱。
在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。
也可以在命令窗口中直接输入”cftool”,打开工具箱。
2.输入两组向量x,y。
首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。
输入以后假定叫x向量和y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。
例如在命令行里输入下列数据:x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33];y=[0.012605,0.013115,0.016866,0.014741,0.022353,0.019278,0.041803,0.0 38026,0.038128,0.088196];3.数据的选取。
打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data 选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。
关闭Data对话框。
此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。
4.曲线拟合(幂函数power)。
点击Fitting...按钮,出现Fitting对话框,Fitting对话框分为两部分,上面为Fit Editor,下面为Table of Fits,有时候窗口界面比较小,Fit Editor 部分会被收起来,只要把Table of Fits上方的横条往下拉就可以看见Fit Editor。
matlab插值拟合工具箱用法

matlab插值拟合工具箱用法MATLAB插值拟合工具箱是一个强大的工具,用于处理实验或观测数据,并通过插值和拟合方法来推导出连续的曲线。
下面将介绍一些常用的用法和示例。
1. 数据准备:在使用插值拟合工具箱之前,我们需要准备数据。
可以使用`interp1`函数来插值离散数据,该函数接受输入参数为自变量和因变量的两个向量,并返回一个新的插值向量。
2. 线性插值:使用`interp1`函数可以进行线性插值。
例如,假设我们有一组数据点`(x, y)`,其中`x`是自变量,`y`是因变量。
我们可以使用以下代码进行线性插值:```matlabx = [1, 2, 3, 4]; % 自变量y = [2, 4, 1, 3]; % 因变量xi = 1.5; % 插值点yi = interp1(x, y, xi, 'linear'); % 线性插值disp(yi); % 输出插值结果```这将输出在`x=1.5`处的线性插值结果。
3. 拟合曲线:除了插值,插值拟合工具箱还能进行曲线拟合。
我们可以使用`polyfit`函数拟合多项式曲线。
该函数接受自变量和因变量的两个向量,以及所需的多项式阶数,并返回一个多项式对象。
例如,假设我们有一组数据点`(x, y)`,我们可以使用以下代码进行二次曲线拟合:```matlabx = [1, 2, 3, 4]; % 自变量y = [2, 4, 1, 3]; % 因变量n = 2; % 多项式阶数p = polyfit(x, y, n); % 二次曲线拟合disp(p); % 输出拟合多项式系数```这将输出拟合多项式的系数。
4. 绘制插值曲线和拟合曲线:我们可以使用`plot`函数绘制插值曲线和拟合曲线。
假设我们有一组数据点`(x, y)`,我们可以使用以下代码绘制插值曲线和二次拟合曲线:```matlabx = [1, 2, 3, 4]; % 自变量y = [2, 4, 1, 3]; % 因变量xi = 1:0.1:4; % 插值点n = 2; % 多项式阶数yi_interp = interp1(x, y, xi, 'linear'); % 线性插值p = polyfit(x, y, n); % 二次曲线拟合yi_polyfit = polyval(p, xi); % 拟合曲线plot(x, y, 'o', xi, yi_interp, '--', xi, yi_polyfit, '-'); % 绘制数据点、插值曲线和拟合曲线xlabel('x'); % 设置x轴标签ylabel('y'); % 设置y轴标签legend('数据点', '线性插值', '二次拟合'); % 设置图例```这将绘制出数据点、线性插值曲线和二次拟合曲线。
使用MATLAB进行数据拟合的步骤与技巧

使用MATLAB进行数据拟合的步骤与技巧概述:数据拟合是一种重要的数学方法,用于确定给定数据集的数学模型,并使用所选模型来预测未知数据点的值。
MATLAB是一种广泛用于科学和工程领域的高级计算机语言和数值计算环境。
它提供了强大的工具和函数,可用于数据处理和拟合。
本文将介绍使用MATLAB进行数据拟合的基本步骤,并分享一些技巧和注意事项。
数据拟合步骤:1. 数据导入和可视化:首先,将数据导入MATLAB环境中。
可以从文件、数据库或其他源获取数据,并使用MATLAB的数据导入工具将其加载到工作空间中。
然后,使用plot函数将数据绘制为散点图,以获得对数据的初步了解。
2. 选择拟合模型:根据数据的特点和目标,选择适当的拟合模型。
主要有线性拟合、多项式拟合和非线性拟合等。
线性拟合适用于大多数简单数据集,多项式拟合可用于具有曲线特征的数据集,非线性拟合则可以更精确地拟合复杂数据。
3. 创建拟合函数:在MATLAB中,可以使用fittype函数创建自定义的拟合函数。
该函数定义了拟合模型的形式,并且需要选择适当的方程类型和参数。
可以根据所选模型的特性和拟合需求,添加必要的参数和约束。
4. 拟合数据:使用cfit函数对数据进行拟合。
cfit函数接受拟合函数、数据和初始参数值作为输入,并根据最小二乘拟合准则计算出最优拟合参数。
可以通过调用fit函数,使用最小二乘法或其他拟合算法,拟合数据。
拟合结果将生成一个代表最佳拟合曲线的对象。
5. 可视化拟合结果:为了更好地评估拟合结果,使用plot函数在原始数据图上叠加绘制拟合曲线。
比较拟合曲线与实际数据的吻合程度,考虑调整模型或拟合算法以获得更好的拟合效果。
6. 评估拟合效果:使用MATLAB提供的工具和函数评估拟合结果的质量。
例如,可以使用拟合对象的自由度调整的R方值(Adjusted R-squared)来度量模型拟合优度。
除了R方值,还可以计算均方根误差(RMSE)等指标来评估拟合效果。
matlab拟合工具箱拟合方法

matlab拟合工具箱拟合方法Matlab拟合工具箱是Matlab软件中的一个功能强大的工具箱,它提供了多种拟合方法,用于拟合数据集并找到最佳的拟合曲线。
本文将介绍Matlab拟合工具箱的几种常用的拟合方法。
一、线性拟合(Linear Fit)线性拟合是最简单和最常用的拟合方法之一。
线性拟合假设拟合曲线为一条直线,通过最小二乘法求解最佳拟合直线的斜率和截距。
线性拟合可以用于解决一些简单的线性关系问题,例如求解两个变量之间的线性关系、求解直线运动的速度等。
二、多项式拟合(Polynomial Fit)多项式拟合是一种常见的拟合方法,它假设拟合曲线为一个多项式函数。
多项式拟合可以适用于一些非线性的数据集,通过增加多项式的阶数,可以更好地拟合数据。
在Matlab拟合工具箱中,可以通过设置多项式的阶数来进行多项式拟合。
三、指数拟合(Exponential Fit)指数拟合是一种常用的非线性拟合方法,它假设拟合曲线为一个指数函数。
指数拟合可以用于拟合一些呈指数增长或指数衰减的数据集。
在Matlab拟合工具箱中,可以使用指数拟合函数来拟合数据集,并得到最佳的拟合曲线参数。
四、对数拟合(Logarithmic Fit)对数拟合是一种常见的非线性拟合方法,它假设拟合曲线为一个对数函数。
对数拟合可以用于拟合一些呈对数增长或对数衰减的数据集。
在Matlab拟合工具箱中,可以使用对数拟合函数来拟合数据集,并得到最佳的拟合曲线参数。
五、幂函数拟合(Power Fit)幂函数拟合是一种常用的非线性拟合方法,它假设拟合曲线为一个幂函数。
幂函数拟合可以用于拟合一些呈幂函数增长或幂函数衰减的数据集。
在Matlab拟合工具箱中,可以使用幂函数拟合函数来拟合数据集,并得到最佳的拟合曲线参数。
六、指数幂函数拟合(Exponential Power Fit)指数幂函数拟合是一种常见的非线性拟合方法,它假设拟合曲线为一个指数幂函数。
指数幂函数拟合可以用于拟合一些呈指数幂函数增长或指数幂函数衰减的数据集。
matlab拟合工具箱计算函数值

matlab拟合工具箱计算函数值
MATLAB 是一款功能强大的数学计算和可视化软件,其中包含了一个拟合工具箱,可以用于拟合各种类型的函数。
下面是使用 MATLAB 拟合工具箱计算函数值的步骤:
1. 准备数据:首先,需要准备要拟合的数据。
这些数据应该是函数的输入值和对应的输出值。
可以将这些数据存储在一个 MATLAB 变量中,例如`x`和`y`。
2. 选择拟合函数:根据数据的特点,选择一个合适的拟合函数。
MATLAB 提供了多种拟合函数,例如线性函数、多项式函数、指数函数、对数函数等。
可以通过`fit`函数来选择拟合函数,例如`fit(x,y,'poly1')`表示使用一次多项式函数进行拟合。
3. 进行拟合:使用`fit`函数进行拟合,例如`[fitresult,goodness]=fit(x,y,'poly1')`。
其中,`fitresult`是拟合的结果,包含了拟合函数的系数;`goodness`是拟合的优度指标,可以用来评估拟合的效果。
4. 计算函数值:得到拟合函数的系数后,可以使用`polyval`函数来计算函数值,例如`yhat=polyval(fitresult,xnew)`。
其中,`xnew`是新的输入值,`yhat`是对应的输出值。
需要注意的是,拟合工具箱只是一种工具,它并不能保证得到的拟合函数是完全准确的。
在使用拟合工具箱计算函数值时,需要对结果进行适当的评估和验证,以确保结果的准确性和可靠性。
matlab拟合曲面步骤

matlab拟合曲面步骤:
在MATLAB中拟合曲面,可以按照以下步骤进行:
1.加载数据:在MATLAB命令行中,使用load命令加载需要拟合的数据。
2.打开曲线拟合工具:键入cftool打开曲线拟合工具箱。
3.选择数据:在曲线拟合工具箱中,选择X Date(X数据)、Y Date(Y数据)和Z Date
(Z数据)进行曲面拟合。
4.选择模型类型:使用“适合类别”下拉列表选择不同的模型类型,例如:Polynomial
(多项式模型)。
5.尝试不同的适合选项:为用户选择的模型尝试不同的适合选项。
6.生成代码:选择File > Generate Code(文件> 生成代码)。
曲面拟合应用程序在
编辑器中创建一个包含MATLAB代码的文件,以便在交互式会话中重新创建所有拟合和绘图。
7.拟合曲面:使用曲面拟合应用程序或fit函数,将三次样条插值拟合到曲面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
matlab拟合工具箱使用
2011-06-17 12:53
1.打开CFTOOL工具箱。
在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。
也可以在命令窗口中直接输入”cftool”,打开工具箱。
2.输入两组向量x,y。
首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。
输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。
例如在命令行里输入下列数据:
x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33];
y = [0.012605; 0.013115; 0.016866; 0.014741; 0.022353; 0.019278;
0.041803; 0.038026; 0.038128; 0.088196];
3.数据的选取。
打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data 选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。
关闭Data对话框。
此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。
4.曲线拟合(幂函数power)。
点击Fitting...按钮,出现Fitting对话框,Fitting对话框分为两部分,上面为Fit Editor,下面为Table of Fits,有时候窗口界面比较小,Fit Editor 部分会被收起来,只要把Table of Fits上方的横条往下拉就可以看见Fit Editor。
在Fit Editor里面点击New Fit按钮,此时其下方的各个选框被激活,在Data Set选框中选中刚才建立的x-y数据组,然后在Type of fit选框中选取拟合或回归类型,各个类型的拟合或回归相应的分别是:
Custom Equations 用户自定义函数
Expotential e指数函数
Fourier 傅立叶函数,含有三角函数
Gaussian 正态分布函数,高斯函数
Interpolant 插值函数,含有线性函数,移动平均等类型的拟合
Polynomial 多项式函数
Power 幂函数
Rational 有理函数(不太清楚,没有怎么用过)
Smooth Spline ??(光滑插值或者光滑拟合,不太清楚)
Sum of sin functions正弦函数类
Weibull 威布尔函数(没用过)
在这个Type of fit选框中选择好合适的类型,并选好合适的函数形式。
于是点击Apply按钮,就开始进行拟合或者回归了。
此时在Curve Fitting Tool 窗口上就会出现一个拟合的曲线。
这就是所要的结果。
在上面的例子中,选择sum of sin functions中的第一个函数形式,点击Apply 按钮,就可以看见拟合得到的正弦曲线。
5.拟合后的结果信息。
在Fitting对话框中的Results文本框中显示有此次拟合的主要统计信息,主要有
General model of sin1:
....... (函数形式)
Coefficients (with 95% conffidence range) (95%致信区间内的拟合常数)a1=... ( ... ...) (等号后面是平均值,括号里是范围)
....
Godness of fit: (统计结果)
SSE: ... (方差)
R-squared: ... (决定系数,不知道做什么的)
Adjusted R-squared: ... (校正后的决定系数,如何校正的不得而知)RMSE: ... (标准差)
上面的例子中经过拟合得到的函数最后为
y=3.133*x^(-1.007)-0.004233
6.拟合分析(Analysis)。
7.图片导出。
另外要说的是,如果想把这个拟合的图像导出的话,在Curve Fitting Tool窗口的File菜单下选Print to Figure,此时弹出一个新的图像窗口,里面是你要导出的图像,在这个figure窗口的File菜单里再选Export,选择好合适的格式,一般是jpeg,选择好路径,点击OK就可以了。
出来的图像可以在Word等编辑环境中使用,就不多说了。
要修改图像的性质,如数据点的大小、颜色等等的,只需要在对象上点右键,就差不多可以找到了。
另外使用程序来进行曲线拟合:
p=polyfit(xdata,ydata,n) n为选取的方法
a=polyval(p,xdata) 进行曲线拟合后计算所得到得值
可以将拟合曲线与源曲线画出来:
plot(xdata,ydata,'b*',xdata,a,'r-')
legend('ydata','fit');。