电子设备热设计基础
第一章电子设备热设计基本知识

c. 辐射换热网络法 任意两表面间的辐射网络如下图所示:
图中Eb1和Eb2分别代表同温度下的表面1和表面2的黑体 辐射力;J1和J2分别为表面1和表面2的有效辐射。
2 传热方程
传热的基本计算公式为:
At
式中:Φ —— 热流量,W; Κ——传热系数,W/(m2·℃); A —— 传热面积,m2;
t / x —— x方向的温度变化率,℃/m。 负号表示热量传递的方向与温度梯度的方向相
反。
无限大平板一维导热
q
tw1 tw2
t r
Φ
tw1 tw2
t R
A
R
A
导热热阻
r
单位面积导热热
阻
t
dx
tw1
dt
Q
tw2
0
x
tw1
Q
tw2
A
图 导热热阻的图示
单层圆筒壁的导热
Φ
2 rlq
tw1 tw2 ln(r2 r1)
P=VI 理论上是可以这样计算的。实际大多是元器件
厂家提供的。第15-19页 1有源器件 2无源器件
有热源如果任由它发热不去考虑散热,那么有 可能温度会超过元器件工作温度。
因此有必要人为构造散热途径。 比如电加热器烧干。 接下来我们看看散热是怎么回事。 热量传递有三种方式:导热;对流和热辐射
一、导热
3.3 冷却方法选择示例
功耗为300W的电子组件,拟将其装在一个248mm×381mm
×432mm的机柜里,放在正常室温的空气中,是否需要对此机柜采 取特殊的冷却措施?是否可以把此机柜设计得再小一些?
引入当量水力半径后所有园管的计算方法与公式均可适用非园 管,只需把园管直径换成当量水力直径。
A7.电子设备热设计规范

电子设备热设计准则1、概述1.1 热设计的目的采用适当可靠的方法控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过稳定运行要求的最高温度,以保证产品正常运行的安全性,长期运行的可靠性。
热设计的重点是通过器件的选择、电路设计(包括容差与漂移设计和降额设计等)及结构设计(主要是加快散热)来减少温度变化对产品性能的影响,使产品能在较宽的温度范围内可靠地工作。
1.减少设备(线路)内部产生的热量,应该是电路设计的一项指标;2.减少热阻,是电子设备结构设计的目的之一;3.保证电气性能稳定,热设计使元件不在高温条件下工作,以避免参数漂移,保持电气性能稳定;4.改善电子设备的可靠性;5.延长使用寿命。
1.2、热设计的主要内容电子设备冷却方法的选择要考虑的因素是:电子元器件(设备)的热耗散密度(即热耗散量与设备组装外壳体积之比)、元器件工作状态、设备的复杂积蓄、设备用途、使用环境条件(如海拔高度、气温等)以及经济性等。
①、元器件的热设计。
主要是减小元器件的发热量,合理地散发元器件的热量,避免热量蓄积和过热,降低元器件的温升,是设计考虑的一项主要指标。
②、印制板的热设计。
有效地把印制板上的热引导到外部。
减少热阻,是结构设计的目的之一。
③、机箱的热设计。
保证设备承受外部各种环境、机械应力的前提下,充分保证对流换热、传导、辐射,最大限度地的把设备产生的热散发出去。
⑴、热量的传递只要存在温差就有热量的传递。
热量的传递有三种基本方式:传热、对流和辐射。
它们可以单独出现,也可能两种或三种形式同时出现。
热量传递的两个基本规律:热量从高温区流向低温区;高温区发出的热量等于低温区吸收的热量。
⑵、热设计需考虑的问题系统热设计应与电路和结构设计同步进行;尽量减少电路发热量;减少发热元件的数量;选择耐热性和热稳定性好的元器件;在结构设计时应合理地选择冷却方法;进行传热通道的最佳设计;尽量减少热阻,热阻是热量传递路径上的阻力。
热设计及热仿真分析

九、热电制冷器(1.25H)
1. 热电制冷的基本原理
2. 制冷器冷端净吸热的计算
3. 最大抽吸热制冷器设计方法
4. 最佳性能系数制冷器设计方法
5. 多极制冷器的性能
6. 热电制冷器的结构设计
十、热管散热器的设计(1.25H)
1. 热管的类型及其工作原理
2. 热管的传热性能
3. 热管设计
十一、电子设备的热性能评价及改进(0.5H)
1. 评价的目的与内容
2. 热性能草测
3. 热性能检查项目
4. 热性能测量
5. 确定热性能缺陷
6. 热性能改进的制约条件
7. 改进费用与寿命周期费用的权衡
8. 热设计改进示例
十二、计算机辅助热分析技术(1.5H)
1. 计算流体动力学的工作步骤
2. 计算流体动力学的分支
3. 流体流动的基本特征
4. CFD求解过程及软件结构
5. 常用的CFD商用软件
6. 三维湍流模型
7. 边界条件的应用
8. CFD应用实例
十三、热设计实例(4H)
1. 现代电子器件冷却方法动态
2. 电子设备热分析软件应用研究
3. 典型密封式电子设备热设计
4. 功率器件热设计及散热器的优化设计
5. 表面贴装元器件的热设计
6. 某3G移动基站机柜的热仿真及优化
7. 电子设备热管散热器技术现状及进展
8. 吹风冷却时风扇出风口与散热器间距离对模块散热的影响
9. 实验评估热设计软件
10. IGBT大功率器件的热设计
11. 电源模块的热设计及分析
十四、自由交流及讨论(0.5H)。
电子设备热设计方法浅析

电子设备热设计方法浅析摘要:元器件的工作温度是影响电子产品使用寿命和可靠性的重要因素。
本文主要针对电子设备的热设计方法进行分析,阐述了热设计在产品研发过程中的必要性,提出了一些散热设计的思路和结构方案,希望可以为今后的设计工作提供参考。
关键词:电子设备;可靠性;散热设计;结构方案前言在电子产品的开发过程中,设计过程是其重要的环节之一。
这个过程中的安全性、稳定性等方面直接保证了产品的正常工作。
随着高功率集成芯片的快速发展,其单位面积的发热量急剧增加,导致电子设备的工作温度迅速增高,从而使设备更容易频繁的发生故障。
正确的热设计是电子产品可靠性保证的主要方法之一。
因此,对电子设备的散热设计进行研究变得至关重要。
1、热设计概念电子设备热设计系指对电子设备的热耗散单元以及整机或系统采用合适的冷却技术和散热结构设计,对其温升进行控制,从而保证电子设备或系统的正常工作和可靠性。
热设计按级别一般分为三类,电子机箱机柜的系统级热设计;电子模块、PCB板级的热设计;元器件芯片级别的热设计。
通常,对于工作环境相对固定的电子设备,其热应力主要来自两方面:设备或系统工作过程中,功率元器件耗散的热量,即由电能转换为热能;设备或系统周围的工作环境,通过导热、对流或辐射将热量传递给电子设备。
所以,热设计的总原则就是自热源至耗散空间(环境)之间提供一条尽可能低的热阻通路,使热量迅速的传递出去。
2、常用散热技术2.1自然散热2.1.1自然散热中的传导在大部分的情况下,元器件的热量主要利用接触面以热传导的形式散发。
界面热阻的理论计算公式如下:式中:θTIM——热界面材料有效综合热阻;KTIM——热界面材料的导热系数;T——热界面材料的厚度;Rc——热界面材料与接触表面的接触热阻。
在设计中要遵循以下基本原则:1)要尽量减少传热路径上的分界面,缩短传热路径;2)增大热传导面积,增加与发热器件的接触面积,保证接触面光滑平整;3)使用合适的导热界面材料,保证足够的接触压力,减少接触热阻。
电子行业电子设备热设计基础

电子行业电子设备热设计基础引言在电子行业中,电子设备的热设计是非常重要的。
随着电子设备的不断发展,其功能越来越强大,性能越来越高,工作时产生的热量也越来越大。
如果电子设备的热量不能有效地散出去,会导致设备过热,影响设备的性能甚至损坏设备。
因此,合理的热设计对于电子设备的可靠性和稳定性至关重要。
本文将介绍电子行业电子设备热设计的基础知识,包括热传导、热辐射、热对流等方面的内容,帮助读者了解电子设备热设计的重要性并掌握一些基本的设计原则和方法。
热传导热传导是指热能通过物质的传导方式传递的过程。
在电子设备中,常见的热传导方式有三种:导热、对流和辐射。
导热导热是通过物质内部的分子或电子的碰撞传递热能的过程。
导热的速度和效率取决于物质的热导率和传热面的接触情况。
为了提高导热效率,我们可以采用导热材料,如铜、铝等,作为散热板或散热片,将其与电子元件紧密接触以增大接触面积。
对流对流是指热量通过流体(如空气)的对流传递的过程。
当电子设备工作时产生的热量无法直接通过导热方式散出去时,就需要依靠对流来进行热散热。
在设计电子设备时,我们需要合理设置散热孔和散热风扇等设备,以增加热量与周围空气的接触面积,提高对流散热效率。
辐射辐射是指热能以电磁辐射的形式传递的过程。
热辐射是无需传递介质的热传递方式,在电子设备中发挥重要作用。
通过合理设置散热片、散热器等辐射表面,可以增大辐射能量的发射和吸收。
此外,还可以利用红外线热成像等技术来监测电子设备中的热辐射情况,及时发现问题并采取相应的措施。
设计原则和方法在进行电子设备热设计时,需要遵循一些基本的设计原则和方法,以确保设备的稳定运行和长寿命。
合理布局在电子设备的布局设计中,需要考虑到热量的产生和散热的位置。
将产热元件和散热结构合理布置,减少热量在设备内部的积聚,有利于热量的迅速散出,提高散热效率。
优化散热结构为了提高散热效果,可以采用散热片、散热器等散热结构来增大热量与周围环境的接触面积。
Icepak培训上课用的基础教程电子设备热设计IcePakBasicTraining

8:30 9:30 10:00 10:15 11:15 12:00
Profiles and Zoomin Modeling Tutorial Session Break Tutorial Session Macros Lunch
Afternoon session
1:00 CAD import features 2:15 Break 2:30 Tutorial Session 5:30 End Day 3
Icepak
·Specialized CFD software designed for thermal management of electronic
packages Airpak
• Specialized CFD software designed for thermal management of electronic packages
POLYFLOW • Finite element based CFD package suitable for modeling highly viscous flows (as in rheology) and surface flows
MixSim • Specialized CFD software for modeling mixing processes
Fluent Inc. - Lebanon, NH - Evanston, IL - Ann Arbor, MI - Morgantown, WV - Santa Clara, CA
Fluent India
Fluent Asia-Pacific ATES SFI Aavid-Taiwan
电子产品热设计

目录摘要: (2)第1章电子产品热设计概述: (2)第1.1节电子产品热设计理论基础 (2)1.1.1 热传导: (2)1.1.2 热对流 (2)1.1.3 热辐射 (2)第1.2节热设计的基本要求 (3)第1.3节热设计中术语的定义 (3)第1.4节电子设备的热环境 (3)第1.5节热设计的详细步骤 (4)第2章电子产品热设计分析 (5)第2.1节主要电子元器件热设计 (5)2.1.1 电阻器 (5)2.1.2 变压器 (5)第2.2节模块的热设计 (5)电子产品热设计实例一:IBM “芯片帽”芯片散热系统 (6)第2.3节整机散热设计 (7)第2.4节机壳的热设计 (8)第2.5节冷却方式设计: (9)2.5.1 自然冷却设计 (9)2.5.2 强迫风冷设计 (9)电子产品热设计实例二:大型计算机散热设计: (10)第3章散热器的热设计 (10)第3.1节散热器的选择与使用 (10)第3.2节散热器选用原则 (11)第3.3节散热器结构设计基本准则 (11)电子产品热设计实例三:高亮度LED封装散热设计 (11)第4章电子产品热设计存在的问题与分析: (15)总结 (15)参考文献 (15)电子产品热设计摘要:电子产品工作时,其输出功率只占产品输入功率的一部分,其损失的功率都以热能形式散发出去,尤其是功耗较大的元器件,如:变压器、大功耗电阻等,实际上它们是一个热源,使产品的温度升高。
因此,热设计是保证电子产品能安全可靠工作的重要条件之一,是制约产品小型化的关键问题。
另外,电子产品的温度与环境温度有关,环境温度越高,电子产品的温度也越高。
由于电子产品中的元器件都有一定的温度范围,如果超过其温度极限,就将引起产品工作状态的改变,缩短其使用寿命,甚至损坏,使电子产品无法稳定可靠地工作。
第1章电子产品热设计概述:电子产品的热设计就是根据热力学的基本原理,采取各种散热手段,使产品的工作温度不超过其极限温度,保证电子产品在预定的环境条件下稳定可靠地工作。
热设计的基础知识与规范

2.1.3 热流密度 2
单位面积上的传热量,单位 W/m 。 2.1.4 热阻
热量在热流路径上遇到的阻力,反映介质或介质间的传热能力的大小, 表明了 1W 热量所引起的温升大小,单位为℃/W 或 K/W。用热耗乘以热阻,即可获得该传 热路 径上的温升。
可以用一个简单的类比来解释热阻的意义,换热量相当于电流,温差相当于电 压,则热阻相当于电阻。
(2-2)
222
h---- 对流换热系数,W/m .K 或 W/m .℃; A 对--- 有效对流换热面
积,m
tw---- 热表面温度,℃;
ta---- 冷
却空气温度℃;
R 对流----- 对流热阻, ℃/W
由方程可见,要增强对流换热,可以加大换热系数和换热面积。
2.2.3 辐射的基本方程:
---- 系统黑度, ε1,ε2----分别为高温物体表面(如发热器件)和低温物体表面
第三章 自然对流换热
当发热表面温升为 40℃或更高时,如果热流密度小于 0.04W/cm ,则一般可 以通 过自然对流的方式冷却,不必使用风扇。自然对流主要通过空气受热膨胀产生的浮 升 力使空气不断流过发热表面,实现散热。这种换热方式不需要任何辅助设备,所以 不 需要维护,成本最低。只要热设计和热测试表明系统通过自然对流足以散热,应尽 量 不使用风扇。 3.1 自然对流热设计要考虑的问题
如果设计不当,元器件温升过高,将不得不采用风扇。合理全面的自然对流热 设 计必须考虑如下问题: 3.1.1 元器件布局是否合理。 在布置元器件时,应将不耐热的元件放在靠近进风 口的位 置,而且位于功率大、发热量大的元器件的上游,尽量远离高温元件,以避免辐射 的 影响,如果无法远离,也可以用热屏蔽板(抛光的金属薄板,黑度越小越好)隔 开; 将本身发热而又耐热的元件放在靠近出风口的位置或顶部; 一般应将热流密度高 的元 器件放在边沿与顶部,靠近出风口的位置,但如果不能承受较高温度,也要放在进 风 口附近,注意尽量与其他发热元件和热敏元件在空气上升方向上错开位置;大功率 的 元器件尽量分散布局,避免热源集中; 不同大小尺寸的元器件尽量均匀排列,使 风阻 均布,风量分布均匀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•热设计的有关概念
•接触热阻:当热通过两个接触表面的交界面时,出 现一种导热的特殊情形。在接触面上有很大的温差。
•接触表面之间的交界面是效率很低的传热通路 • 降低接触热阻的有效方法:接触面积大;表面平滑;接触 材料软;接触压力大;接触压力均匀;在交界面上有导热填充 剂。
电子设备热设计基础
•热设计的有关概念
电子设备热设计基础
热设计的有关概念
•(1)热设计 • 利用热传递特性通过冷却装置控制电子设备内部所有电子元器件的温度, 使其在设备内所处的工作环境条件下,不超过规定的最高允许温度的设计技术。 •(2)热评估:评估电子设备热设计是否合理的方法和手段。 •(3)热分析 • 又称热模拟,是利用数学的手段,通过计算机模拟,在电子设备的设计阶 段获得温度分布的方法,它可以使电子设备设计人员和可靠性设计人员在设计 初期就能发现产品的热缺陷,从而改进其设计,为提高产品设计的合理性及可 靠性提供有力保障。 •(4)热试验:将电子设备置于模拟的热环境中,测量其温度或温度分布。
电子设备热设计基础
热设计的目的
• 电子设备的热设计系指利用热传递特性对电子设备的 耗热元件以及整机或系统采用合适的冷却技术和结构设计, 以对它们的温升进行控制,从而保证电子设备或系统正常、 可靠地工作。 • 热传递的方式:传导、对流、辐射。 • 一般来说,这三种形式在电子系统的热传输中所占的 比例分别为60%、20%、20%。
•内热阻: • 产生热量的点或区域与器件表面指定点(安装表面)之间的 热阻。晶体管和微电路的内热阻是指结到外壳间的热阻θjc。外 热阻: • 器件上任意参考点(安装表面)与换热器间,或与设备、冷 却流体或环境交界面之间的整个热阻。 •系统热阻: • 设备外表面与周围空间或换热器与冷却流体间的热阻。
电子设备热设计基础
电子设备热设计基础
热设计的有关概念
•辐射:是真空中进行传热的唯一方式,它是量子从热体 • (辐射体)到冷体(吸收体)的转移。 •例如接近火炉坐能感到热。
电子设备热设计基础
热路与电路
•R1
R=U/I
•Rt
1• / q•源自t•t2•Rt
电子设备热设计基础
•热设计的有关概念
•对流:固体表面与流体表面传热的主要方式。 •自然对流:流体的运动是由于流体密度差和温度梯度引起的。
•在自然对流传热中,上部较冷流体与底 部较热流体间的密度差引起流体温升
电子设备热设计基础
•热设计的有关概念
•强迫对流:流体的运动是由外力(如风机、风扇或泵)造成的。
电子设备热设计基础
2020/11/28
电子设备热设计基础
电子设备热设计
一.热设计基本知识 二.热设计理论基础 三.热设计的方法 四.热分析 五.热试验
电子设备热设计基础
热设计基本知识
热对系统可靠性的影响 热设计的目的 热设计的有关概念 热控制的基本形式
电子设备热设计基础
热对系统可靠性的影响
0.0267(在85℃) 0.0008(在25℃)
60
0.0065(在100℃和 0.0003(在25℃和应力 75
应力比0.5)
比0.5)
7:1 5:1 47:1 33:1 22:1
电子设备热设计基础
热对系统可靠性的影响
•以金属膜电阻器为例: • 金属膜电阻器的工作失效率计算公式如下:
• 平均故障间隔时间(MTBF)是表征电子设备可靠性的一个主要
•(8) 热阻网络 • 热阻的串联、并联或混联形成的热流路径图。 •(9)功耗 • 电子设备工作时需要电功率,因为元器件并非完全 有效,因而有不少功率转换成热。如果找不到一条通 路来散热,温度就会升高。最重要的热流量是功耗。 •(10) 冷板 • 利用单相流体强迫流动带走热量的一种换热器。 •(11)热沉 • 是一个无限大的热容器,其温度不随传递到它的 热能大小而变化。它可能是大地、大气、大体积的水 或宇宙等。又称热地。也称“最终散热器”。Heat Sink
参数,当电子设备寿命呈指数分布时,其平均故障间隔时间:
• • 该式中:
电子设备热设计基础
热对系统可靠性的影响
•据统计 •(1)电子设备的失效原因中有55%是由于温度过高引起的。 •(2)电子元器件温度每升高10℃,其可靠性下降一倍。
•摘自 美空军整体计划分析报告
电子设备热设计基础
热量产生的原因
•电子设备经受的热应力来源于以下几个方面: • (1)工作过程中,功率元件耗散的热量。 • (2)电子设备周围的工作环境,通过导热、对流和辐射的形式,将热量 传递给电子设备。 • (3)电子设备与大气环境产生相对运动时,各种摩擦引起的增温。 •
高温对大多数元器件将产生严重影响,它导致元器件 性能改变甚至失效,从而引起整个电子设备的故障。
•图1 元器件的失效率与温度的关系
电子设备热设计基础
热对系统可靠性的影响
•不同工作温度部分元器件的基本失效率(摘自GJB/Z 299B)
元器件类别
基本失效率,λb(10-6/h)
高温
室温
温升
高温与室温
△T(℃) 失效率之比
PNP硅晶体管 NPN硅晶体管 玻璃电容器 变压器与线圈 碳膜合成电阻器
0.063(在130℃和 应力比0.3)
0.033(在130℃和 应力比0.3)
0.047(在120℃和 应力比0.5)
0.0096(在25℃和应力 105 比0.3)
0.0064(在25℃和应力 105 比0.3)
0.001(在25℃和应力 95 比0.5)
•强迫对流
电子设备热设计基础
•热设计的有关概念
• 压降:当流体流经固体物质或物体在导管内流动时, 摩擦、流动面积的限制或方向的突变会阻止这种流动。 结果产生压力损失或压力下降。 • 需要用风机或泵来克服这种压降。流速越高,表面 越不规则,则压降越大。 • 在强迫对流系统中,冷却剂流动通路的几何形状及 系统压降是重要的问题。
电子设备热设计基础
热设计的有关概念
•(5) 热流密度 • 单位面积的热流量。 •(6) 体积功率密度 • 单位体积的热流量。 •(7) 热阻 • 热量在热流路径上遇到的阻力(内热阻、外热阻、系统热 阻) 。温差越大,热流量就越大。△T=RQ 热阻的单位是 ℃/W。
电子设备热设计基础
•热设计的有关概念