电子产品热设计与工程案例分析

合集下载

航空器电子产品热设计

航空器电子产品热设计

航空器电子产品热设计现代机(弹)载电子设备由于受条件限制,都要求重量轻、体积小。

另外,为了提高电子产品的工作性能,其功率往往很大,也就是说电子元器件的发热量非常大,一般电子元器件的正常工作温度要求低于100°C。

根据美国空军的统计,在机(弹)载电子设备失效的原因中,有超过50%是由于温度引起的,因此电子产品的热设计是电子产品可靠性设计的最主要内容。

机(弹)载电子产品的冷却可采用循环水冷(二次冷却)和风冷,而风冷又有自然风冷和强迫风冷。

图7-1、7-2采用ANSYS CFX对某机载电子产品进行水冷分析,图示为散热冷板上的温度分布和冷却水的流线图。

传统的机(弹)载电子产品的热设计以经验设计为主,根据机(弹)载电子产品热设计手册,利用半经验、半解析的估算公式确定冷却方式、流量(压差)及流道,然后制造相应的1:1模型进行测试验证。

这种热设计的成功率主要取决于设计者的经验,由于试验验证成本高、周期长,设计者只能选取少数几种自己认为最可行的设计方案进行试验,从而可能疏漏了更好的设计方案。

另外,如果测试验证后发现了设计中的问题,回过来重新更改设计,再测试验证,这样的设计周期就更长,这与激烈的市场竞争不相适应。

计算流体动力学(CFD)的飞速发展和计算机性能的提高为机(弹)载电子产品热设计的数值仿真提供了保障。

ANSYS CFX流体分析功能就是利用基于有限元的有限体积法求解三维湍流Navier-Stokes方程。

ANSYS CFX是热、流耦合计算软件,在流体单元中求解质量、动量、能量方程,而同时在固体单元中耦合求解能量方程,由此可得出流场中的速度、压力、温度分布,固体中的温度分布,同时可得出流、固表面的对流换热系数(图7-4)和热流密度。

图7-5采用ANSYS CFX对某机载电子设备机箱进行强迫风冷分析,图示结果为机箱内外表面的对流换热系数分布。

机(弹)载电子产品的冷却效率取决于流、固表面对流换热系数的大小,因此热设计仿真分析的最主要任务是准确求解对流换热系数。

热设计及热仿真分析

热设计及热仿真分析

九、热电制冷器(1.25H)
1. 热电制冷的基本原理
2. 制冷器冷端净吸热的计算
3. 最大抽吸热制冷器设计方法
4. 最佳性能系数制冷器设计方法
5. 多极制冷器的性能
6. 热电制冷器的结构设计
十、热管散热器的设计(1.25H)
1. 热管的类型及其工作原理
2. 热管的传热性能
3. 热管设计
十一、电子设备的热性能评价及改进(0.5H)
1. 评价的目的与内容
2. 热性能草测
3. 热性能检查项目
4. 热性能测量
5. 确定热性能缺陷
6. 热性能改进的制约条件
7. 改进费用与寿命周期费用的权衡
8. 热设计改进示例
十二、计算机辅助热分析技术(1.5H)
1. 计算流体动力学的工作步骤
2. 计算流体动力学的分支
3. 流体流动的基本特征
4. CFD求解过程及软件结构
5. 常用的CFD商用软件
6. 三维湍流模型
7. 边界条件的应用
8. CFD应用实例
十三、热设计实例(4H)
1. 现代电子器件冷却方法动态
2. 电子设备热分析软件应用研究
3. 典型密封式电子设备热设计
4. 功率器件热设计及散热器的优化设计
5. 表面贴装元器件的热设计
6. 某3G移动基站机柜的热仿真及优化
7. 电子设备热管散热器技术现状及进展
8. 吹风冷却时风扇出风口与散热器间距离对模块散热的影响
9. 实验评估热设计软件
10. IGBT大功率器件的热设计
11. 电源模块的热设计及分析
十四、自由交流及讨论(0.5H)。

电子产品热设计及热仿真技术的应用分析

电子产品热设计及热仿真技术的应用分析

电子产品热设计及热仿真技术的应用分析摘要:随着装备性能的不断提升,复杂程度的不断提高,以及使用环境的日趋复杂,电子产品对可靠性的要求日益提高,可靠性已成为衡量电子产品使用性能的一项重要指标。

因散热不良引发的故障一直在电子产品故障发生中占有很大的比重,电子产品一旦出现热设计缺陷,往往在设计周期和设计成本等多方面造成极大的损失。

因此需要在产品设计源头加以控制,即在设计之初考虑产品的功能和性能的同时,考虑其散热等因素。

综合电子产品的性能设计和热设计,选择采用什么散热方式、使用何种散热材料等,其目的是高效率、低成本、高可靠地制造产品。

基于此,本文对电子产品热设计及热仿真技术的应用进行分析,为产品全生命周期设计提供验证支撑,达到合理可靠稳定运行的目的。

关键词:电子产品热设计;热仿真技术;应用分析引言电子产品是基于电子信息技术发展背景下的重要产物,电子信息技术是20世纪初诞生的一种新兴的技术,随着时代的发展与生产技术的不断革新,电子信息技术得到了进一步发展。

进入21世纪之后,电子信息技术已成为科学技术领域的重要标志之一,在各个行业及领域均具有非常广泛的应用。

伴随着大量电子产品的问世,不仅改变了人们传统的生活方式,也为人们的生产与生活带来了巨大的便利。

随着社会信息化的不断发展,电子产品多功能集成和便携的需求日益凸显,电子产品的集成化和小型化就成了目前电子产品的发展趋势,电子产品的集成化意味着功率会大概率的增大,与小型化的发展综合在一起意味着电子产品的单位体积功率密度会不断增大,因此电子产品的热设计就需要从粗放的经验设计向精确化的热理论设计发展。

热仿真就是支持电子产品精确化理论设计最佳手段。

通过热仿真将电子产品在性能设计的基础上叠加热设计,达到电子产品在最优热环境里发挥最佳性能的目的。

1电子产品热设计的意义1.1电子产品进行热设计的优势有效散热对于电子产品的稳定运行和长期可靠性而言至关重要,将电子产品热功能部件的工作温度控制在其有效工作的温度范围内,是提升电子产品可靠性的基本思路。

电子产品设计之热设计

电子产品设计之热设计

电子产品设计之热设计散热器的设计方法散热器设计的步骤通常散热器的设计分为三步1:根据相关约束条件设计处轮廓图.2:根据散热器的相关设计准则对散热器齿厚、齿的形状、齿间距、基板厚度进行优化. 3:进行校核计算.散热器的设计方法自然冷却散热器的设计方法考虑到自然冷却时温度边界层较厚,如果齿间距太小,两个齿的热边界层易交叉,影响齿表面的对流,所以一般情况下,建议自然冷却的散热器齿间距大于12mm,如果散热器齿高低于10mm,可按齿间距≥1.2倍齿高来确定散热器的齿间距.自然冷却散热器表面的换热能力较弱,在散热齿表面增加波纹不会对自然对流效果产生太大的影响,所以建议散热齿表面不加波纹齿.自然对流的散热器表面一般采用发黑处理,以增大散热表面的辐射系数,强化辐射换热.由于自然对流达到热平衡的时间较长,所以自然对流散热器的基板及齿厚应足够,以抗击瞬时热负荷的冲击,建议大于5mm以上.散热器的设计方法强迫冷却散热器的设计方法在散热器表面加波纹齿,波纹齿的深度一般应小于0.5mm.增加散热器的齿片数.目前国际上先进的挤压设备及工艺已能够达到23的高宽比,国内目前高宽比最大只能达到8.对能够提供足够的集中风冷的场合,建议采用低温真空钎焊成型的冷板,其齿间距最小可到2mm.采用针状齿的设计方式,增加流体的扰动,提高散热齿间的对流换热系数.当风速大于1m/s(200CFM)时,可完全忽略浮升力对表面换热的影响.散热器的设计方法在一定冷却条件下,所需散热器的体积热阻大小的选取方法在一定的冷却体积及流向长度下,确定散热器齿片最佳间距的大小的方法不同形状、不同的成型方法的散热器的传热效率比较散热器的相似准则数及其应用方法相似准则数的定义散热器的相似准则数及其应用方法相似准则数的应用散热器的基板的优化方法不同风速下散热器齿间距选择方法不同风速下散热器齿间距选择方法优化散热器齿间距的经验公式及评估风速变化对热阻的影响的经验公式辐射换热的考虑原则如果物体表面的温度低于50℃,可忽略颜色对辐射换热的影响.因为此时辐射波长相当长,处于不可见的红外区.而在红外区,一个良好的发射体也是一个良好的吸收体,发射率和吸收率与物体表面的颜色无关.对于强迫风冷,由于散热表面的平均温度较低,一般可忽略辐射换热的贡献.如果物体表面的温度低于50℃,可不考虑辐射换热的影响.辐射换热面积计算时,如表面积不规则,应采用投影面积.即沿表面各部分绷紧绳子求得的就是这一投影面积,如图所示.辐射传热要求辐射表面必须彼此可见.热设计的计算方法冷却方式的选择方法确定冷却方法的原则在所有的冷却方法中应优先考虑自然冷却,只有在自然冷却无法满足散热要求时,才考虑其它冷却.冷却方式的选择方法1:根据温升在40℃条件下各种冷却方式的热流密度或体积功率密度值的范围来确定冷却方式,具有一定的局限性.热设计的计算方法冷却方式的选择方法冷却方式的选择方法2:根据热流密度与温升要求,按图2所示关系曲线选择,此方法适应于温升要求不同的各类设备的冷却热设计的计算方法冷却方式的选择方法冷却方式的选择方法案例某电子设备的功耗为300W,机壳的几何尺寸为248×381×432mm,在正常大气压下,若设备的允许温升为40℃,试问采用那种冷却方法比较合理?计算热流密度:q=300/2(2.48×2.2.48+2.48×4.32+2.2.81×4.32)=0.04W/cm2当△t=40℃,q=0.04W/cm2时,其交点正好落在自然冷却范围内,所有采用自然冷却方法就可以满足要求.若设备的温升有严格限制,假设只允许10℃,由图2可以看出,需强迫风冷才能满足要求.机箱的热设计计算密封机箱WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4ζεTm3ΔT对通风机箱WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4ζεTm3ΔT+1000uAΔT对强迫通风机箱WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4ζεTm3ΔT+ 1000QfΔT自然冷却时进风口面积的计算在机柜的前面板上开各种形式的通风孔或百叶窗,以增加空气对流,进风口的面积大小按下式计算:Sin=Q/(7.4×10-5 H×Δt 1.5)s-通风口面积的大小,cm2Q-机柜内总的散热量,WH-机柜的高度,cm,约模块高度的1.5-1.8倍,Δt=t2-t1-内部空气t2与外部空气温度 t1 之差 , ℃出风口面积为进风口面积的1.5-2倍强迫风冷出风口面积的计算模块有风扇端的通风面积:Sfan=0.785(φin2-φhub2)无风扇端的通风面积S=(1.1-1.5) Sfan系统在后面板(后门)上与模块层对应的位置开通风口,通风口的面积大小应为:S=(1.5-2.0)(N×S模块)N---每层模块的总数S模块---每一个模块的进风面积热设计的计算方法通风面积计算的案例[案例] 铁道信号电源机柜模块及系统均为自然冷却,每层模块的散热量为360W,模块的高度为7U,进出口温差按20℃计算,机柜实际宽度为680mm,试计算每层进出风口的面积?H按2倍模块的高度计算,即 H=2×7U=14U进风口的面积按下式计算:Sin=Q/(7.4×10-5×H×△t1.5)=360/(7.4×10-5×14 ×4.44×201.5)=875 cm2进风口高度h机柜的宽度按B=680mm计,则进风口的高度为:H=Sin/B=875/68=128.7mmb 出风口面积SoutSout=(1.5-2.0)Sin=2×875=1750 cm2热设计的计算方法实际冷却风量的计算方法q`=Q/(0.335△T)q`---实际所需的风量,M3/hQ----散热量,W△T-- 空气的温升,℃,一般为10-15℃.确定风扇的型号经验公式:按照1.5-2倍的裕量选择风扇的最大风量:q=(1.5-2)q` 按最大风量选择风扇型号.热设计的计算方法实际冷却风量的计算方法案例:10K UPS主功率管部分的实际总损耗为800W,空气温升按15℃考虑,请选择合适的风扇.实际所须风量为:q`=Q/(0.335△t)=800/(0.335×15)=159.2m3/h按照2倍的裕量选择风扇的最大风量:q=2q`=2×159.2=318.4m3/h下表风扇为可选型号热设计的计算方法型材散热器的计算散热器的热阻散热器的热阻是从大的方面包括三个部分.RSA=R对+R导+ R辐R对=1/(hc F1)F1--对流换热面积(m), hc –对流换热系数(w/m2.k)R辐--辐射换热热阻 ,对强迫风冷可忽略不计对自然冷却 R辐=1/(4бεTm3)R导=R 基板+R肋导=δ/(λF2)+((1/η)-1)R对流λ--导热系数,w/m.h.℃δ-- 散热器基板厚度(m)η-- 肋效率系数F2--基板的导热面积(m)F2=0.785*(d+δ)2d- 发热器件的当量直径(m)热设计的计算方法型材散热器的计算对流换热系数的计算自然对流垂直表面hcs=1.414(△t/L)0.25 ,w/m.k式中: △t--散热表面与环境温度的平均温升,℃L--散热表面的特征尺寸,取散热表面的高,m水平表面,热表面朝上hct=1.322(△t/L)0.25 ,w/m.k式中: △t--散热表面与环境温度的平均温升,℃L--散热表面的特征尺寸,取L=2(长×宽)/(长+宽),m 水平表面,热表面朝下hcb=0.661(△t/L)0.25 ,w/m.k式中: △t--散热表面与环境温度的平均温升,℃L--散热表面的特征尺寸,取L=2(长×宽)/(长+宽),m挤压技术铝挤压技术是 CPU散热片制作工艺中较为成熟的技术,主要针对铝合金材料的加工,因为铝合金材料密度相对较低,可塑性比较强。

电子产品热设计及数值分析研究

电子产品热设计及数值分析研究
环。
引言
随 着 微 电子 技 术 、 高 密 度 三 维 组 装 技 术的 迅速 发展 ,集 成 电路 得到 了广 泛应 用 , 各种大 功 率元 器件 的应 用 越来 越 多 ,电子 器 件 的封 装 形式 及性 能也 不 断提 升 。集成 电路 不断 向复 合化 和集 成化 的 方 向发展 ,可以 说 现 代 电子 产 品正 日益成 为 由高 密度 组装 、微 组 装 所形 成的 高 度集 成 系统 。在 电子产 品 广 泛应 用的 今 天 ,人们 对 电子 产 品也越 来越 追 求 多功能 、便 携和 高 可靠 性 。这种 电子 产 品 功 率 上升 、设备 小型 化 的发展 趋 势使 得 电子 元 件 内部 整体 功耗 及 热量 增加 ,电子元 件 及 产 品系统 内部 的温 度 上升 。统 计 资料表 明 : 电 子 元 器 件 温 度 每 升 高 2 , 可 靠 性 下 降 ℃ l%,温 升 5  ̄时 的 寿命 只有温 升 2 ℃时 的 0 0C 5 16 / …,所 以 说 高 温 因 素 大大 地 增 加 了电 子 产 品的故 障率 。因此 ,热 设计 是 电子 产 品可 靠 性 及其 性能 的基 础 。

2 电子产 品 的热设 计和 热 分析
工程 中的热 设计 首先 要进 行需 求分 析 , 这 包 括 设 备 基 本 类 型 、使 用 环 境 、整 机 功 耗 、内部 板卡 功耗 和外 观要 求 ,然后 根据 需 求分 析选 择冷 却方 式 。当然 在 很多情 况下 冷 却方 式是 唯一 的 。例如 ,大 部分 军 用产 品 中 只能 通过 热传 导的 方式 进行 散 热。在 确定 冷 却 方 式后 就可 以进 行建 模 、热 分析 等后续 步 骤 。 图1 热 设 计的 一 个 基 本流 程 。 下面 通 是 过 一个实 例来 了解 电子 产 品的热 设计 过程 。 一

小型机械电子设备机箱的热设计

小型机械电子设备机箱的热设计

小型机械电子设备机箱的热设计摘要:科技在不断的发展,社会在不断的进步,作为电子设备的关键热传导部件,机箱设计质量与电子设备的使用寿命息息相关,机箱设计是电子设备结构设计的关键环节,其是研发人员主要探究的部分。

据此,本文主要对小型电子设备机箱的热设计进行了详细分析。

关键词:小型电子设备;机箱;热设计引言:近年来,随着电子设备的小型化,集成电路的高度集成,元器件、组件的热流密度不断提高。

特别作为军用的电子设备,其工作环境恶劣,常置于高温、高湿、低气压、寒冷、霉菌、盐雾和电磁干扰环境之中,电子设备基本设计为全密闭机箱结构形式。

电子设备在密闭的机箱内工作,热设计面临严峻挑战,尤其在高温环境下工作时,其内部热量如果不能及时散掉将直接影响处理单元正常工作。

而当处理单元在低温环境下工作时,其内部元器件会在低于某温度时出现工作异常。

因此需要设计一种在高温时散热性能好、在低温时具有加热控制功能的全密闭机箱,用于承载设备处理单元,以保证其正常工作。

本文设计了一种全密闭机箱,在高温时通过强迫风冷方式将处理单元产生的热量散掉,在低温时通过加热装置及控制电路快速加热机箱并控制加热过程,保证了各处理单元的正常工作。

1 小型电子设备机箱的散热措施1.1 合理布置元器件对元器件和其之间的距离进行有效控制,能够促使空气流动有所增加,并提高对流传热和热传导水平,有助于控制电子设备温度。

在电路板上,安装半导体器件时,需要把大功率晶体管,放置到气流入口的上游位置,在气流的下游出口位置,放置功率较小的集成电路,以此保持电子设备内部温度足够均衡,散热充分均匀。

在进行元器件布置时,还需要测试变压器等等各种元件的性能,其中不耐热的元件应该安置在气流入口的上游位置,确保元件可以充分发挥作用,正常运转。

尤其是要正确处理热敏感元件,即利用热屏蔽的方式方法,控制电子设备的温差。

1.2 科学安排印制电路板在进行电子设备设计和安装的过程中,只存在一块印制电路板,其放置方向就不会存在特殊性,垂直放置或者水平放置都能够确保其正常运行的温度,而温度上升的范围是大体一致的。

热设计及热分析

热设计及热分析

热设计及热分析一、热设计热设计是随着通讯和信息技术产业的发展而出现的一个较新的行业,且越来越被重视。

随着通讯和信息产品性能的不断提升和人们对于通讯和信息设备便携化和微型化要求的不断提升,信息设备的功耗不断上升,而体积趋于减小,高热流密度散热需求越来越迫切。

热设计便是采用适当可靠的方法控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过稳定运行要求的最高温度,以保证产品正常运行的安全性,长期运行的可靠性。

此外,低温环境下控制加热量而使设备启动也是热可靠性的重要内容。

目前,热设计在电动汽车动力系统热管理和热仿真、高科技、医疗设备、军工精密装备等行业中越来越被重视,成为产品研发中不可缺少的重要领域。

二、热分析软件介绍FLOTHERM是一套由电子系统散热仿真软件先驱----英国FLOMERICS软件公司开发并广为全球各地电子系统结构设计工程师和电子电路设计工程师使用的电子系统散热仿真分析软件,全球排名第一且市场占有率高达80%以上。

三、电子行业热分析电子行业是有限元分析应用的一个重要领域。

随着全球电子工业的飞速发展,电子产品的设计愈来愈精细、复杂,市场竞争要求电子产品在性能指标大幅度提高的同时,还要日趋小型化。

电子产品跌落、新型电子材料的研发和制造、音频设备声场特性的设计和评估、电子产品的热力仿真、芯片封装的热分析等的力学仿真是电子领域中很深入、复杂并极具挑战性的课题,需要多门学科的理论和方法的综合应用。

电子产品热分析:众所周知,电子元件在运作的时候,无法达到100%的效率,所流失的能量绝大部分都转换成为热量发散,但是对于电子元件来说,温度每上升10℃,其寿命就减少到原来的一半甚至更短,这就是其随温度而变的特性。

所以进行电脑等各种设备的热仿真有助于提高器件的使用寿命。

1.显卡的散热器仿真显卡热管散热器,通过添加热管能有效的降低热源到散热器的热阻,进而显著提高显卡散热性能。

2. LED封装仿真以及散热片散热性能详细的LED封装模型,通过仿真验证和考察电路板及散热片的散热性能。

运用TRIZ解决电子产品的过热问题

运用TRIZ解决电子产品的过热问题

如何运用TRIZ解决电子产品的过热问题?随着科技的不断进步,电子产品已经成为我们生活中不可或缺的一部分。

然而,在使用过程中,许多设备都会遇到一个令人困扰的问题——过热。

过热不仅会降低设备的使用寿命,还可能对其正常使用产生影响。

那么,如何解决这个问题呢?答案就是TRIZ。

首先,让我们了解一下电子产品过热的原因。

过热通常是由于设备内部的热量无法有效散发出去,导致温度升高。

这可能是由于设计上的缺陷、散热系统不良、高负载运行等原因造成的。

为了解决这个问题,深圳天行健六西格玛咨询公司利用TRIZ中的理论工具,提出一系列解决方案。

方案一:改进散热系统我们可以重新设计设备的散热系统,提高其散热效率。

例如,增加散热器面积、优化散热材料、改进散热通道等措施都可以有效降低设备温度。

方案二:智能散热通过添加温度传感器和智能控制算法,我们可以实现设备的智能散热。

当温度升高时,系统会自动启动散热机制,降低设备温度。

方案三:优化设备结构我们可以重新设计设备的结构,使其更符合空气动力学原理,提高散热效率。

例如,将设备设计成流线型,减少空气阻力,有利于散热。

方案四:加强散热材料性能通过研发新型的散热材料,提高其导热性能,可以有效地增强设备的散热能力。

方案五:引入液冷技术对于一些高功率设备,可以考虑引入液冷技术。

通过流动的液体来带走设备运行时产生的热量,能够更有效地降低设备温度。

综上所述,应用TRIZ理论,我们可以提出多种解决方案来解决电子产品的过热问题。

当然,具体实施哪种方案,需要根据设备的实际情况和需求进行选择。

相信随着科技的不断进步,我们能够看到更多利用TRIZ解决实际问题的成功案例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、传热路径
从实际传热观点而言,热设计时应利用中间散热器,它们一般属于设备的一部分,通常为设备 的底座、外壳或机柜、冷板、肋片式散热器或设备中的空气、液体等冷却剂。 热流量经传热路径至最终的部位,通称为“热沉”,它的温度不随传递到它的热量大小而变,即 相当于一个无限大容器。热沉可能是大气、大地、大体积的水或宇宙,取决于被冷却设备所处的 环境。
a. 导热热阻和对流热阻的计算式参见前面内容 b. 辐射换热网络法 任意两表面间的辐射网络如下图所示:
图中Eb1和Eb2分别代表同温度下的表面1和表面2的黑体辐射力;J1和J2分别为表面1和 表面2的有效辐射。
Accelink Technologies Co., Ltd.
应用例:芯片封装
热阻的电网络模拟 从晶片传到外壳经过5个环节 • 晶片的热阻; • 晶片粘接剂(导热胶)热阻 • 基底(substrate)的热阻 • 基底粘接剂(焊锡)热阻 • 封装(package)的热阻
芯片级的热流密度高达 300 W/cm2数量级,甚 至已经达到1000 W/ cm2数量级 其结温要求低于 100°C 太阳表面热流密度10000 W/cm2数量级 其表面温 度可达6000°C
Accelink Technologies Co., Ltd.
模块功率逐年增长趋势
1.1 准确认识热设计
Accelink Technologies Co., Ltd.
2.1、空冷首先应当重视对流
一、空冷对流设计一般原则
1)器件、印制板的排布原则
风冷 将耐热性能好的放在冷却气流的下游,耐热性能差的应放在冷却气流
的上游。 发热区的中心线,应与入风口的中心线相一致或略低于入风口的中心
线,这样可以使电子机箱受热而上升的热空气由冷却空气迅速带走。 当风冷系统的冷却气流经多块印制板组件时,印制板的间距应控制在
电子产品热设计与工程案例分析
第一部分 热设计的理论基础
第一部分 热设计的理论基础
1.1、准确认识热设计 1.2、热源与热阻 1.3、热量传递的基本方式与有关定律 1.4、热控制方法的选择
Accelink Technologies Co., Ltd.
1.1 准确认识热设计
一、电子装备面临的热设计挑战
热设计原则:热源至最终热沉之间的总热阻最小
解决热阻的办法,两方面入手: ➢ 控制电子元器件的内热阻 ➢ 控制电子元器件或整机设备的外热阻。
Accelink Technologies Co., Ltd.
1.2 热源与热阻
热阻定义:
Rt
T Q
(K/W)
外热阻的控制方式: (1)散热
利用空气或液体作为冷却介质,靠自然对流或强制对流方式,带走耗热。 (2)制冷
定义热流密度:
q Q W/m2
A
T
对傅立叶定律在一维导热条件下积分,可得: Q
由此可得导热热阻计算公式为:
Rt
A
K/W
Rt
导热问题的热电比拟关系:
电位差U 电流I 电阻R
温差T 导热量Q 热阻R t
Accelincelink Technologies Co., Ltd.
强迫风冷可使表面对流换热系数 大约提高一个数量级,如在允许 温差为100℃时,风冷最大可能 提供1W/cm2 的传热能力。
Accelink Technologies Co., Ltd.
第二部分 以空气为介质的冷 却
2.1、空冷首先应当重视对流 2.2、空冷中的传导 2.3、风冷中的风道设计与风机选用
➢ 减小辐射热阻的措施 1. 表面辐射率要高; 2. 辐射体与吸收体之间要无障碍; 3. 辐射面积要大。
Accelink Technologies Co., Ltd.
专题 热阻分析法(热电模拟)
一、热电模拟方法 将热流量(功耗)模拟为电流;温差模拟为电压(或称电位差);热阻模拟为电阻,热导模 拟为电导;对于瞬态传热问题,可以把热容(cpqm)模拟为电容。这种模拟方法适用于各 种传热形式,尤其是导热。 二、热电模拟网络 利用热电模拟的概念,可以解决稳态和瞬态的传热计算。恒温热源等效于理想的恒压源。恒定 的热流源等效为理想的电流源。导热、对流和辐射换热的区域均可用热阻来处理。热沉等效于 “接地”,所有的热源和热回路均与其相连接,形成热电模拟网络。
• 定义3——利用热传递特性,针对耗热对象,采用合适的结构设计和冷却 技术,对其温升进行控制,保证其正常、可靠工作。
Accelink Technologies Co., Ltd.
1.1 准确认识热设计
➢ 热设计分科界定
(1)热设计(热结构) 在所处环境下,合理设计热传递结构、冷却方法,保障设备内
所有元器件不超过最高允许温度。
Accelink Technologies Co., Ltd.
(2)热设计的实施过程
Accelink Technologies Co., Ltd.
1.2 热源与热阻
电子设备工作过程中可能的三种热量来源 ➢ 自身功率——功率元件耗散的热量 ➢ 设备工作环境——通过导热、对流、辐射形式,与电子设备进行热量传递 ➢ 自身与环境作用——设备与大气相对运动,摩擦增温 热量去处:热沉(环境)
➢ 热设计理论工具 • 热量传递的基本理论、经验公式 • 结构设计经验方法 • 计算流体力学和计算传热学(CFD) • 热测试仪器和手段
➢ 可参考的国内书籍 邱成悌、赵惇殳 电子设备结构设计原理,东南大学 余建祖,电子设备热设计及分析技术,北航出版社 王健石,电子设备热设计速查手册,电子工业出版社 刘静,液体金属导热材料
Accelink Technologies Co., Ltd.
四、热阻的确定 ➢ 确定热阻的步骤 a. 根据对每个元器件的可靠性要求,确定元器件的最高允许温度 b. 确定设备或冷却剂的最高环境温度 c. 根据上述两条规定,确定每个元器件的允许温升 d. 确定每个元器件冷却时所需的热阻
➢ 热阻的计算
用准则方程求出Nu后,即可求出对流换热系数: Nu
L
Accelink Technologies Co., Ltd.
四、辐射换热
➢ 辐射能以电磁波的形式传递 ➢ 任意物体的辐射力可以用下式计算:
A 0T 4
式中:ε —— 物体的表面黑度(表面辐射率); σ0 —— 斯蒂芬—玻尔兹曼常数,5.67×10-8 W/(m2·K4); A —— 辐射表面积,m2; T —— 物体表面的热力学温度,K。
Accelink Technologies Co., Ltd.
强迫空气冷却
流向发热元器件的空气是否经过冷却过滤? 是否利用顺流气流来对发热元器件进行冷却? 气流通道大小是否适当?是否畅通无阻? 风机的容量是否适当?抽风机或鼓风机是否选择恰当? 风机电动机是否得到冷却?对风机故障是否采用防护措施? 空气过滤器是否适当?是否易于清洗和更换? 是否已对设备或系统中的气流分布进行过测量? 关键的功率器件是否有适当的气流流过? 是否测量过功率器件的临界温度? 是否测量过风机的噪声? 易损坏的散热片是否有保护措施? 在机载电子设备中,是否具有防水措施?
Accelink Technologies Co., Ltd.
1.4 热控制方法的选择
冷却方法可以根据热流密度和 温升要求,按右图关系进行选 择。这种方法适用于温升要求 不同的各类设备的冷却
由右图可知,当元件表面与环境之 间的允许温差ΔT为60℃时,空气 的自然对流(包括辐射)仅对热流 密度低于0.05W/cm2时有效。
(2)热分析(热模拟) 利用数理模型,或通过计算机模拟,在设计阶段获得温度分布,
预先发现产品的热缺陷,从而改进其设计。
(3)热评估 评估热设计是否合理的方法和手段。
(4)热试验 将设备置于实际(或模拟)热环境中,测量其温度或温度分布
Accelink Technologies Co., Ltd.
1.1 准确认识热设计
Accelink Technologies Co., Ltd.
1.3 热量传递的基本方式和有关定律
一、热量传递的三种基本方式:导热、对流、辐射
二、导热(热传导)
傅立叶导热定律:
Q A T W
x
A为垂直于热流方向的截面积;λ为材料的导热系数,单位W/(m·K),它是表征 材料导热能力优劣的物性参数。
利用热电冷却、固体升华过程吸热、液氮蒸发过程吸热等方式进行制冷, 使设备工作环境温度低于周围环境温度。 (3)恒温
利用相变材料的吸、放热过程,可变导热管的控温特性以及热电效应, 使设备工作温度严格恒定在某一温度值,保证其工作的稳定性。 (4)热管传热
利用热管高效传热的特性,解决大温差环境条件下温度的均衡,密闭机 箱内热量的传递,减少温差对设备的危害。
13mm左右 器件尽量交错方式排列,以增强紊流。必要时可在空位增设紊流器。
Accelink Technologies Co., Ltd.
自冷
温度分区(与风冷同) 按耐热程度分区:耐热性差的放气流上游,耐热性好的电子元器件放
在下游。 按发热量分区:如把大规模集成电路放在冷却气流的上游处,小规模
集成电路放在下游,以使印制板上元器件的温升趋于均匀。
自冷印制板的间距应控制在不小于19mm,电路板上电子元件安装高度相差 比较大时,应保证最高元件与屏蔽盒内壁之间的间隙不小于23mm,否则将 影响盒子中部的自然对流。
有利紊流 电子元器件安装的方位应符合气流的流动特性及有利于提高气流的紊
流程度。
Accelink Technologies Co., Ltd.
来源:美国空军航空电子整体研究项目
图 电子产品失效的主要原因
过热问题被确认为 电子设备结构设计 所面临的三大问题 之一——(强度与 振动、散热、电磁 兼容)
Accelink Technologies Co., Ltd.
相关文档
最新文档