2019-2020年成都市三诊:四川省成都市2019届高三第三次诊断数学(理)试题-含答案
2019届四川省成都市高三第三次诊断性检测数学(理)试题(解析版)

成都市2016级高中毕业班第三次诊断性检测数学(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集()(){}130U x Z x x =∈+-≤,集合{}0,1,2A =,则U C A =( ) A. {}1,3- B. {}1,0- C. {}0,3 D. {}1,0,3-【答案】A 【解析】 【分析】先求得全集包含的元素,由此求得集合A 的补集.【详解】由()()130x x +-≤解得13x -≤≤,故{}1,0,1,2,3U =-,所以{}1,3U C A =-,故选A. 【点睛】本小题主要考查补集的概念及运算,考查一元二次不等式的解法,属于基础题. 2.复数()(1)2z i i =++的共轭复数为( ) A. 33i - B. 33i + C. 13i + D. 13i -【答案】D 【解析】 【分析】直接相乘,得13i +,由共轭复数的性质即可得结果 【详解】∵21()()13z i i i =++=+ ∴其共轭复数为13i -. 故选:D【点睛】熟悉复数的四则运算以及共轭复数的性质.3.已知函数()3sin ,f x x a x x R =+∈,若()12f -=,则()1f 的值等于( )A. 2B. 2-C. 1a +D. 1a -【答案】B 【解析】 【分析】由函数的奇偶性可得,(1)(1)2f f =--=-【详解】∵3()sin f x x a x =+其中3()g x x =为奇函数,()sin t x a x =也为奇函数 ∴()()()f x g x t x =+也为奇函数 ∴(1)(1)2f f =--=- 故选:B【点睛】函数奇偶性的运用即得结果,小记,定义域关于原点对称时有:①奇函数±奇函数=奇函数;②奇函数×奇函数=偶函数;③奇函数÷奇函数=偶函数;④偶函数±偶函数=偶函数;⑤偶函数×偶函数=偶函数;⑥奇函数×偶函数=奇函数;⑦奇函数÷偶函数=奇函数4.如图,在正方体1111ABCD A B C D -中,已知E 、F 、G 分别是线段11A C 上的点,且11A E EF FG GC ===.则下列直线与平面1A BD 平行的是( )A. CEB. CFC. CGD. 1CC【答案】B 【解析】 【分析】连接AC ,使AC 交BD 于点O ,连接1A O 、CF ,可证四边形1A OCF 为平行四边形,可得1//A O CF ,利用线面平行的判定定理即可得解.【详解】如图,连接AC ,使AC 交BD 于点O ,连接1A O 、CF ,则O 为AC 的中点,在正方体1111ABCD A B C D -中,11//AA CC 且11AA CC =,则四边形11AAC C 为平行四边形,11//AC AC ∴且11A C AC =,O Q 、F 分别为AC 、11A C 的中点,1//A F OC ∴且1A F OC =,所以,四边形1A OCF 为平行四边形,则1//CF A O ,CF ⊄Q 平面1A BD ,1AO ⊂平面1A BD ,因此,//CF 平面1A BD . 故选:B.【点睛】本题主要考查了线面平行的判定,考查了推理论证能力和空间想象能力,属于中档题.5.已知x ,y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为A. 1B. 2C. 3D. 4【答案】D 【解析】 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论. 【详解】作出不等式组表示的平面区域如下图中阴影部分所示,2z x y =+等价于2y x z =-+,作直线2y x =-,向上平移,易知当直线经过点()2,0时z 最大,所以max 2204z =⨯+=,故选D .【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.6.若非零实数a 、b 满足23a b =,则下列式子一定正确的是( ) A. b a > B. b a < C. b a < D. b a >【答案】C 【解析】 【分析】令23a b t ==,则0t >,1t ≠,将指数式化成对数式得a 、b 后,然后取绝对值作差比较可得. 【详解】令23abt ==,则0t >,1t ≠,2lg log lg 2t a t ∴==,3lg log lg 3tb t ==, ()lg lg lg lg 3lg 20lg 2lg 3lg 2lg 3t t t a b -∴-=-=>⋅,因此,a b >. 故选:C.【点睛】本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题. 7.已知1sin 243απ⎛⎫+= ⎪⎝⎭,则sin α的值等于( ) A. 79-B. 29-C.29D.79【答案】A 【解析】 【分析】由余弦公式的二倍角可得,27cos()12sin 2249παπα⎛⎫+=-+= ⎪⎝⎭,再由诱导公式有 cos()sin 2παα+=-,所以7sin 9α=-【详解】∵1sin 243απ⎛⎫+=⎪⎝⎭ ∴由余弦公式的二倍角展开式有27cos()12sin 2249παπα⎛⎫+=-+= ⎪⎝⎭又∵cos()sin 2παα+=-∴7sin 9α=- 故选:A【点睛】本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题 8.执行如图所示的程序框图,则输出的n 的值为( )A. 1B. 2C. 3D. 4【答案】B 【解析】 【分析】列出循环的每一步,进而可求得输出的n 值.【详解】根据程序框图,执行循环前:0a =,0b =,0n =, 执行第一次循环时:1a =,2b =,所以:229840+≤不成立. 继续进行循环,…,当4a =,8b =时,226240+=成立,1n =, 由于5a ≥不成立,执行下一次循环,5a =,10b =,225040+≤成立,2n =,5a ≥成立,输出的n 的值为2.故选:B .【点睛】本题考查的知识要点:程序框图的循环结构和条件结构的应用,主要考查学生的运算能力和转换能力,属于基础题型.9.在平面直角坐标系xOy 中,已知点()0,2A -,()1,0N ,若动点M满足MA MO= ,则·OM ON u u u u r u u u r的取值范围是( ) A. []0,2B. 0,⎡⎣C. []22-,D. -⎡⎣【答案】D 【解析】 【分析】设出M 的坐标为(,)x y ,依据题目条件,求出点M 的轨迹方程22(2)8x y +-=,写出点M的参数方程,则·os OM ON θ=u u u u r u u u r ,根据余弦函数自身的范围,可求得·OM ON u u u u r u u u r结果. 【详解】设(,)M x y ,则∵MA MO=,()0,2A -=∴2222(2)2()x y x y ++=+∴22(2)8x y +-=为点M 的轨迹方程∴点M的参数方程为2x y θθ⎧=⎪⎨=+⎪⎩(θ为参数)则由向量的坐标表达式有:·os OM ON θ=u u u u r u u u r又∵cos [1,1]θ∈-∴·[OM ON θ=∈-u u u u r u u u r故选:D【点睛】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:①直接法;②定义法;③相关点法;④参数法;⑤待定系数法10.“幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“n 阶幻方()*3,n n ≥∈N ”是由前2n 个正整数组成的—个n 阶方阵,其各行各列及两条对角线所含的n 个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为( )A. 75B. 65C. 55D. 45【答案】B 【解析】 【分析】计算1225+++L 的和,然后除以5,得到“5阶幻方”的幻和.【详解】依题意“5阶幻方”的幻和为12525122526555+⨯+++==L ,故选B.【点睛】本小题主要考查合情推理与演绎推理,考查等差数列前n 项和公式,属于基础题.11.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F 、2F ,抛物线()220y px p =>与双曲线C 有相同的焦点.设P 为抛物线与双曲线C 的一个交点,且125cos 7PF F ∠=,则双曲线C 的离心率为( ) A.23 B.2或3C. 23D. 2或3【答案】D 【解析】 【分析】设1PF m =,2PF n =,根据125cos 7PFF ∠=和抛物线性质得出257PF m =,再根据双曲线性质得出7m a =,5n a =,最后根据余弦定理列方程得出a 、c 间的关系,从而可得出离心率.【详解】过P 分别向x 轴和抛物线的准线作垂线,垂足分别为M 、N ,不妨设1PF m=,2PF n =,则121125cos 7mMF PN PF PF PF F ===∠=, P Q 为双曲线上的点,则122PF PF a -=,即527mm a -=,得7m a =,5n a ∴=, 又122F F c =,在12PF F ∆中,由余弦定理可得2225494257272a c a a c+-=⨯⨯, 整理得22560c ac a -+=,即2560e e -+=,1e >Q ,解得2e =或3e =. 故选:D.【点睛】本题考查了双曲线离心率的求解,涉及双曲线和抛物线的简单性质,考查运算求解能力,属于中档题.12.已知函数()()()1sin,13222,3100x x f x f x x π⎧-≤≤⎪=⎨⎪-<≤⎩,若函数()f x 的极大值点从小到大依次记为12,?··n a a a ,并记相应的极大值为12,,?··n b b b ,则()1niii a b =+∑的值为( )A. 5022449+B. 5022549+C. 4922449+D. 4922549+【答案】C 【解析】 【分析】对此分段函数的第一部分进行求导分析可知,当2x =时有极大值(2)1f =,而后一部分是前一部分的定义域的循环,而值域则是每一次前面两个单位长度定义域的值域的2倍,故此得到极大值点n a 的通项公式2n a n =,且相应极大值12n n b -=,分组求和即得【详解】当13x ≤≤时,()cos 22x f x πππ-⎛⎫'=⎪⎝⎭, 显然当2x =时有,()0f x '=, ∴经单调性分析知2x =为()f x 的第一个极值点又∵3100x <≤时,()2(2)f x f x =- ∴4x =,6x =,8x =,…,均为其极值点 ∵函数不能在端点处取得极值 ∴2n a n =,149n ≤≤,n Z ∈ ∴对应极值12n nb -=,149n ≤≤,n Z ∈∴()4949491(298)491(12)22449212i i i a b =+⨯⨯-+=+=+-∑ 故选:C【点睛】本题考查基本函数极值的求解,从函数表达式中抽离出相应的等差数列和等比数列,最后分组求和,要求学生对数列和函数的熟悉程度高,为中档题第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分把答案填在答题卡上。
【校级联考】四川省教考联盟2019届高三第三次诊断性考试数学(理)试题-644dff7bd6524d24a853b328fa456385

○…………外…………○…………内…………绝密★启用前【校级联考】四川省教考联盟2019届高三第三次诊断性考试数学(理)试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.设全集U =R ,集合A ={x|x 2−1>0},B ={x|0<x ≤2},则集合(C U A)∩B =( ) A .(−1,1)B .[−1,1]C .(0,1]D .[−1,2]2.在复平面内,复数z 对应的点是Z(−1,2),则复数z 的共轭复数z =( ) A .−1+2iB .−1−2iC .1+2iD .1−2i3.从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,组成没有重复数字的五位数,则组成的五位数中偶数的个数为( ) A .7200B .2880C .120D .604.已知向量a ⃑=(√2,−√2),b ⃑⃑=(cosα,sinα),则|a ⃑−b ⃑⃑|的最大值为( ) A .1B .√5C .3D .95.执行如图所示的程序框图,则输出的S 值为( )○…………线…………※○…………线…………A .-1 B .0 C .√22D .16.几何体的三视图如图所示,该几何体的体积为( )A .729B .428C .356D .2437.下列说法中错误的是( )A .先把高二年级的1000多学生编号为1到1000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为m +50,m +100,m +150……的学生,这样的抽样方法是系统抽样法B .正态总体N(1,9)在区间(−1,0)和(2,3)上取值的概率相等C .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .若一组数据1、a 、2、3的平均数是2,则该组数据的众数和中位数均是2 8.A ,B 是⊙O :x 2+y 2=1上两个动点,且∠AOB =120°,A ,B 到直线l :3x +4y −10=0的距离分别为d 1,d 2,则d 1+d 2的最大值是( ) A .3B .4C .5D .69.已知四面体ABCD 外接球的球心O 恰好在AD 上,等腰直角三角形ABC 的斜边AC 为2,DC =2√2,则这个球的表面积为( ) A .25π4B .8πC .12πD .16π10.已知函数f(x)=sin(ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,其图象向左平移π6个单位后所得图象关于y 轴对称,则f(x)的单调递增区间为( ) A .[−5π12+kπ,π12+kπ],k ∈Z B .[−π3+kπ,π6+kπ],k ∈ZC .[−5π12+2kπ,π12+2kπ],k ∈ZD .[−π12+kπ,5π12+kπ],k ∈Z11.在数列{a n }中,已知a 1=1,且对于任意的m,n ∈N ∗,都有a m+n =a m +a n +mn ,则∑1a i=2019i=1( )201920182019202112.已知定义在R上的函数f(x)关于y轴对称,其导函数为f′(x).当x≥0时,不等式xf′(x)>1−f(x).若对∀x∈R,不等式e x f(e x)−e x+ax−axf(ax)>0恒成立,则正整数a的最大值为()A.1B.2C.3D.4……○…………装※※请※※不※※……○…………装第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题13.若变量x ,y 满足约束条件{3x −2y ≥03x −y −3≤0y ≥0 ,则yx−4的最小值为_____.14.已知等比数列{a n }中,a 2=2,a 5=14,则a 1a 2+a 2a 3+...+a 5a 6=_______.15.已知定义在R 上的奇函数f(x)满足f(x)+f(x +2)=0,且f(1)=−2,则f(2019)+f(2018)的值为__________.16.中心在原点,对称轴为坐标轴的双曲线C 与圆O :x 2+y 2=5有公共点P(1,−2),且圆O 在点P 处的切线与双曲线C 的一条渐近线平行,则该双曲线的实轴长为________. 三、解答题17.槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,在亚洲热带地区广泛栽培.槟榔是重要的中药材,在南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解A ,B 两个少数民族班学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周咀嚼槟榔的颗数作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).(1)从A 班的样本数据中随机抽取一个不超过19的数据记为a ,从B 班的样本数据中随机抽取一个不超过21的数据记为b ,求a ≥b 的概率;(2)从所有咀嚼槟榔颗数在20颗以上(包含20颗)的同学中随机抽取3人,求被抽到B 班同学人数的分布列和数学期望.18.如图,在ΔABC 中,已知点D 在BC 边上,且AD ⊥AC ,sin∠BAC =2√77,AD =1,AB =√7.订…………○……………○……__考号:___________订…………○……………○……(1)求BD 的长; (2)求ΔABC 的面积.19.如图,在棱长为1的正方体PB 1N 1D 1−ABND 中,动点C 在线段BN 上运动,且有BC ⃑⃑⃑⃑⃑⃑=λAD⃑⃑⃑⃑⃑⃑(0<λ≤1).(1)若λ=1,求证:PC ⊥BD ;(2)若二面角B −PC −D 的平面角的余弦值为−5√1122,求实数λ的值. 20.已知点M(x,y)与定点F(1,0)的距离和它到直线l :x =4的距离的比是常数12,点M 的轨迹为曲线C . (1)求曲线C 的方程;(2)若直线l 1:y =kx 交曲线C 于A ,B 两点,当点M 不在A 、B 两点时,直线MA ,MB 的斜率分别为K 1,K 2,求证:K 1,K 2之积为定值. 21.已知函数f(x)=ax 2+(a −2)x −lnx . (1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a 的取值范围. 22.[选修4-4:坐标系与参数方程]在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=4cosθ,过点P(2,−1)的直线l 的参数方程为:{x =2+t y =−1−t(t 为参数),直线l 与曲线C 分别交于M 、N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)求线段|MN |的长和|PM |⋅|PN |的积. 23.[选修4-5:不等式选讲] 已知函数f(x)=|x −2|−|x −1|.(1)若正数a,b满足a+2b=f(−1),求2a +1b的最小值;(2)解不等式f(x)>12.参考答案1.C【解析】【分析】解出集合A,再求出C U A,再利用交集概念求解。
四川省成都七中2019届高三毕业班“三诊”模拟考试理科综合试卷(含答案)

成都七中2019届高中毕业班三诊模拟题理科综合本试卷分选择题和非选择题两部分。
第Ⅰ卷(选择题)1至4页,第Ⅱ卷(非选择题)5至12页,共12页;满分300分,考试时间150分钟。
可能用到的相对原子质量:Cl-35.5 Fe-56 Cu-64 Sn-119第Ⅰ卷(共126分)一、选择题:本题共13个小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列有关生命系统中方向性的描述,合理的是()A.蛋白质合成时,遗传信息的传递是单向的B.发生渗透吸水时,水分子的扩散是单向的C.受到刺激时,兴奋在反射弧中的传递是双向的D.生物进化时,变异和自然选择都是定向的2.真核生物中,下列过程一定在生物膜上进行的是()A.DNA的复制和转录B.CO2的固定和还原C.中心体发出星射线牵引染色体D.有氧呼吸中利用O2生成H2O3.下列关于细胞生命历程的叙述,正确的是()A.细胞癌变是细胞连续进行分裂的结果B.被病原体感染的细胞的清除属于细胞凋亡C.衰老细胞膜通透性改变使物质运输功能增强D.色素沉积出现“老年斑”是细胞分化的结果4.下列关于生物科学史的相关叙述,错误的是()A.赫尔希和蔡斯通过噬菌体侵染细菌的实验证明DNA是主要遗传物质B.沃森和克里克研究DNA分子结构时使用了构建物理模型的方法C.温特实验证明胚芽鞘尖端确实产生某种物质促进胚芽鞘尖端下部生长D.斯他林和贝利斯通过实验证明激素调节的存在,并发现了促胰液素5.某兴趣小组将小鼠分成两组,A组注射一定量的某种生物提取液,B组注射等量的生理盐水,两组均表现正常。
注射后若干天,分别给两组小鼠注射等量的该种生物提取液,A组小鼠很快发生了呼吸困难等症状;B组未见明显的异常表现。
对第二次注射后A组小鼠的表现,下列解释合理的是()A.提取液中的物质导致A组小鼠出现低血糖症状B.提取液中含有过敏原,刺激A组小鼠产生了特异性免疫C.提取液中的物质阻碍了神经细胞与骨骼肌细胞间的兴奋传递D.提取液中的物质使A组小鼠细胞不能正常产生A TP6.货币状掌跖角化病是一种遗传病,患者脚掌部发病一般从幼儿学会走路时开始,随年龄增长,患处损伤逐步加重;手掌发病多见于手工劳动者。
四川省成都市2019-2020学年高考三诊数学试题含解析

四川省成都市2019-2020学年高考三诊数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线2222:1(0)x y E a b a b-=>>的左、右焦点分别为1F ,2F ,P 是双曲线E 上的一点,且212||PF PF =.若直线2PF 与双曲线E 的渐近线交于点M ,且M 为2PF 的中点,则双曲线E 的渐近线方程为( )A .13y x =± B .12y x =± C .2y x =± D .3y x =±【答案】C【解析】【分析】 由双曲线定义得24PF a =,12PF a =,OM 是12PF F △的中位线,可得OM a =,在2OMF △中,利用余弦定理即可建立,a c 关系,从而得到渐近线的斜率.【详解】根据题意,点P 一定在左支上. 由212PF PF =及212PF PF a -=,得12PF a =,24PF a =,再结合M 为2PF 的中点,得122PF MF a ==,又因为OM 是12PF F △的中位线,又OM a =,且1//OM PF ,从而直线1PF 与双曲线的左支只有一个交点.在2OMF △中22224cos 2a c a MOF ac+-∠=.——① 由2tan b MOF a ∠=,得2cos a MOF c∠=. ——② 由①②,解得225c a=,即2b a =,则渐近线方程为2y x =±. 故选:C.【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.2.直线0(0)ax by ab ++=>与圆221x y +=的位置关系是( )A .相交B .相切C .相离D .相交或相切 【答案】D【解析】由几何法求出圆心到直线的距离,再与半径作比较,由此可得出结论.【详解】解:由题意,圆221x y +=的圆心为()0,0O ,半径1r =,∵圆心到直线的距离为d =222a b ab +≥Q ,1d ∴≤,故选:D .【点睛】本题主要考查直线与圆的位置关系,属于基础题.3.若数列{}n a 为等差数列,且满足5383a a a ++=,n S 为数列{}n a 的前n 项和,则11S =( ) A .27B .33C .39D .44【答案】B【解析】【分析】利用等差数列性质,若m n p q ++=,则m n p q a a a a ++= 求出63a =,再利用等差数列前n 项和公式得111116+)11(11332a a S a === 【详解】解:因为 5383a a a ++=,由等差数列性质,若m n p q ++=,则m n p q a a a a ++=得,63a ∴=.n S 为数列{}n a 的前n 项和,则111116+)11(11332a a S a ===. 故选:B .【点睛】本题考查等差数列性质与等差数列前n 项和.(1)如果{}n a 为等差数列,若m n p q ++=,则m n p q a a a a ++= ()*m n p q N ∈,,,.(2)要注意等差数列前n 项和公式的灵活应用,如21(21)n n S n a -=-.4.复数5i 12i +的虚部是 ( ) A .iB .i -C .1D .1-【答案】C因为()()()512510*********i i i i i i i i -+===+++- ,所以5i 12i+的虚部是1 ,故选C. 5.把满足条件(1)x R ∀∈,()()f x f x -=,(2)1x R ∀∈,2x R ∃∈,使得()()12f x f x =-的函数称为“D 函数”,下列函数是“D 函数”的个数为( )①2||y x x =+ ②3y x = ③x x y e e -=+ ④cos y x = ⑤sin y x x =A .1个B .2个C .3个D .4个【答案】B【解析】【分析】满足(1)(2)的函数是偶函数且值域关于原点对称,分别对所给函数进行验证.【详解】满足(1)(2)的函数是偶函数且值域关于原点对称,①不满足(2);②不满足(1);③不满足(2);④⑤均满足(1)(2).故选:B.【点睛】本题考查新定义函数的问题,涉及到函数的性质,考查学生逻辑推理与分析能力,是一道容易题. 6.已知双曲线()222210,0x y a b a b-=>>的左、右顶点分别是,A B ,双曲线的右焦点F 为()2,0,点P 在过F 且垂直于x 轴的直线l 上,当ABP ∆的外接圆面积达到最小时,点P 恰好在双曲线上,则该双曲线的方程为( )A .22122x y -= B .2213y x -= C .2213x y -= D .22144x y -= 【答案】A【解析】【分析】 点P 的坐标为()2,m ()0m >,()tan tan APB APF BPF ∠=∠-∠,展开利用均值不等式得到最值,将点代入双曲线计算得到答案.【详解】不妨设点P 的坐标为()2,m ()0m >,由于AB 为定值,由正弦定理可知当sin APB ∠取得最大值时,APB ∆的外接圆面积取得最小值,也等价于tan APB ∠取得最大值, 因为2tan a APF m +∠=,2tan a BPF m-∠=, 所以()2222tan tan 221a a a a m m APB APF BPF a a b b m m m m +--∠=∠-∠==≤=+-+⋅+, 当且仅当2b m m=()0m >,即当m b =时,等号成立, 此时APB ∠最大,此时APB 的外接圆面积取最小值,点P 的坐标为()2,b ,代入22221x y a b-=可得a =b == 所以双曲线的方程为22122x y -=. 故选:A【点睛】本题考查了求双曲线方程,意在考查学生的计算能力和应用能力.7.复数12i i--的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】【分析】【详解】 试题分析:由题意可得:131255i i i -=--. 共轭复数为3155i +,故选A. 考点:1.复数的除法运算;2.以及复平面上的点与复数的关系8.复数12i 2i +=-( ). A .iB .1i +C .i -D .1i -【答案】A【解析】 试题分析:12(12)(2)2422(2)(2)5i i i i i i i i i +++++-===--+,故选A. 【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化. 9.已知函数()ln f x x =,()()23g x m x n =++,若对任意的()0,x ∈+∞总有()()f x g x ≤恒成立,记()23m n +的最小值为(),f m n ,则(),f m n 最大值为( )A .1B .1e C .21e D 【答案】C【解析】【分析】 对任意的()0,x ∈+∞总有()()f x g x ≤恒成立,因为ln (23)x m x n ≤++,对()0,x ∈+∞恒成立,可得230m +>,令ln (23)y x m x n =-+-,可得1(23)y m x'=-+,结合已知,即可求得答案. 【详解】 Q 对任意的()0,x ∈+∞总有()()f x g x ≤恒成立∴ln (23)x m x n ≤++,对()0,x ∈+∞恒成立,∴230m +>令ln (23)y x m x n =-+-, 可得1(23)y m x'=-+ 令0y '=,得123x m =+ 当123x m >+,0y '< 当1023x m <<+0y '> ∴123x m =+,max 1ln 1023y n m =--≤+,123n m e --+≥ 故1(23)(,)n n m n f m n e++≥= Q 11(,)n n f m n e+-'= 令110n n e +-=,得 1n = ∴当1n >时,(,)0f m n '<当1n <,(,)0f m n '>∴当1n =时,max 21(,)f m n e =故选:C.【点睛】本题主要考查了根据不等式恒成立求最值问题,解题关键是掌握不等式恒成立的解法和导数求函数单调性的解法,考查了分析能力和计算能力,属于难题.10.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()e x f x x =+,则32(2)a f =-,2(log 9)b f =,c f =的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .b c a >> 【答案】C【解析】【分析】 根据函数的奇偶性得3322(2)(2)a f f =-=3222,log 9的大小,根据函数的单调性可得选项. 【详解】 依题意得3322(2)(2)a f f =-=,322223log 8log 9<==<=<Q , 当0x ≥时,()e x f x x =+,因为1e >,所以x y e =在R 上单调递增,又y x =在R 上单调递增,所以()f x 在[0,)+∞上单调递增,322(log 9)(2)f f f ∴>>,即b a c >>,故选:C.【点睛】本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题.11.已知点(3,0),(0,3)A B -,若点P 在曲线y =PAB △面积的最小值为( )A .6B .3C .92D .92+【答案】B【解析】【分析】求得直线AB 的方程,画出曲线表示的下半圆,结合图象可得P 位于(1,0)-,结合点到直线的距离公式和两点的距离公式,以及三角形的面积公式,可得所求最小值.【详解】解:曲线y =O 为圆心,1为半径的下半圆(包括两个端点),如图,直线AB 的方程为30x y -+=,可得||32AB =,由圆与直线的位置关系知P 在(1,0)-时,P 到直线AB 距离最短,即为22=, 则PAB △的面积的最小值为132232⨯⨯=. 故选:B.【点睛】本题考查三角形面积最值,解题关键是掌握直线与圆的位置关系,确定半圆上的点到直线距离的最小值,这由数形结合思想易得.12.在平面直角坐标系xOy 中,已知角θ的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边落在直线2y x =上,则3sin 22πθ⎛⎫+=⎪⎝⎭( ) A .45 B .45- C .35 D .35- 【答案】C【解析】【分析】利用诱导公式以及二倍角公式,将3sin 22πθ⎛⎫+ ⎪⎝⎭化简为关于tan θ的形式,结合终边所在的直线可知tan θ的值,从而可求3sin 22πθ⎛⎫+⎪⎝⎭的值. 【详解】 因为222222223sin cos tan 1sin 2cos 2sin cos 2sin cos tan 1πθθθθθθθθθθ--⎛⎫+=-=-== ⎪++⎝⎭,且tan 2θ=, 所以3413sin 22415πθ-⎛⎫+== ⎪+⎝⎭. 故选:C.【点睛】本题考查三角函数中的诱导公式以及三角恒等变换中的二倍角公式,属于给角求值类型的问题,难度一般.求解22sin cos m n θθ+值的两种方法:(1)分别求解出sin ,cos θθ的值,再求出结果;(2)将22sin cos m n θθ+变形为222222sin cos tan sin cos tan 1m n m n θθθθθθ++=++,利用tan θ的值求出结果. 二、填空题:本题共4小题,每小题5分,共20分。
2019成都市高三三诊考试数学理科试题及答案解析

成都市2016级高中毕业班第三次诊断性检测数学 (理科)第I 卷(选择题,共60分)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、设全集U={x ∈Z|2x ≤2x+3},结合A={0,1,2},则U C A=( )A {-1,3}B {-1,0}C {0,3}D {-1,0,3}【解析】【考点】①集合的定义与表示方法;②全集,补集的定义与性质;③补集运算的基本方法。
【解题思路】运用集合的表示方法把全集U 化简成列举法表示的集合,利用补集运算的基本方法通过运算求出U C A ,从而得出选项。
【详细解答】 U={x ∈Z|2x ≤2x+3}={x ∈Z|-1≤x ≤3}={-1,0,1,2,3}, A={0,1,2},∴U C A={-1,3},⇒A 正确,∴选A 。
2、复数Z=(2+i )(1+i )的共轭复数为( )A 3-3iB 3+3iC 1+3iD 1-3i【解析】【考点】①复数的定义与代数表示方法;②共轭复数的定义与性质;③复数运算法则和基本方法;④虚数的定义与性质。
【解题思路】运用复数运算法则和基本方法通过运算得到复数Z ,根据共轭复数的性质确定复数Z 的共轭复数Z ,从而得出选项。
【详细解答】 Z=(2+i )(1+i )=2+2i+i+ 2i =1+3i ,∴Z =1-3i ,⇒D 正确,∴选D 。
3、已知函数f(x)= 3x +asinx ,a ∈R ,若f(-1)=2,则f(1)的值等于( )A 2B -2C 1+aD 1-a【解析】【考点】①函数值的定义与求法;②三角函数诱导公式及运用。
【解题思路】运用求函数值的基本方法,结合问题条件得到含asin (-1)的式子,从而求出asin (-1)的值,根据三角函数的诱导公式求出asin1的值,从而求出f(1)的值就可得出选项。
【详细解答】 f(-1)= 3(1)-+ asin (-1)=-1+ asin (-1)=2,∴asin (-1)=3,sin (-1)=- sin1,∴asin (-1)=- asin1=3,⇒ asin1=-3,∴ f(1)= 31+ asin1=1-3=-2,⇒B 正确,∴选B 。
四川省成都市2019-2020学年高考数学三模考试卷含解析

四川省成都市2019-2020学年高考数学三模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()()sin 06f x A x a a A ωπ⎛⎫=+-<< ⎪⎝⎭在区间70,3ωπ⎡⎤⎢⎥⎣⎦有三个零点1x ,2x ,3x ,且123x x x <<,若123523x x x π++=,则()f x 的最小正周期为( ) A .2π B .23π C .π D .43π 【答案】C【解析】【分析】 根据题意,知当7π3x ω=时,π5π62x ω+=,由对称轴的性质可知122π3x x ω+=和238π3x x ω+=,即可求出w ,即可求出()f x 的最小正周期.【详解】解:由于()()sin 06f x A x a a A ωπ⎛⎫=+-<< ⎪⎝⎭在区间70,3ωπ⎡⎤⎢⎥⎣⎦有三个零点1x ,2x ,3x , 当7π3x ω=时,π5π62x ω+=, ∴由对称轴可知1x ,2x 满足12πππ2662x x ωω+++=⨯, 即122π3x x ω+=. 同理2x ,3x 满足23ππ3π2662x x ωω+++=⨯,即238π3x x ω+=, ∴12310π5π233x x x ω++==,2ω=, 所以最小正周期为:2ππ2T ==. 故选:C.【点睛】本题考查正弦型函数的最小正周期,涉及函数的对称性的应用,考查计算能力.2.将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有( )A .14种B .15种C .16种D .18种【答案】D【解析】【分析】 采取分类计数和分步计数相结合的方法,分两种情况具体讨论,一种是黑白依次相间,一种是开始仅有两个相同颜色的排在一起【详解】首先将黑球和白球排列好,再插入红球.情况1:黑球和白球按照黑白相间排列(“黑白黑白黑白”或“白黑白黑白黑”),此时将红球插入6个球组成的7个空中即可,因此共有2×7=14种; 情况2:黑球或白球中仅有两个相同颜色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此时红球只能插入两个相同颜色的球之中,共4种.综上所述,共有14+4=18种.故选:D【点睛】本题考查排列组合公式的具体应用,插空法的应用,属于基础题3.在复平面内,复数(2)i i +对应的点的坐标为( )A .(1,2)B .(2,1)C .(1,2)-D .(2,1)-【答案】C【解析】【分析】利用复数的运算法则、几何意义即可得出.【详解】解:复数i (2+i )=2i ﹣1对应的点的坐标为(﹣1,2),故选:C【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.4.已知命题:0p x ∀>,ln(1)0x +>;命题:q 若a b >,则22a b >,下列命题为真命题的是( ) A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝ 【答案】B【解析】解:命题p :∀x >0,ln (x+1)>0,则命题p 为真命题,则¬p 为假命题;取a=﹣1,b=﹣2,a >b ,但a 2<b 2,则命题q 是假命题,则¬q 是真命题.∴p ∧q 是假命题,p ∧¬q 是真命题,¬p ∧q 是假命题,¬p ∧¬q 是假命题.故选B .5.已知ABC ∆中,角A 、B 所对的边分别是a ,b ,则“a b >”是“A B >”的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充分必要条件【答案】D【解析】【分析】由大边对大角定理结合充分条件和必要条件的定义判断即可.【详解】 ABC ∆中,角A 、B 所对的边分别是a 、b ,由大边对大角定理知“a b >”⇒“A B >”,“A B >”⇒“a b >”.因此,“a b >” 是“A B >”的充分必要条件.故选:D.【点睛】本题考查充分条件、必要条件的判断,考查三角形的性质等基础知识,考查逻辑推理能力,是基础题. 6.已知复数1z i =-,z 为z 的共轭复数,则1z z +=( ) A .32i + B .12i + C .132i - D .132i + 【答案】C【解析】【分析】 求出z ,直接由复数的代数形式的乘除运算化简复数.【详解】121312z i i z i +--==+. 故选:C【点睛】本题考查复数的代数形式的四则运算,共轭复数,属于基础题.7.等差数列{}n a 的前n 项和为n S ,若13a =,535S =,则数列{}n a 的公差为( )A .-2B .2C .4D .7【答案】B【解析】【分析】在等差数列中由等差数列公式与下标和的性质求得3a ,再由等差数列通项公式求得公差.【详解】在等差数列{}n a 的前n 项和为n S ,则()155********a a S a a +===⇒=则3123272a a d d d =+=+=⇒=故选:B【点睛】本题考查等差数列中求由已知关系求公差,属于基础题.8.已知命题p :1m =“”是“直线0x my -=和直线0x my +=互相垂直”的充要条件;命题q :函数4()f x x x=+的最小值为4. 给出下列命题:①p q ∧;②p q ∨;③()p q ∧⌝;④()()p q ⌝∧⌝,其中真命题的个数为( ) A .1B .2C .3D .4 【答案】A【解析】【分析】先由两直线垂直的条件判断出命题p 的真假,由基本不等式判断命题q 的真假,从而得出p,q 的非命题的真假,继而判断复合命题的真假,可得出选项.【详解】已知对于命题p ,由2110m ⨯-=得1m =±,所以命题p 为假命题;关于命题q ,函数4()f x x x=+,当0x >时,4()4f x x x =+≥=,当4x x =即2x =时,取等号, 当0x <时,函数4()f x x x=+没有最小值, 所以命题q 为假命题.所以p ⌝和q ⌝是真命题, 所以p q ∧为假命题,p q ∨为假命题,⌝∧p q 为假命题,⌝⌝∧p q 为真命题,所以真命题的个数为1个. 故选:A.【点睛】本题考查直线的垂直的判定和基本不等式的应用,以及复合命题的真假的判断,注意运用基本不等式时,满足所需的条件,属于基础题.9.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有( )A .12种B .18种C .24种D .64种【答案】C【解析】【分析】根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:①,将4人分成3组,有246C =种分法; ②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有222A =种情况, 此时有224⨯=种情况,则有6424⨯=种不同的安排方法;故选:C .【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.10.等比数列{}n a 的前n 项和为n S ,若0n a >,1q >,3520a a +=,2664a a =,则5S =( ) A .48B .36C .42D .31 【答案】D【解析】试题分析:由于在等比数列{}n a 中,由2664a a =可得:352664a a a a ==,又因为3520a a +=,所以有:35,a a 是方程220640x x -+=的二实根,又0n a >,1q >,所以35a a <,故解得:354,16a a ==,从而公比12,1q a ===; 那么55213121S -==-, 故选D .考点:等比数列.11.已知等边△ABC 内接于圆τ:x 2+ y 2=1,且P 是圆τ上一点,则()PA PB PC ⋅+u u u r u u u r u u u r 的最大值是( ) A .2 B .1 C .3 D .2【答案】D【解析】 【分析】 如图所示建立直角坐标系,设()cos ,sin P θθ,则(1)cos PA PB PC θ⋅+=-u u u r u u u r u u u r ,计算得到答案.【详解】如图所示建立直角坐标系,则()1,0A ,13,22⎛⎫- ⎪ ⎪⎝⎭B ,13,22C ⎛⎫-- ⎪ ⎪⎝⎭,设()cos ,sin P θθ, 则(1cos ,sin )(12cos ,2si (n ))PA PB PC θθθθ=--⋅--⋅+-u u u r u u u r u u u r222(1cos )(12cos )2sin 2cos cos 12sin 1cos 2θθθθθθθ=---+=--+=-≤.当θπ=-,即()1,0P -时等号成立.故选:D .【点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.12.设i 是虚数单位,a R ∈,532ai i a i +=-+,则a =( ) A .2-B .1-C .1D .2【答案】C【解析】【分析】由532ai i a i+=-+,可得()()()5323232ai a i i a a i +=+-=++-,通过等号左右实部和虚部分别相等即可求出a 的值.【详解】 解:532ai i a i+=-+Q ,()()()5323232ai a i i a a i ∴+=+-=++- 53232a a a =+⎧∴⎨-=⎩,解得:1a =. 故选:C.【点睛】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把2i 当成1进行运算.二、填空题:本题共4小题,每小题5分,共20分。
2023届四川省成都市高三下学期三诊热身考试数学(理)试题【含答案】

2023届四川省成都市高三下学期三诊热身考试数学(理)试题一、单选题1.已知集合,则集合( ){}2230,A x x x B N=--<=∣A B = A .B .C .D .{0}{0,1}{0,1,2}{1,2,3}【答案】C【分析】先解出集合A 再求.A B ⋂【详解】由得,.{}{}2230|13,A x x x x x B N =--<=-<<=∣{0,1,2}A B ⋂=故选:C【点睛】集合的交、并、补运算:(1)离散型的数集用韦恩图;(2) 连续型的数集用数轴.2.人口普查是世界各国所广泛采用的搜集人口资料的一种科学方法,是提供全国基本人口数据的主要来源.根据人口普查的基本情况,可以科学的研究制定社会、经济、科教等各项发展政策,是国家科学决策的重要基础工作,人口普查资料是制定人口政策的依据和前提.截止目前,我国共进行了七次人口普查,下图是这七次普查的全国人口及年均增长率情况,下列说法正确的是( )A .年均增长率逐次减小B .年均增长率的极差是1.08%C .这七次普查的人口数逐次增加,且第四次增幅最小D .第七次普查的人口数最多,且第三次增幅最大【答案】D【分析】增幅其实就是增长率,不是增长量。
增长率为正的时候,总人口都是增加的;增长率为负的时候,总人口才减少。
看图,排除错误选项即可.【详解】对于A 选项,由图可知第三次增幅最大,之后增幅减小,所以年增长率是先增后减的,故A 错;对于B 选项,极差为,故B 错;2.09%0.53% 1.56%-=对于C 选项,第七次增幅最小,故C 错;对于D 选项,第七次普查的人口数最多,且第三次增幅最大,故正确故选:D3.已知平面,,直线,满足,,则“”是“”的( )αβm n m α⊂n β⊂//m n //αβA .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】D【解析】利用平面与平面的位置关系判断充分条件和平面平面平行的性质定理判断必要条件.【详解】,,若,则或相交,故不充分;m α⊂n β⊂//m n //αβ若,由面面平行的性质定理得平行或异面 ,故不必要;//αβm n ,故选:D【点睛】本题主要考查以直线、平面的位置关系为载体的逻辑条件判断,属于基础题.4.已知函数的图象如图所示,则函数的图象为( )()f x ()()g x f x =-A .B .C .D .【答案】B【分析】根据函数的奇偶性及判断函数正负即可得解.x -≤【详解】因为,所以为偶函数,其图象关于轴对称,()()g x g x -=()g x y 排除C 与D .又,所以:x -≤()()0g x f x =-≤故选:B.5.下列关于统计概率知识的判断,正确的是( )A .将总体划分为2层,通过分层随机抽样,得到两层的样本平均数和样本方差分别为,和,1x 2x 21s ,且已知,则总体方差22s 12x x =222121()2s s s =+B .在研究成对数据的相关关系时,相关关系越强,相关系数r 越接近于1C .已知随机变量X 服从正态分布,若,则2(,)N μσ()()151P X P X ≥-+≥=2μ=D .回归直线恒过样本点的中心,且至少过一个样本点ˆˆˆy bx a =+(,x y 【答案】C【分析】A 选项,根据均值和方差的定义,通过两层的均值和方差表示出总体的均值和方差,然后进行判断;B 选项,根据相关系数的定义进行判断;C 选项,根据正态曲线的性质进行判断;D 选项,根据回归直线的性质进行判断.【详解】解:对于A ,设2层数据分别记为,因为,1212,,,;,,,m nx x x x x x 12x x =所以总体样本平均数为,所以121112mx nx mx nx x x x m n m n ++====++,()()()()222222112211111111,mm n ni i j j i i j j s x x x x s x x x x m m n n =====-=-=-=-∑∑∑∑所以总体方差,()()222111m ni j i j s x x x x m n ==⎡⎤=-+-⎢⎥+⎣⎦∑∑()22121ms ns m n =++2212m n s s m n m n =+++只有当时,才成立,A 错误;m n =()2221212s s s =+对于B ,相关性越强,越接近于,B 错误;r1对于C ,若,则,C 正确;()()151P X P X ≥-+≥=()()511(5),22P X P X μ+-≥-=<∴==对于D ,回归直线恒过样本点的中心,可以不过任一个样本点,D 错误.ˆˆˆy bx a =+()x y 故选:C6.设等比数列中,使函数在时取得极值,则的值是{}n a 37,a a ()3223733f x x ax a x a =+++=1x -05a( )A .B C .D.±±【答案】D【分析】由极值点和极值可构造方程组求得,代回验证可知满足题意;结合等比数列37,a a 3729a a =⎧⎨=⎩性质可求得结果.【详解】由题意知:,()23736f x x a x a '=++在处取得极值,,()f x =1x -0()()23733711301360f a a a f a a '⎧-=-+-+=⎪∴⎨-=-+=⎪⎩解得:或;3713a a =⎧⎨=⎩3729a a =⎧⎨=⎩当,时,,31a =73a =()()22363310f x x x x '=++=+≥在上单调递增,不合题意;()f x \R 当,时,,32a =79a =()()()23129313f x x x x x '=++=++当时,;当时,;∴()(),31,x ∈-∞--+∞ ()0f x ¢>()3,1x ∈--()0f x '<在上单调递增,在上单调递减,()f x \()(),3,1,-∞--+∞()3,1--是的极小值点,满足题意;1x ∴=-()f x,又与同号,253718a a a ∴==5a 37,a a 5a ∴=故选:D.7.欧拉公式(其中为虚数单位,)是由瑞士著名数学家欧拉创立的,该ie cos isin x x x =+i x ∈R 公式将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关联,在复变函数论里面占有非常重要的地位.依据欧拉公式,下列选项正确的是( )A .为虚数B .函数不是周期函数πie i()e x f x =C .若D .i e x 2π3x =ππi i 34e e ⋅【答案】D【分析】A 选项,根据题意计算出,A 错误;B 选项,由是周期函数,得到答案;iπe 1=-sin ,cos x xC 选项,根据欧拉公式得到C 错误;D 选项,计算出1cos ,sin 2x x ==,得到共轭复数.ππ34e e =+⋅【详解】A 选项,,为实数,A 错误;πie cos πisin π1+=-=B 选项,,由于是最小正周期为的函数,所以i()e cos isin x f x x x ==+sin ,cos x x 2π是周期函数,B 错误;i ()e cos isin x f x x x ==+C 选项,由题意得,所以cos isin x x +1cos ,sin 2x x ==又时,C 错误;2π3x =1cos ,sin 2x x =-=D选项,ππi i 34ππππe e cos isin cos isin 133442⎫⎛⎫⎛⎫⎛⎫==+⎪⎪ ⎪⎪⎪⎪⎭⋅⎭+⎝⎝+⎝⎭⎭,=,D 正确.故选:D8.如图,已知三棱锥的侧棱长均为2,,,点D 在线段-P ABC 35APB BPC ︒∠=∠=50APC ︒∠=上,点在线段上,则周长的最小值为( )PA E PC BDE△A .B .4C .D .6【答案】A【分析】作三棱锥的侧面展开图,结合两点之间线段最短的结论及余弦定理可求-P ABC的最小值.BDE △【详解】如图,将三棱锥的侧面展开,则周长的最小值与展开图中的线段相等.BDE △12B B 在中,,12PB B △12122,353550120PB PB B PB ∠===++=在中,根据余弦定理可得:12PB B △2221212122cos120B B PB PB PB PB =+-⋅,22122222122⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭所以12B B =即周长的最小值为BDE △故选:A.9.已知函数(,,)的部分图象如图所示.若()()sin f x A x =+ωϕ0A >0ω>0πϕ<<,则的值为( )π6625f α⎛⎫+= ⎪⎝⎭22sin cos 22αα-A .B .C .D .354535-45-【答案】C【分析】根据题意,结合图像性质求出解析式,再根据诱导公式与二倍角公式,即可求解.【详解】根据题意,结合图像易知,,,因此,2A =254312T πππ⎛⎫=⨯-= ⎪⎝⎭22T πω==因为函数图像过点,所以,2,23π⎛⎫- ⎪⎝⎭242sin 233f ππϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭即,,由,解得,故.4232k ππϕπ+=-+Z k ∈0πϕ<<6πϕ=()2sin 26f x x π⎛⎫=+ ⎪⎝⎭又因为,所以,即,π6625f α⎛⎫+= ⎪⎝⎭62sin 2cos 365ππαα⎛⎫++== ⎪⎝⎭3cos 5α=因此.223sin cos cos 225ααα-=-=-故选:C.10.设,给出下列四个结论:①;②;③,④10a b c >>>>11ac bc >c c ba ab >()()11a b c c <--.其中正确结论有( )()()log log +>+b a a c b c A .个B .个C .个D .个1234【答案】B【分析】直接利用不等式的性质和对数函数以及指数函数的性质的应用对①②③④进行判断.【详解】由题意,,所以对于①,,故,所以①错误;对于②,取10a b c >>>>ac bc >11ac bc <,则,,故②错误;对于③,因为,13,2,2a b c ===c ba =cab c c baab <011c <-<且,所以,故③正确;对于④,,所以a b >()()11abc c <--1+>+>a c b c ,故④正确.()()log log log ()+>+>+a b b a c b b c c 故选:B.11.在四面体中,,,两两垂直且为球心,2为半A BCD -AB AC AD AB AC AD ===C 径的球与该四面体每个面的交线的长度和的值为( )2O A .B .C .D .56ππ43π32π【答案】D【分析】设球与的边CD 、AD 分别交于点M 、N ,与的边AB 、CB 分别交于点2O Rt ACD Rt ABC H 、G ,求出球与该四面体四个面的交线的长度,即得解.2O【详解】解:因为四面体中,两两垂直,且A BCD -,,AB AC AD AB AC AD ===由题意知、为等腰直角三角形,且C 为球心,2为半Rt ACD Rt ABC AB AC AD ===径作一个球,2O 设球与的边CD 、AD 分别交于点M 、N ,2O Rt ACD 如图1;与的边AB 、CB 分别交于点H 、G ,Rt ABC如图2;易得,,cos ACN ∠6ACN π∠=tan 16AN AC π=⋅=所以∠NCM =∠ACD -∠ACN =,所以弧MN 的长,4612πππ-=2126MNππ=⨯=同理,弧. 6GHπ=在内,如图3,因为AH =AN =1,∠HAN =,则,ABD △2π122HNππ=⨯=又如图4,易知弧GM 是以顶点C 为圆心,2为半径,圆心角为,则,所以球3π2233GMππ=⨯=面与该四面体的每个面的交线的长度和为.2366232πππππ+++=故选:D.12.已知函数,若函数恰有5个零点()2e ,02,0x x xf x x x x ⎧≤=⎨-+>⎩22()3[()]()2()g x f x mf x m m =--∈R ,且,,则的取值范围是12345,,,,x x x x x 12345x x x x x <<<<()()34f x f x =()()()13322f x f x f x ++-( )A .B .31,00,2e e ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭ 21,00,3e e ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭ C .D .32e ,00,2e 3⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭22e ,00,3e 3⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭【答案】B 【分析】将看成整体解出或,作出的大致图象,将式子化为()f x ()f x m =2()3mf x =-()f x ,然后转化为的范围进行分()()()()()()()()1331341322222f x f x f x f x f x f x f x f x ++-=++=+m 类讨论即可判断.【详解】当时,,此时,,0x ≤()e x f x x =()()1e xf x x '=+令,解得:,令,解得:,()0f x ¢>10x -<<()0f x '<1x <-可得在上单调递减且恒负,在上单调递增且恒负,且,()f x (),1-∞-()1,0-()11e f -=-当时,,作出的大致图象如图所示,0x >()()22211f x x x x =-+=--+()f x 函数恰有5个零点,22()3[()]()2()g x f x mf x m m =--∈R 12345,,,,x x x x x 等价于方程有5个不同的实数根,223[()]()20f x mf x m --=解得:或,,该方程有5个根,()f x m=()23mf x =-0m ≠且,则,,()()34f x f x =342x x +=()()()125f x f x f x ==当时,,0m <()()()1251,0e f x f x f x m ⎛⎫===∈- ⎪⎝⎭,故,()()342(0,1)3m f x f x ==-∈1,0e m ⎛⎫∈- ⎪⎝⎭所以()()()()()()()()1331341322222f x f x f x f x f x f x f x f x ++-=++=+;4222,0333e m m m ⎛⎫=-=∈- ⎪⎝⎭当时,,0m >()()()12521,03e f x f x f x m ⎛⎫===-∈- ⎪⎝⎭,故,()()34(0,1)f x f x m ==∈30,2e m ⎛⎫∈ ⎪⎝⎭所以()()()()()()()()1331341322222f x f x f x f x f x f x f x f x ++-=++=+,42120,33e m m m ⎛⎫=-+=∈ ⎪⎝⎭综上:的取值范围是:.()()()13322f x f x f x ++-21,00,3e e ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭ 故选:B.【点睛】关键点点睛:本题的关键点是对的理解,将看成一个,解223()()20f x mf x m --=()f x t 出其值,然后通过图象分析,转化为直线与图象的交点情况.12,y t y t ==二、填空题13.已知向量,,,且、、三点共线,则_______(),12=OA k ()4,5=OB (),10=-OC k A B C k =【答案】23-【分析】先求出的坐标,再根据、、三点共线求出的值.,AB BC A B C k 【详解】由题得,(4,7)AB OB OA k =-=--,(4,5)BC OC OB k =-=--因为、、三点共线,A B C 所以,=AB BC λ 所以,(4)57(4)0k k -⋅+--=所以.23k =-故答案为:23-【点睛】本题主要考查向量的坐标运算和共线向量,考查三点共线,意在考查学生对这些知识的理解掌握水平.14.已知实数满足,的取值范围是______.,x y ()2221x y +-=ω=【答案】[]1,2【分析】设,,利用向量夹角坐标运算可求得,利用圆的切线的求(),a x y =(b =2cos ωθ=法可求得所在直线倾斜角的范围,从而确定的范围,进而求得的范围.(),a x y =θω【详解】由圆的方程知:点在以为圆心,为半径的圆上,(),x y ()0,21设,,与的夹角为,,(),a x y =(b = a bθcos 2ωθ∴=即;2cos ωθ=设直线与圆相切,则圆心到直线距离,y kx =()2221x y +-=1d ==解得:,k =结合图象可知:所在直线倾斜角为,(),a x y =π2π,33⎡⎤⎢⎥⎣⎦又所在直线倾斜角为,,(b =π3π0,3θ⎡⎤∴∈⎢⎥⎣⎦,则.1cos ,12θ⎡⎤∴∈⎢⎥⎣⎦[]1,2ω∈故答案为:.[]1,2【点睛】关键点点睛:本题考查直线与圆位置关系的综合应用问题,解题关键是能够利用平面向量夹角公式将所求式子转化为两向量夹角余弦值取值范围的求解问题,采用数形结合的方式来进行求解.15.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中诗篇《李白沽酒》里记载:“今携一壶酒,游春郊外走,逢朋加一倍,人店饮斗九”意思是说,李白去⋯郊外春游时,带了一壶酒,遇见朋友,先到酒店里将壶中的酒增加一倍(假定每次加酒不会溢出),再饮去其中的3升酒.那么根据这个规则,若李白酒壶中原来有酒升,将李白在第00(3)a a >家店饮酒后所剩酒量记为升,则__(用和表示).(1,)n n n N ∈︒ n a n a =0a n 【答案】升023(12)n na +-【分析】由题干递推列式,找寻规律,并根据规律计算即可.【详解】解:李白在第家店饮酒后所剩酒量记为升,(1,)n n n N ∈︒ n a 则第一家店饮酒后所剩酒量为升,1023a a =-第二家店饮酒后所剩酒量为升,22100232(23)323(12)a a a a =-=--=-+第三家店饮酒后所剩酒量为升,323202323(122)a a a =-=-++第四家店饮酒后所剩酒量为升,4234302323(1222)a a a =-=-+++⋯第家店饮酒后所剩酒量为n 升.211000122323(1222)2323(12)12nnn nn n n n a a a a a ---=-=-+++⋯+=-⨯=+--故答案为:升.023(12)n na +-16.已知双曲线G 的方程,其左、右焦点分别是,,已知点P 坐标为,双曲221169x y -=1F 2F ()4,2线G 上点,满足,则______.()00,Q x y ()000,0x y >>11211121QF PF F F PF QF F F ⋅⋅=12F PQ F PQS S-=△△【答案】8【分析】设的内切圆与三边分别相切于,利用切线长相等求得内切圆圆心横坐标为,12Q FF ,,D E G a 又由得在的平分线上,进而得到即为内心,应用双曲线的定义求11211121QF PF F F PF QF F F ⋅⋅= P 12QF F ∠P 得面积差即可.【详解】如图,设的内切圆与三边分别相切于,可得,又由双12Q FF ,,D E G 1122,,QD QG F D F E F E F G===曲线定义可得,则,又1228QF QF a -==()1212122QD DF QG GF DF GF EF EF a +-+=-=-=,解得,则点横坐标为,即内切圆圆心横坐标为.122EF EF c +=1EF a c=+E a a 又,可得,化简得11211121QF PF F F PF QF F F ⋅⋅=11121112121cos cos QF PF PF Q F F PF PF F QF F F ⋅∠⋅∠= ,即,112cos cos PF Q PF F ∠=∠112PF Q PF F ∠=∠即是的平分线,由于,,可得即为的内心,且半径为2,则1PF 12QF F ∠()4,2P 4a =P 12Q FF r .121211()28822F PQ F PQS Sr QF QF -=-=⨯⨯=△△故答案为:8.【点睛】本题关键点在于先利用切线长定理求得内切圆圆心横坐标为,再由12Q FF a 得到在的平分线上,结合的横坐标为进而得到即为内心,利用11211121QF PF F F PF QF F F ⋅⋅=P 12QF F ∠P a P 双曲线定义及面积公式即可求解.三、解答题17.在中,角的对边分别为,且.ABC ∆、、A B C a b c、、2sin 02AA += (Ⅰ)求角的大小;A(Ⅱ)若的周长.ABC ∆R ABC ∆【答案】(1);(2)3A π=3【分析】(1)利用三角函数恒等变换的应用化简已知等式可得结合范围,可求tan A =0A π<<的值;(2)由正弦定理可求 ,利用余弦定理可得,解得的值,可求周长.A a 260c -=c【详解】(1)2sin 02AA +=,∴1cos sin 02AA -+=即sin 0A A =又tan A ∴=0A π<<3A π∴=(2)2sin a R A =2sin π33a R A ∴===ABC ∆1sin 2bc A ∴=bc 4=2222cos a b c bc A=+- 229b c bc ∴+-=2()9391221b c cb ∴+=+=+=b c ∴+=3a b c ++=【点睛】本题主要考查余弦定理及正弦定理的应用,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另2222cos a b c bc A =+-222cos 2b c a A bc +-=外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以30,45,60o o o便在解题中直接应用.18.2020年上半年受新冠疫情的影响,国内车市在上半年累计销量相比去年同期有较大下降.国内多地在3月开始陆续发布促进汽车消费的政策,开展汽车下乡活动,这也是继2009年首次汽车下乡之后开启的又一次大规模汽车下乡活动.某销售商在活动的前2天大力宣传后,从第3天开始连续统计了6天汽车销售量(单位:辆)如下表:y 第天x 345678销售量(单位:辆)y 172019242427(1)从以上6天中随机选取2天,求这2天的销售量均在20辆以上(含20辆)的概率.(2)根据上表中前4组数据,求关于的线性回归方程.y x ˆˆˆybx a =+(3)用(2)中的结果计算第7、8天所对应的,再求与当天实际销售量的差,若差值的绝ˆyˆy y 对值都不超过1,则认为求得的线性回归方程“可行”,若“可行”则能通过此回归方程预测以后的销售量.请根据题意进行判断,(2)中的结果是否可行?若可行,请预测第9天的销售量;若不可行,请说明理由.附:回归直线的斜率和截距的最小二乘法估计值分别为:ˆˆˆybx a =+1221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-⋅==--∑∑【答案】(1);(2);(3)可行,29.25ˆ211yx =+【分析】(1)先确定6天中销售量均在20辆以上(含20辆)有4天,再根据组合以及古典概型概率公式求结果;(2)先求均值,再代入公式求,即得结果;ˆˆ,b a (3)根据回归直线方程确定对应的,再根据定义判断是否“可行”,最后代入得结果.ˆy9x =【详解】(1)6天中销售量均在20辆以上(含20辆)有4天,242662155C P C ===(2)3456172019244.5,2044x y ++++++====41317420519624370i ii x y==⨯+⨯+⨯+⨯=∑4222221345686ii x==+++=∑23704 4.52028644ˆ.5b-⨯⨯==-⨯202ˆ 4.511a=-⨯=所以ˆ211yx =+(3)由(2)知,时,,25-24=1;7x =141125y =+=时,,27-27=08x =161127y =+=所以求得的线性回归方程“可行”时,9x =181129y =+=【点睛】本题考查古典概型概率公式、线性回归方程及其应用,考查基本分析求解能力,属基础题.19.如图所示多面体ABCDEF 中,平面平面ABCD ,平面ABCD ,是正三角形,ADE ⊥CF ⊥ADE四边形ABCD 是菱形,,2AB =CF =.3BAD π∠=(1)求证:平面ABCD ;EF (2)求二面角的正弦值.E AF C --【答案】(1)证明见解析【分析】(1)由面面垂直的性质定理与线面平行的判定定理证明即可;(2)建立空间直角坐标系,用坐标法计算面面角正弦值即可.【详解】(1)证明:取中点,连接,AD N NE NC 、因为是正三角形,ADE所以,2sin60EN AD EN ⊥=⋅=因为平面平面平面,平面平面ADE ⊥,ABCD EN ⊂ADE ADE ABCD AD =所以平面,又因为平面,EN ⊥ABCD CF ⊥ABCD 所以,又因为,EN CF ∥EN CF =所以四边形是平行四边形,所以,ENCF EF NC ∥又因为平面平面,NC ⊂,ABCD EF ⊄ABCD 所以平面.EF ABCD (2)连接交于,取中点,连接,AC BD 、O AF M OM 所以,因为平面,所以平面,OM CF ∥CF ⊥ABCD OM ⊥ABCD 因为平面,所以,OA OB ⊂、ABCD ,OM OA OM OB ⊥⊥又因为四边形是菱形,所以,ABCD OA OB ⊥所以两两垂直,OA OB OM 、、建立如图所示的空间直角坐标系,,)()()()(11,0,1,0,,0,1,0,,0,,22AB C D N E F ⎫---⎪⎪⎭,(1,2AF AE ⎛=-=- ⎝ 设平面的法向量为,AEF (),,m x y z=,令0102AF m AE m y ⎧⋅=-=⎪⎨⋅=-=⎪⎩()1,2,x m == 平面的法向量为,AFC ()0,1,0n =设二面角的大小为,E AF C --θcos θ==所以二面角E AF C --20.已知为坐标原点,点在椭圆上,椭圆的左右焦点分别为O 12P ⎫⎪⎭2222:1(0)x y C a b a b +=>>C,且12,F F 12F F =(1)求椭圆的标准方程;C (2)若点在椭圆上,原点为的重心,证明:的面积为定值.012,,P P P C O 012P PP012P PP 【答案】(1)2214x y +=(2)证明见解析【分析】(1)根据焦距可确定在椭圆上,代入方程解方程组可得答案.c =12P ⎫⎪⎭(2)设直线的方程为,和椭圆联立,整理得到根与系数的关系式,继而根据重心性12PPy kx m =+质表示出坐标为,代入椭圆方程得到参数之间的关系式,从而再表示出三角形0P2282(,1414km mk k -++的高,根据面积公式表示出的面积,将参数间的关系式代入化简即可证明.012P PP【详解】(1)由椭圆的左右焦点分别为,且C 12,F F 12F F =可知:,即① ,c =223a b =+将代入方程得: ②,12P ⎫⎪⎭2222:1(0)x y C a b a b +=>>223114a b +=① ②联立解得 ,224,1a b ==② 故椭圆的标准方程为.2214x y +=(2)证明:设,000111222(,),(,),(,)P x y P x y P x y 当直线 斜率不存在时,即 ,12PP12x x =由原点为的重心,可知O 012P PP 0120120,033x x x y y y++++==故可得此时有 ,该点在椭圆上,则 ,01,0)P x (-22114x =不妨取,则有,或,11x=012(2,0),(1,PP P -012(2,0),(1,P P P -则此时012132P P P S =⨯=当直线 斜率存在时,不妨设方程为 ,12PP12PP y kx m =+则联立 ,整理得:,2214y kx mx y =+⎧⎪⎨+=⎪⎩2221+4)8440k x kmx m ++-=(且需满足 ,22222(8)16(14)(1)16(41)0km k m k m ∆=-+-=+->则,212122284(1),1414km m x x x x k k --+==++所以,121222()214my y k x x m k +=+-=+由原点为的重心知, ,O 012P PP012012(),()x x x y y y =-+=-+故坐标为 ,代入到中,0P 2282(,1414km m k k -++2214x y +=化简得: ,即 ,222282()4(41414km m k k -+=++22414m k =+又原点为的重心,故到直线的距离为原点到直线距离的3倍,O 012P PPP 12PPO 12PP所以,d =而1212|||x x PP =-==,因此0121211||22P P P S PP d =⨯⨯===综合上述可知:的面积为定值.012P PP【点睛】本题考查了椭圆方程的求法以及重心性质的应用,以及椭圆内的特殊三角形面积问题,运算量比较复杂而且计算量较大,解决本题的关键是设出直线方程,要利用重心性质表示出一个点的坐标并代入椭圆方程中,找到两参数之间的关系式,然后三角形面积的表示这点并不困难,表示的方法也比较常规,但需要计算时十分细心还要有耐心.21.已知函数.()ln 1a x a f x x +-=(1)求在处的切线方程;()f x ()()1,1f (2)(i )若恒成立,求的取值范围;()1xf x x ≤-a (ii )当时,证明:.1a =()()()212323192224f f n n n n f +++<+-+ 【答案】(1)2y x a =+-(2)(i );(ii )证明见解析[]0,1【分析】(1)求出、的值,利用导数的几何意义可得出所求切线的方程;()1f ()1f '(2)(i )由题意可得,设,其中,对实数的取值进行分ln 0x a x a --≥()ln h x x a x a=--0x >a 类讨论,利用导数分析函数在上的单调性,在、的情况下,验证在()h x ()0,∞+0a =0a <()0h x ≥上能否恒成立,在时,可得出,求出实数的取值范围,综合即可得解;()0,∞+0a >()min 0h x ≥a (ii )当时,;结合(i )中所求,可得,在时,直接验证结1a =()2ln f n nn n =22ln 1112n n n ⎛⎫≤- ⎪⎝⎭2n =论即可;在时,利用不等式进行适度放缩,结合裂项求和,即可容易证明.3n ≥【详解】(1)解:因为,则,其中,()ln 1a x a f x x +-=()()22ln 11ln ax a x a a x x f x x x ⋅-+--'==0x >所以,,,()11f a =-()11f '=所以,函数在点处的切线方程为,即.()f x ()()1,1f ()11y a x --=-2y x a =+-(2)解:(i ),可得.()ln 11xf x a x a x =+-≤-ln 0x a x a --≥令,其中,则.()ln h x x a x a=--0x >()1a x ah x x x -'=-=①当时,,合乎题意;0a =()0h x x =>②当时,由基本不等式可得,a<0()()112a a a a ⎡⎤+=--+≤-=-⎢⎥-⎣⎦当且仅当时,等号成立,1a =-,当且仅当时,等号成立,221331244a a a ⎛⎫++=++≥ ⎪⎝⎭12a =-所以,,()1112221313e e e 1e 04e 4a a a a aa h a a a a a a +++-⎛⎫⎛⎫=-+-=-++<-=-< ⎪ ⎪⎝⎭⎝⎭所以,不恒成立,不合乎题意;()0h x ≥③当时,,0a >()1a x a h x x x -'=-=当时,,此时函数单调递减,0x a <<()0h x '<()h x 当时,,此时函数单调递增,x a >()0h x '>()h x 所以,,可得,解得.()()min ln ln 0h x h a a a a a a a ==--=-≥ln 0≤a 01a <≤综上所述,实数的取值范围是;a []0,1(ii )当时,,所以.1a =()ln x f x x =()2ln f n n n n =由(i )知:,即,所以.()1xf x x ≤-ln 1x x ≤-ln 11x x x ≤-令,得,即,所以.2x n =222ln 11n nn ≤-222ln 11n n n ≤-22ln 1112n n n ⎛⎫≤- ⎪⎝⎭当时,,则,显然,结论成立;2n =()2ln 224f =1193222248n n +-=+ln213448<<当时,3n ≥()()()22222223ln2ln3ln 11111112323223f f f n n n n n ⎛⎫+++=+++≤-+-++- ⎪⎝⎭ ()()()222111111111112232434451n n n n n ⎡⎤⎛⎫⎡⎤⎛⎫=--+++<--++++⎢⎥ ⎪ ⎪⎢⎥ ⎪⨯⨯⨯+⎝⎭⎣⎦⎢⎥⎝⎭⎣⎦()1111111112434451n n n ⎡⎤⎛⎫=--+-+-++- ⎪⎢⎥+⎝⎭⎣⎦,结论成立.()171111911912121211222224n n n n n n ⎡⎤⎛⎫⎛⎫=---=+-=+- ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎣⎦因此,当时,成立.2n ≥()()()212323192224f f n n n n f +++<+-+ 【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f x g x >()()f x g x <(或),进而构造辅助函数;()()0f x g x ->()()0f x g x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.22.在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极xOy O x 1C坐标方程为,曲线的极坐标方程为.2cos ρθ=2C ρ=(1)写出曲线的参数方程;2C (2)设是曲线上的动点,是曲线上的动点,求之间距离的最大值.A 1CB 2C ,A B 【答案】(1),(为参数).2cos :2sin x C y ϕϕ=⎧⎨=⎩ϕ1【分析】(1)利用极坐标和直角坐标方程的互化公式和二倍角公式可得的直角坐标方程为2C ,再根据圆锥曲线参数方程可得的参数方程为,(为参数);2214y x +=2C cos 2sin x y ϕϕ=⎧⎨=⎩ϕ(2)根据题意可得之间距离的最大值为点到圆心的距离的最大值再加上半径,根据二次,A B B 1C 函数性质即可求得最大值.【详解】(1)根据曲线的极坐标方程为可得,2C ρ=,即,()2226cos 8ρθ+=22828x y +=所以曲线的直角坐标方程为;2C 2214y x +=根据圆锥曲线参数方程定义可得,曲线的参数方程为,(为参数).2C cos 2sin x y ϕϕ=⎧⎨=⎩ϕ(2)由曲线的极坐标方程为可得,1C 2cos ρθ=曲线的直角坐标方程为,其圆心,半径;1C ()2211x y -+=()11,0C 1r =由题意可得设,()cos ,2sin B ϕϕ易知之间距离的最大值为点到圆心的距离的最大值再加上半径,,A B B 1C即,1max 11AB BC r =+==由二次函数性质可知,当时,;1cos 3ϕ=-max 1AB =所以,A B 123. 已知函数.()211f x x x =-++(1)解不等式;()6f x ≤(2)记函数的最小值为,若,且,求()()1g x f x x =++m ,,a b c ∈R 230a b c m ++-=的最小值.222a b c ++【答案】(1);(2).{}22x x -≤≤914【分析】(1)利用零点分界法即可求解.(2)利用绝对值三角函数不等式可得,进而可得,再利用柯西不等式即可求解.3m =233a b c ++=【详解】解:(1)或或,()161216x f x x x ≤-⎧≤⇔⎨---≤⎩1121216x x x ⎧-<<⎪⎨⎪-++≤⎩122116x x x ⎧≥⎪⎨⎪-++≤⎩解得,即不等式的解集为.22x -≤≤()6f x ≤{}22x x -≤≤(2),()()1212221223g x f x x x x x x =++=-++≥---=当且仅当时取等号,∴.()()21220x x -+≤3m =故.233a b c ++=由柯西不等式,()()()2222222123239a b c a b c ++++≥++=整理得,222914a b c ++≥当且仅当,即,,时等号成立.123a b c ==314a =614b =914c =所以的最小值为.222a b c ++914【点睛】本题考查了分类讨论解不等式、绝对值三角不等式、柯西不等式,属于基础题.。
2020-2021学年四川省成都市高考数学三诊试卷(理科)及答案解析

四川省成都市高考数学三诊试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知田径队有男运动员56人,女运动员42人,若按男女比例用分层抽样的方法,从全体运动员中抽出14人参加比赛,则抽到女运动员的人数为()A.2 B.4 C.6 D.82.命题“∀x∈(﹣1,+∞),ln(x+1)<x”的否定是()A.∀x∉(﹣1,+∞),ln(x+1)<x B.∀x0∉(﹣1,+∞),ln(x0+1)<x0C.∀x∈(﹣1,+∞),ln(x+1)≥x D.∃x0∈(﹣1,+∞),ln(x0+1)≥x03.已知复数z=﹣i(其中i为虚数单位),则|z|=()A.3 B.C.2 D.14.已知α,β是空间中两个不同的平面,m为平面β内的一条直线,则“α⊥β”是“m⊥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知向量,满足=2,•=﹣3,则在方向上的投影为()A.B. C.D.6.某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品需用4个A配件耗时1h,每生产一件乙产品需用4个B配件耗时2h,该厂每天最多可从配件厂获得24个A配件和16个B配件,每天生产总耗时不超过8h.若生产一件甲产品获利3万元,生产一件乙产品获利4万元,则通过恰当的生产安排,该工厂每天可获得的最大利润为()A.24万元B.22万元C.18万元D.16万元7.执行如图所示的程序框图,若依次输入m=,n=0.6﹣2,p=,则输出的结果为()A.B.C.0.6﹣2 D.8.某学校食堂旱餐只有花卷、包子、面条和蛋炒饭四种主食可供食用,有5名同学前去就餐,每人只选择其中一种,且每种主食都至少有一名同学选择.已知包子数量不足仅够一人食用,甲同学肠胃不好不会选择蛋炒饭,则这5名同学不同的主食选择方案种数为()A.144 B.132 C.96 D.489.定义在(1,+∞)上的函数f(x)同时满足:①对任意的x∈(1,+∞)恒有f(3x)=3f(x)成立;②当x∈(1,3]时,f(x)=3﹣x.记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰好有两个零点,则实数k的取值范围是()A.(2,3)B.[2,3)C.D.10.已知O为坐标原点,双曲线C:﹣=1(a>0,b>0)的左焦点为F(﹣c,0)(c>0),以OF为直径的圆交双曲线C的渐近线于A,B,O三点,且(+)=0,若关于x的方程ax2+bx﹣c=0的两个实数根分别为x1和x2,则以|x1|,|x2|,2为边长的三角形的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰直角三角形二、填空题:(大题共5小题,每小题5分,共25分.11.计算:sin65°cos35°﹣sin25°sin35°= .12.一块边长为8cm的正方形铁板按如图1所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥(底面是正方形,从顶点向底面作垂线,垂足为底面中心的四棱锥)形容器,O为底面ABCD的中心,则侧棱SC与底面ABCD所成角的余弦值为.13.已知椭圆C:+=1(0<n<16)的两个焦点分别为F1,F2,过F1的直线交椭圆C于A,B两点,若|AF2|+|BF2|的最大值为10,则n的值为.14.若直线2ax+by﹣1=0(a>﹣1,b>0)经过曲线y=cosπx+1(0<x<1)的对称中心,则+的最小值为.15.函数f(x)=(a>0,b>0),因其图象类似于汉字“囧”字,被称为“囧函数”,我们把函数f(x)的图象与y轴的交点关于原点的对称点称为函数f(x)的“囧点”,以函数f(x)的“囧点”为圆心,与函数f (x)的图象有公共点的圆,皆称函数f(x)的“囧圆”,则当a=b=1时,有下列命题:①对任意x∈(0,+∞),都有f(x)>成立;∈(,),使f(x0)<tanx0成立;②存在x③函数f(x)的“囧点”与函数y=lnx图象上的点的最短距离是;④函数f(x)的所有“囧圆”中,其周长的最小值为2π.其中的正确命题有(写出所有正确命题的序号).三、解答题:本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤.16.已知函数f(x)=sin2x+2sin(x+)cos(x+)+.(1)求函数f(x)的单调递增区间;(2)在△ABC中,内角A,B,C的对边分别为a,b,c,角A满足f(A)=1+,若a=3,sinB=2sinC,求b的值.17.如图,在三棱台DEF﹣ABC中,已知底面ABC是以AB为斜边的直角三角形,FC⊥底面ABC,AB=2DE,G,H分别为AC,BC的中点.(1)求证:平面ABED∥平面GHF;(2))若BC=CF=AB=1,求二面角A﹣DE﹣F的余弦值.18.某高校一专业在一次自主招生中,对20名已经选拔入围的学生进行语言表达能力和逻辑思维能力测试,结果如表:语言表达能力一般良好优秀人数逻辑思维能力一般 2 2 1良好 4 m 1优秀 1 3 n由于部分数据丢失,只知道从这20名参加测试的学生中随机抽取一人,抽到语言表达能力优秀或逻辑思维能力优秀的学生的概率为.(1)从参加测试的语言表达能力良好的学生中任意抽取2名,求其中至少有一名逻辑思维能力优秀的学生的概率;(2)从参加测试的20名学生中任意抽取2名,设语言表达能力优秀或逻辑思维能力优秀的学生人数为X,求随机变量X的分布列及其均值.19.已知数列{a n}的前n项和为S n,且3S n+a n﹣3=0,n∈N*.(1)求数列{a n}的通项公式;(2)设数列{b n}满足b n=,求T n=,求使T n≥成立的n 的最小值.20.已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.(1)求曲线C的方程;(2)过点N(1,0)任意作相互垂直的两条直线l1,l2,分别交曲线C于不同的两点A,B和不同的两点D,E.设线段AB,DE的中点分别为P,Q.①求证:直线PQ过定点R,并求出定点R的坐标;②求|PQ|的最小值.21.已知函数f(x)=e x,其中e=2.71828…为自然对数的底数.(1)设函数g(x)=(x2+ax﹣2a﹣3)f(x),a∈R.试讨论函数g(x)的单调性;(2)设函数h(x)=f(x)﹣mx2﹣x,m∈R,若对任意,且x1>x2都有x2h(x1)﹣x1h (x2)>x1x2(x2﹣x1)成立,求实数m的取值范围.四川省成都市高考数学三诊试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知田径队有男运动员56人,女运动员42人,若按男女比例用分层抽样的方法,从全体运动员中抽出14人参加比赛,则抽到女运动员的人数为()A.2 B.4 C.6 D.8【考点】分层抽样方法.【分析】先求出每个个体被抽到的概率,再用女运动员的人数乘以此概率,即得所求.【解答】解:每个个体被抽到的概率等于=,则样本中女运动员的人数为42×=6.故选:C.2.命题“∀x∈(﹣1,+∞),ln(x+1)<x”的否定是()A.∀x∉(﹣1,+∞),ln(x+1)<x B.∀x0∉(﹣1,+∞),ln(x0+1)<x0C.∀x∈(﹣1,+∞),ln(x+1)≥x D.∃x0∈(﹣1,+∞),ln(x0+1)≥x0【考点】命题的否定.【分析】根据全称命题的否定是特称命题即可得到结论.【解答】解:∵全称命题的否定是特称命题,∴命题“∀x∈(﹣1,+∞),ln(x+1)<x”的否定是:“∃x0∈(﹣1,+∞),ln(x0+1)≥x0”,故选:D.3.已知复数z=﹣i(其中i为虚数单位),则|z|=()A.3 B.C.2 D.1【考点】复数求模.【分析】利用复数代数形式的乘除运算化简,然后代入复数模的公式得答案.【解答】解:∵z=﹣i=,∴|z|=.故选:A.4.已知α,β是空间中两个不同的平面,m为平面β内的一条直线,则“α⊥β”是“m⊥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】利用充分条件和必要条件的定义进行判断.【解答】解:由平面与平面垂直的判定定理知如果m为平面β内的一条直线,且m⊥α,则α⊥β,反之,α⊥β时,若m平行于α和β的交线,则m∥α,所以不一定能得到m⊥α,所以“α⊥β”是“m⊥α”的必要不充分条件.故选B.5.已知向量,满足=2,•=﹣3,则在方向上的投影为()A.B. C.D.【考点】平面向量数量积的运算.【分析】根据平面向量数量积的定义与投影的定义,进行计算即可.【解答】解:∵||=2,•(﹣)=﹣3,∴•﹣=•﹣22=﹣3,∴•=1,∴向量在方向上的投影为=.故选:C.6.某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品需用4个A配件耗时1h,每生产一件乙产品需用4个B配件耗时2h,该厂每天最多可从配件厂获得24个A配件和16个B配件,每天生产总耗时不超过8h.若生产一件甲产品获利3万元,生产一件乙产品获利4万元,则通过恰当的生产安排,该工厂每天可获得的最大利润为()A.24万元B.22万元C.18万元D.16万元【考点】简单线性规划.【分析】根据条件建立不等式组即线性目标函数,利用图象可求该厂的日利润最大值.【解答】解:设甲、乙两种产品分别生产x、y件,工厂获得的利润为z又已知条件可得二元一次不等式组:目标函数为z=3x+4y,由,可得,利用线性规划可得x=6,y=1时,此时该厂的日利润最大为z=3×6+4=22万元,故选:B.7.执行如图所示的程序框图,若依次输入m=,n=0.6﹣2,p=,则输出的结果为()A.B.C.0.6﹣2 D.【考点】程序框图.【分析】模拟执行程序,可得该流程图的作用是求出m、n、p中的最小数,化简比较三个数即可得解.【解答】解:根据题意,该流程图的作用是求出m、n、p中的最小数,并将此最小的数用变量x表示并输出,由于,m==,n=0.6﹣2=,p==,可得,>>,即:n>m>p.故选:A.8.某学校食堂旱餐只有花卷、包子、面条和蛋炒饭四种主食可供食用,有5名同学前去就餐,每人只选择其中一种,且每种主食都至少有一名同学选择.已知包子数量不足仅够一人食用,甲同学肠胃不好不会选择蛋炒饭,则这5名同学不同的主食选择方案种数为()A.144 B.132 C.96 D.48【考点】计数原理的应用.【分析】分类讨论:甲选花卷,则有2人选同一种主食,剩下2人选其余主食;甲不选花卷,其余4人中1人选花卷,方法为4种,甲包子或面条,方法为2种,其余3人,有1人选甲选的主食,剩下2人选其余主食,或没有人选甲选的主食,相加后得到结果【解答】解:分类讨论:甲选花卷,则有2人选同一种主食,方法为C42C31=18,剩下2人选其余主食,方法为A22=2,共有方法18×2=36种;甲不选花卷,其余4人中1人选花卷,方法为4种,甲包子或面条,方法为2种,其余3人,若有1人选甲选的主食,剩下2人选其余主食,方法为3A22=6;若没有人选甲选的主食,方法为C32A22=6,共有4×2×(6+6)=96种,故共有36+96=132种,故选:B.9.定义在(1,+∞)上的函数f(x)同时满足:①对任意的x∈(1,+∞)恒有f(3x)=3f(x)成立;②当x∈(1,3]时,f(x)=3﹣x.记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰好有两个零点,则实数k的取值范围是()A.(2,3)B.[2,3)C.D.【考点】函数零点的判定定理.【分析】根据题中的条件得到函数的解析式为:f(x)=3m+1﹣x,x∈(3m,3m+1],在直角坐标系中画出f(x)的图象和直线y=k(x﹣1),根据函数的图象、题意、斜率公式求出实数k的范围.【解答】解:因为对任意的x∈(1,+∞)恒有f(3x)=3f(x)成立,所以f(t)=3f(),取x∈(3m,3m+1],则∈(1,3],因为当x∈(1,3]时,f(x)=3﹣x,所以f()=3﹣,则f(x)=…=3m f()=3m+1﹣x,且y=k(x﹣1)的函数图象是过定点(1,0)的直线,在直角坐标系中画出f(x)的图象和直线y=k(x﹣1):因为函数g(x)=f(x)﹣k(x﹣1),且函数g(x)恰好有两个零点,所以f(x)的图象和直线y=k(x﹣1)恰好由两个交点,由图得,直线y=k(x﹣1)处在两条红线之间,且过(3,6)的直线取不到,因,,所以k的范围是[,3),故选:D.10.已知O为坐标原点,双曲线C:﹣=1(a>0,b>0)的左焦点为F(﹣c,0)(c>0),以OF为直径的圆交双曲线C的渐近线于A,B,O三点,且(+)=0,若关于x的方程ax2+bx﹣c=0的两个实数根分别为x1和x2,则以|x1|,|x2|,2为边长的三角形的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰直角三角形【考点】双曲线的简单性质.【分析】运用向量的加减运算和数量积的性质可得|AF|=|AO|,△AOF为等腰直角三角形,求得渐近线的斜率,进而得到c=a,方程ax2+bx﹣c=0即为x2+x﹣=0,求得两根,求得平方,运用余弦定理,即可判断三角形的形状.【解答】解:由(+)=0,可得(+)•(﹣)=0,即有2﹣2=0,即|AF|=|AO|,△AOF为等腰直角三角形,可得∠AOF=45°,由渐近线方程y=±x,可得=1,c=a,则关于x的方程ax2+bx﹣c=0即为x2+x﹣=0,即有x1x2=﹣,x1+x2=﹣1,即有x12+x22=1+2<4,可得以|x1|,|x2|,2为边长的三角形的形状是钝角三角形.故选:A.二、填空题:(大题共5小题,每小题5分,共25分.11.计算:sin65°cos35°﹣sin25°sin35°= .【考点】两角和与差的正弦函数.【分析】由条件利用诱导公式、两角而和的余弦公式,求得所给式子的值.【解答】解:sin65°cos35°﹣sin25°sin35°=cos25°cos35°﹣sin25°sin35°=cos(25°+35°)=cos60°=,故答案为:.12.一块边长为8cm的正方形铁板按如图1所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥(底面是正方形,从顶点向底面作垂线,垂足为底面中心的四棱锥)形容器,O为底面ABCD的中心,则侧棱SC与底面ABCD所成角的余弦值为.【考点】直线与平面所成的角.【分析】连接OC,则∠SCO为侧棱SC与底面ABCD所成角,根据图1可知棱锥底面边长为6,斜高为4,从而棱锥的侧棱长为5.于是cos∠SCO=.【解答】解:由图1可知四棱锥的底面边长为6,斜高为4.∴棱锥的侧棱长为5.连接OC,∵SO⊥平面ABCD,∴∠SCO为侧棱SC与底面ABCD所成的角.∵AB=BC=6,∴OC=AC=3.∴cos∠SCO==.故答案为:.13.已知椭圆C:+=1(0<n<16)的两个焦点分别为F1,F2,过F1的直线交椭圆C于A,B两点,若|AF2|+|BF2|的最大值为10,则n的值为12 .【考点】椭圆的简单性质.【分析】由题意可知椭圆是焦点在x轴上的椭圆,利用椭圆定义得到|BF2|+|AF2|=16﹣|AB|,再由过椭圆焦点的弦中通径的长最短,可知当AB垂直于x轴时|AB|最小,把|AB|的最小值,代入|BF2|+|AF2|=16﹣|AB|,由|BF2|+|AF2|的最大值等于10,列式求n的值.【解答】解:由0<n<16可知,焦点在x轴上,由过F1的直线l交椭圆于A,B两点,由椭圆的定义可得|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=16,即有|BF2|+|AF2|=16﹣|AB|.当AB垂直x轴时|AB|最小,|BF2|+|AF2|值最大,此时|AB|===,即为10=16﹣,解得n=12.故答案为:12.14.若直线2ax+by﹣1=0(a>﹣1,b>0)经过曲线y=cosπx+1(0<x<1)的对称中心,则+的最小值为.【考点】基本不等式.【分析】曲线y=cosπx+1(0<x<1)的对称中心为,可得:a+b=1.(a>﹣1,b>0).再利用“乘1法”与基本不等式的性质即可得出.【解答】解:曲线y=cosπx+1(0<x<1)的对称中心为,∴+b﹣1=0,化为:a+b=1(a>﹣1,b>0).∴+=(a+1+b)=≥=,当且仅当a=2﹣3,b=4﹣2时取等号.故答案为:.15.函数f(x)=(a>0,b>0),因其图象类似于汉字“囧”字,被称为“囧函数”,我们把函数f(x)的图象与y轴的交点关于原点的对称点称为函数f(x)的“囧点”,以函数f(x)的“囧点”为圆心,与函数f (x)的图象有公共点的圆,皆称函数f(x)的“囧圆”,则当a=b=1时,有下列命题:①对任意x∈(0,+∞),都有f(x)>成立;∈(,),使f(x0)<tanx0成立;②存在x③函数f(x)的“囧点”与函数y=lnx图象上的点的最短距离是;④函数f(x)的所有“囧圆”中,其周长的最小值为2π.其中的正确命题有②③④(写出所有正确命题的序号).【考点】函数的图象.【分析】利用特殊值法,研究函数的值域,单调性,和零点问题,以及导数的几何意义,利用数形结合的方法进行判断.【解答】解:当a=1,b=1时,函数f(x)=,①当x=时,f()==﹣2,=2,故f(x)>不成立,故①不正确;=时,f()=<0,tan=1,故存在x0∈(,),使f(x0)<tanx0成立,故②正②当x确;③则函数f(x)=与y轴交于(0,﹣1)点,则“囧点”坐标为(0,1),设y=lnx,则y′=,设切点为(x0,lnx0),∴切线的斜率k=,当“囧点”与切点的连线垂直切线时,距离最短,∴•=﹣1,解得x0=1,∴切点坐标为(1,0),故函数f(x)的“囧点”与函数y=lnx图象上的点的最短距离是=,故③正确,④令“囧圆”的标准方程为x2+(y﹣1)2=r2,令“囧圆”与f(x)=图象的左右两支相切,则切点坐标为(,)、(﹣,)、此时r=;令“囧圆”与f(x)=图象的下支相切则切点坐标为(0,﹣1)此时r=2,故函数f(x)的所有“囧圆”中,其周长的最小值为2π,故④正确,综上所述:其中的正确命题有②③④,故答案为:②③④三、解答题:本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤.16.已知函数f(x)=sin2x+2sin(x+)cos(x+)+.(1)求函数f(x)的单调递增区间;(2)在△ABC中,内角A,B,C的对边分别为a,b,c,角A满足f(A)=1+,若a=3,sinB=2sinC,求b的值.【考点】三角函数中的恒等变换应用;余弦定理.【分析】(1)由诱导公式与辅助角公式得到f(x)的解析式,由此得到单调增区间.(2)由f(A)=1+,得A=,由恒等式得到B=,所以得到b.【解答】解:(1)∵f(x)=sin2x+2sin(x+)cos(x+)+.=sin2x+sin(2x+)+.=2sin(2x+)+,由﹣+2kπ≤2x+≤2kπ+,得:﹣+kπ≤x≤kπ+,(k∈Z),∴函数f(x)的单调递增区间是[﹣+kπ,kπ+],(k∈Z).(2)∵f(A)=1+,∴A=,∵sinB=2sinC=2sin(﹣B),∴cosB=0,即B=,∴由正弦定理得:=,∴b=.17.如图,在三棱台DEF﹣ABC中,已知底面ABC是以AB为斜边的直角三角形,FC⊥底面ABC,AB=2DE,G,H分别为AC,BC的中点.(1)求证:平面ABED∥平面GHF;(2))若BC=CF=AB=1,求二面角A﹣DE﹣F的余弦值.【考点】二面角的平面角及求法;平面与平面平行的判定.【分析】(1)推导出四边形BHFE是平行四边形,从而BE∥HF,从而∥平面GHF,BE∥平面GHF,由此能证明平面ABED∥平面GHF.(2)以C为原点,分别以CA,CB,CF所在的直线为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出二面角A﹣DE﹣F的余弦值.【解答】证明:(1)由已知得三棱台DEF﹣ABC中,AB=2DE,∴,∵G,H分别为AC,BC的中点.,∴AB∥GH,EF∥BH,EF=BH,∴四边形BHFE是平行四边形,∴BE∥HF,∵AB⊄平面GHF,HF⊂平面GHF,∴AB∥平面GHF,BE∥平面GHF,又AB∩BE=B,AB,BE⊂平面ABED,∴平面ABED∥平面GHF.解:(2)由已知,底面ABC是以AB为斜边的直角三角形,即AC⊥BC,又FC⊥底面ABC,∴以C为原点,分别以CA,CB,CF所在的直线为x轴,y轴,z轴,建立空间直角坐标系,取AB=2,由BC=CF=,得BC=CF=1,AC=,则A(),C(0,0,0),B(0,1,0),F(0,0,1),E(0,,1),D(,0,1),平面DEF的一个法向量=(0,0,1),设平面ABED的法向量=(x,y,z),,=(﹣,),由,取x=2,得=(2,2),cos<>===,由图形得二面角A﹣DE﹣F的平面角是钝角,∴二面角A﹣DE﹣F的余弦值为﹣.18.某高校一专业在一次自主招生中,对20名已经选拔入围的学生进行语言表达能力和逻辑思维能力测试,结果如表:语言表达能力一般良好优秀人数逻辑思维能力一般 2 2 1良好 4 m 1优秀 1 3 n由于部分数据丢失,只知道从这20名参加测试的学生中随机抽取一人,抽到语言表达能力优秀或逻辑思维能力优秀的学生的概率为.(1)从参加测试的语言表达能力良好的学生中任意抽取2名,求其中至少有一名逻辑思维能力优秀的学生的概率;(2)从参加测试的20名学生中任意抽取2名,设语言表达能力优秀或逻辑思维能力优秀的学生人数为X,求随机变量X的分布列及其均值.【考点】离散型随机变量及其分布列;列举法计算基本事件数及事件发生的概率.【分析】(1)语言表达能力优秀或逻辑思维能力优秀的学生共有(6+n)名,由题意得,从而n=2,m=4,由此利用对立事件概率计算公式能求出从参加测试的语言表达能力良好的学生中任意抽取2名,其中至少有一名逻辑能力优秀的学生.(Ⅱ)随机变量X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列及E(X).【解答】解:(1)用A表示“从这20名参加测试的学生中随机抽取一人,抽到语言表达能力优秀或逻辑思维能力优秀的学生”,∵语言表达能力优秀或逻辑思维能力优秀的学生共有(6+n)名,∴P(A)=,解得n=2,∴m=4,用B表示“从参加测试的语言表达能力良好的学生中任意抽取2名,其中至少有一名逻辑能力优秀的学生”,∴P(B)=1﹣=.(Ⅱ)随机变量X的可能取值为0,1,2,∵20名学生中,语言表达能力优秀或逻辑思维能力优秀的学生人数共有名,∴P(X=0)==,P(X=1)==,P(X=2)==,∴X的分布列为:X 0 1 2PE(X)==.19.已知数列{a n}的前n项和为S n,且3S n+a n﹣3=0,n∈N*.(1)求数列{a n}的通项公式;(2)设数列{b n}满足b n=,求T n=,求使T n≥成立的n 的最小值.【考点】数列的求和;数列递推式.【分析】(1)通过3S n+a n﹣3=0与3S n﹣1+a n﹣1﹣3=0作差,进而可知数列{a n}是首项为、公比为的等比数列,利用公式计算即得结论;(2)通过(1)及3S n+a n﹣3=0计算可知b n=﹣n﹣1,裂项可知=﹣,进而并项相加即得结论.【解答】解:(1)∵3S n+a n﹣3=0,∴当n=1时,3S1+a1﹣3=0,即a1=,又∵当n≥2时,3S n﹣1+a n﹣1﹣3=0,∴3a n+a n﹣a n﹣1=0,即a n=a n﹣1,∴数列{a n}是首项为、公比为的等比数列,故其通项公式a n=•=3•;(2)由(1)可知,1﹣S n+1=a n+1=,∴b n==﹣n﹣1,∵==﹣,∴T n==﹣+﹣+…+﹣=﹣,由T n≥可知,﹣≥,化简得:≤,解得:n≥2016,故满足条件的n的最小值为2016.20.已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.(1)求曲线C的方程;(2)过点N(1,0)任意作相互垂直的两条直线l1,l2,分别交曲线C于不同的两点A,B和不同的两点D,E.设线段AB,DE的中点分别为P,Q.①求证:直线PQ过定点R,并求出定点R的坐标;②求|PQ|的最小值.【考点】轨迹方程.【分析】(1)利用一动圆经过点M(2,0),且在y轴上截得的弦长为4,建立方程,即可求曲线C的方程;(2)①设A,B两点坐标分别为(x1,y1),(x2,y2),直线l1的方程为y=k(x﹣1)(k≠0),与抛物线方程联立,利用韦达定理可求点P,Q的坐标,进而可确定直线PQ的方程,即可得到结论.②由①|PQ|2=(2k﹣)2+(2k+)2=4[(k2+)2+(k2+)﹣2],换元利用基本不等式求|PQ|的最小值.【解答】解:(1)设圆心C(x,y),则x2+4=(x﹣2)2+y2,化简得y2=4x,∴动圆圆心的轨迹的方程为y2=4x.(2)①设A,B两点坐标分别为(x1,y1),(x2,y2),由题意可设直线l1的方程为y=k(x﹣1)(k≠0),与y2=4x联立得k2x2﹣(2k2+4)x+k2=0.△=(2k2+4)2﹣4k4=16k2+16>0,x1+x2=2+,y1+y2=k(x1+x2﹣2)=.所以点P的坐标为(1+,).由题知,直线l2的斜率为﹣,同理可得点Q的坐标为(1+2k2,﹣2k).当k≠±1时,有1+≠1+2k2,此时直线PQ的斜率k PQ=.所以,直线PQ的方程为y+2k=(x﹣1﹣2k2),整理得yk2+(x﹣3)k﹣y=0,于是,直线PQ恒过定点E(3,0);当k=±1时,直线PQ的方程为x=3,也过点E(3,0).综上所述,直线PQ恒过定点E(3,0).②由①|PQ|2=(2k﹣)2+(2k+)2=4[(k2+)2+(k2+)﹣2],记k2+=t∵k2+≥2,∴t≥2,∴|PQ|2=4[(t+)2﹣],∴t=2,即k=±1时,|PQ|的最小值为4.21.已知函数f(x)=e x,其中e=2.71828…为自然对数的底数.(1)设函数g(x)=(x2+ax﹣2a﹣3)f(x),a∈R.试讨论函数g(x)的单调性;(2)设函数h(x)=f(x)﹣mx2﹣x,m∈R,若对任意,且x1>x2都有x2h(x1)﹣x1h (x2)>x1x2(x2﹣x1)成立,求实数m的取值范围.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(1)先求函数g(x)的解析式,求导,根据a的取值,分别解关于x的不等式g′(x)>0,g′(x)<0即可;(2)根据已知条件将其转化成,+x1>+x2,且x1>x2,构造辅助函数F(x)=﹣(m﹣1)x﹣1,求导,分离变量求得m≤+1,在x∈[,2]上恒成立,构造辅助函数,求导,利用函数的单调性,求得函数的最小值,即可求得m的取值范围.【解答】解:(1)g(x)=e x(x2+ax﹣2a﹣3),a∈R.∴g′(x)=e x[x2+(a+2)x﹣a﹣3],=a(x﹣1)(x+a+3),当a=﹣4时,g′(x)=a(x﹣1)2≥0,∴g(x)在R上单调递减,当a>﹣4时,由g′(x)>0,解得x<﹣a﹣3或x>1,∴g(x)在(﹣∞,﹣a﹣3),(1,+∞)上单调递增,由g′(x)>0,解得﹣a﹣3<x<1,∴g(x)在(﹣a﹣3,1)上单调递减;当a<﹣4时,由g′(x)>0,解得x<1或x>﹣a﹣3,∴g(x)在(﹣∞,1),(﹣a﹣3,+∞)上单调递增,由g′(x)>0,解得1<x<﹣a﹣3,∴g(x)在(1,﹣a﹣3)上单调递减,综上所述:当a=﹣4时,g(x)在R上单调递减;当a>﹣4时,g(x)在(﹣∞,﹣a﹣3),(1,+∞)上单调递增,在(﹣a﹣3,1)上单调递减;当a<﹣4时,g(x)在(﹣∞,1),(﹣a﹣3,+∞)上单调递增,在(1,﹣a﹣3)上单调递减.(2)h(x)=f(x)﹣mx2﹣x=e x﹣mx2﹣x,,∴x2h(x1)﹣x1h(x2)>x1x2(x2﹣x1),∴﹣>x2﹣x1,不等式﹣>x2﹣x1,等价于+x1>+x2,且x1>x2,记F(x)==﹣(m﹣1)x﹣1,∴F(x)在[,2]上单调递增,F′(x)=﹣(m﹣1)≥0在x∈[,2]上恒成立,m≤+1,在x∈[,2]上恒成立,记P(x)=+1,∴P′(x)=>0,∴P(x)在[,2]上单调递增,P(x)min=P()=1﹣2.∴实数m的取值范围为(﹣∞,1﹣2].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省成都市2019届高三第三次诊断性考试
理科数学
注意事项:
1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写到答题卡和试卷规定的位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷 (选择题 共60分)
一、选择题(本大题共12小题,每小题5分,共60分。
每小题只有一个选项
最符合题目要求。
)
1. 设全集{},0,222x x U R A x B x x ⎧⎫==<=<⎨⎬-⎩⎭
,则图中阴影部分表示的集合为( )
A. {}|1x x ≥
B. {}|12x x ≤<
C. {|01}x x <≤
D. {}|1x x ≤
2. 命题p :若a b <,则22,c R ac
bc ∀∈<;命题q :00x ∃>,使得00ln 1x x =-,则下列命题中为真命题的是( )
A. p q ∧
B. ()p q ∨⌝
C. ()p q ⌝∧
D. ()()p q ⌝∧⌝
3. 曲线33y x x =-+在点()1,3处的切线方程为( )。