智能家居控制系统课程设计报告分析

合集下载

智能家居课程设计KPC

智能家居课程设计KPC

智能家居课程设计KPC一、教学目标本课程旨在让学生了解智能家居的基本概念、架构和关键技术,培养学生对智能家居系统的认识和应用能力。

通过本课程的学习,学生将能够:1.描述智能家居的基本概念、架构和关键技术。

2.分析智能家居系统的工作原理和应用场景。

3.设计简单的智能家居系统,并掌握相关设备的安装和调试方法。

4.能够根据实际需求,选择合适的智能家居产品和解决方案。

二、教学内容本课程的教学内容主要包括智能家居的基本概念、架构和关键技术,以及智能家居系统的应用场景和实际案例。

具体包括以下几个部分:1.智能家居的基本概念:介绍智能家居的定义、发展历程和现状。

2.智能家居的架构:讲解智能家居系统的组成部分,如硬件设备、软件平台和网络通信。

3.关键技术:介绍智能家居系统中涉及的关键技术,如传感器技术、控制技术、等。

4.应用场景和案例:分析智能家居在日常生活、办公和安防等领域的应用场景,并通过实际案例让学生更好地理解和掌握。

三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法,如讲授法、讨论法、案例分析法和实验法等。

具体如下:1.讲授法:通过讲解智能家居的基本概念、架构和关键技术,使学生掌握相关理论知识。

2.讨论法:学生就智能家居的应用场景和实际案例展开讨论,培养学生的思考和分析能力。

3.案例分析法:分析智能家居领域的实际案例,让学生更好地理解和掌握智能家居系统的原理和应用。

4.实验法:安排实验室实践环节,让学生动手设计、安装和调试简单的智能家居系统,提高学生的实际操作能力。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:选用权威、实用的智能家居教材,为学生提供系统的理论知识。

2.参考书:推荐学生阅读相关的智能家居参考书籍,拓展知识面。

3.多媒体资料:收集智能家居相关的视频、动画等多媒体资料,便于学生更好地理解和学习。

4.实验设备:准备智能家居实验设备,让学生在实验室实践环节中动手操作,提高实际操作能力。

基于STM32单片机的智能家居系统设计课程设计报告

基于STM32单片机的智能家居系统设计课程设计报告

基于STM32单片机的智能家居系统设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日摘要目前市场上针对普通家庭的智能防盗、防火等产品很多,但基于远程报警系统的智能家居产品价格不菲。

本次设计的基于STM32的智能家居报警系统实用性非常强,设计成本低廉,非常适合普通家庭使用,而且随时可以升级。

智能家居系统分析报告方案

智能家居系统分析报告方案

智能家居系统分析报告方案
一、智能家居系统概述
智能家居系统是一种可以通过网络控制的家居自动化系统,其包括主
机控制、网络连接技术、物联网设备、语音控制、智能手机应用等,可实
现家居智能化控制和安全保障。

例如可以实现家庭能源管理,通过智能手
机实现家庭安全防范,语音控制家庭灯、空调、电视、以及家用小家电等。

二、智能家居系统分析
1.主机控制:
主机控制是智能家居的核心,用于连接智能设备和家庭网络,可以实
现智能家居整体控制。

可以通过计算机、手机或遥控器等设备,实现对智
能家居设备的远程控制,实时调整温度、亮度等参数,实现家居的自动化
和智能化操作。

2.网络连接技术:
智能家居安装需要有效的网络连接技术,其中包括WiFi、传输的控
制协议、网络安全等。

必须确保网络的稳定和可靠,以及充足的带宽,才
能保证智能家居的正常使用。

3.物联网设备:
智能家居设备包括具有自主智能的传感器、摄像头、执行器等,实现
家居设备的智能控制。

智能家居系统设计与性能评估实验报告

智能家居系统设计与性能评估实验报告

智能家居系统设计与性能评估实验报告1. 引言智能家居系统通过集成不同的智能设备和技术,为用户提供便利、舒适和智能化的生活体验。

本实验报告旨在介绍智能家居系统的设计和性能评估实验结果,为进一步改进和优化智能家居系统提供参考。

2. 智能家居系统设计2.1 系统组成智能家居系统包括智能设备、网络通信系统和控制中心三个主要组成部分。

智能设备可以包括智能灯具、智能插座、智能窗帘等,网络通信系统用于设备之间的数据传输和通信,控制中心用于实现用户对智能设备的远程控制和管理。

2.2 设备互联智能家居系统中的设备需要通过无线或有线方式进行互联。

无线方式可以使用Wi-Fi、蓝牙和ZigBee等通信协议,有线方式可以使用以太网等传输技术。

设备互联能够实现设备之间的数据共享和联动控制,提高系统的智能化程度。

2.3 用户界面智能家居系统的用户界面可以有多种形式,如手机App、智能音箱和触摸屏等。

用户可以通过这些界面来监控和操作智能家居系统中的设备,实现对灯光、温度、安防等的控制和调整。

3. 性能评估实验3.1 实验目的通过对智能家居系统的性能评估实验,可以评估系统的稳定性、反应速度、易用性和安全性等方面的表现,并提供改进和优化的建议。

3.2 实验设计本次实验选择了智能灯具和智能插座作为实验对象,分别从以下几个方面进行性能评估:- 反应速度:测试设备接收到命令后的响应时间,包括开关状态的切换和亮度的调整。

- 网络传输稳定性:测试设备在不同网络环境下的传输稳定性,包括Wi-Fi信号强度不同的情况下的数据传输质量。

- 使用便捷性:测试用户在使用智能灯具和智能插座时的操作便捷性和界面友好度。

- 安全性:测试系统对外部攻击的防护能力,以及用户数据的隐私保护措施。

3.3 实验结果通过对性能评估实验数据的分析,得到以下实验结果:- 反应速度方面,智能灯具的切换响应时间在100ms以内,亮度调整响应时间在200ms以内;智能插座的开关响应时间在50ms以内,电源状态反馈时间在500ms以内。

智能家居控制系统的方案报告

智能家居控制系统的方案报告

智能家居控制系统的方案报告方案报告1.引言随着科技的飞速发展,人们的日常生活和工作中充满了各种智能化产品。

在这个背景下,我们提出了一份旨在开发一款智能家居控制系统的方案报告。

该系统将为用户提供便捷、高效的家居生活体验,并帮助智能家居企业拓宽产品线,提高市场竞争力。

2.市场分析近年来,智能家居市场呈现出蓬勃的发展势头。

全球智能家居市场规模预计在未来几年内将持续扩大。

其中,中国市场的增长速度更是远超全球平均水平。

随着人们生活水平的提高和科技认知的加深,智能家居控制系统将成为未来家居生活的重要趋势之一。

3.销售目标我们的销售目标是在未来一年内,通过线上和线下渠道,实现智能家居控制系统销售额达到XX万元。

为了实现这个目标,我们将针对不同渠道和客户群体制定相应的销售策略。

4.产品定位与策略我们的产品定位是高端智能家居市场,以提供高品质、高性能的智能家居控制系统为主打产品。

为了满足消费者的多样化需求,我们将推出不同型号、不同功能的智能家居控制系统,以满足不同家庭、不同场景的需求。

5.销售团队建设为了实现销售目标,我们将组建一支高效、专业的销售团队。

团队成员将分为线上销售和线下销售两个小组,分别负责各自的渠道销售工作。

同时,我们将建立完善的培训体系,提升销售团队的综合素质和专业技能。

6.营销活动策划我们将通过多种途径进行营销推广,包括社交媒体宣传、线上线下活动策划、合作伙伴推广等。

同时,我们将积极参加相关展会和会议,以扩大品牌知名度和产品影响力。

7.财务预算与实施计划根据市场分析和销售目标,我们预计在第一年投入XX万元的研发和市场推广费用。

在实施计划方面,我们将分阶段进行产品研发、市场推广和销售工作。

具体计划如下:第一季度完成产品研发和测试工作;第二季度进行市场推广和销售团队建设;第三季度正式启动销售工作;第四季度对销售成果进行评估和总结,并对后续发展做出规划。

8.风险评估与应对策略在方案实施过程中,我们可能会面临一些风险和挑战,如市场竞争加剧、技术更新换代等。

智能家居系统设计报告

智能家居系统设计报告

设计报告智能家居控制系统设计:刘东宇2013.041.摘要本设计为--智能家居控制系统,主要用于对家电的智能化控制和家庭防盗。

采用用STC公司的89C58RD+单片机为主控。

实现的功能有:• 1.实时显示时间和日历•2实时显示温度和湿度• 3.可以对房间温度和湿度进行自动控制• 4.具有声光防盗报警功能• 5.无线控制功能• 6.红外人体感应功能•7.低功耗模式(防盗模式)与正常模式任意切换•8.开机图片,程序在线下载等•9.测量水的温度2.引言随着科技的快速发展,家电都变得越来越智能化,各种各样的智能化家电改变了我们的生活方式,比如现在的全自动洗衣机,电饭煲,空调,云电视等。

但是这种智能的程度还远远不够,这些东西还是需要我们人为的去控制,比如空调,增湿机等,它们不能根据环境的温度或湿度来对,环境温湿度进行自动调节。

随着生活水平提高,家庭的贵重物品也越来越多,家庭防盗也变的更加需要,以前防盗就仅仅只是一张防盗门,到现在防盗措施也应该随着科技的发展而提高,比如通过红外熱释敏人体感应模块作为报警触发器,这样防盗效果会得到一个很好的提升,本设计主要就是基于以上两个方面而设计的。

3.系统方案硬件整体框图4.硬件系统设计1. DHT11芯片采集温湿度数据传输给单片机进行处理然后后显示在LCD12864液晶屏上,并可以通过设置温湿度上下阀值(可以通过按键调节)来控制房间内的温湿度(通过继电器来进行控制)。

• 2. DS1302产生时钟数据传输给单片机进行处理然后显示在液晶屏上面,时间可以通过按键进行调节。

• 3. 在防盗模式(低功耗模式)通过HC-RS501人体感应模块对人体进行感应,如果有人进入,马上会发出声光报警,并且在液晶屏上面显示报警字样,进入防盗模式和退出防盗模式(消除报警)都可以通过按键进行控制,还可以通过4路遥控进行控制。

• 4. 通过DS18B20对水温数据进行采集然后传输给单片机进行处理,并显示在液晶屏上(精确度很高,精确达到0.1位)。

智能家居课程设计报告

智能家居课程设计报告

智能家居课程设计报告智能家居是指通过智能化技术,将传统的家居设备和系统连接起来,并能够实现自动化、远程控制和智能化管理的一种家居模式。

随着科技的发展和人们对生活质量的追求,智能家居已经逐渐成为人们日常生活中的一部分。

为了进一步提升智能家居的便利性和实用性,我设计了一门智能家居课程。

一、课程目标:本课程旨在通过学习和实践,使学生掌握智能家居的基本原理和技术,了解智能家居的应用场景和作用,并能够设计、实施和维护智能家居系统。

二、课程内容:1.智能家居概述:介绍智能家居的定义、发展历程和前景展望。

2.智能家居技术基础:介绍智能家居系统的基本组成部分、通信协议以及相关技术。

3.智能家居设备与传感器:介绍智能家居中常用的设备和传感器,并学习其工作原理和应用场景。

4.智能家居系统设计:学习智能家居系统的设计原则和方法,包括系统框架设计、功能模块划分等。

5.智能家居远程控制:介绍智能家居的远程控制技术和相关设备,并进行实际操作和实验。

6.智能家居安全与隐私保护:学习智能家居系统的安全性和隐私保护措施,以及相关的法律法规。

7.智能家居系统的维护与故障排除:学习智能家居系统的维护和故障排除方法,并进行实践操作。

三、教学方法:1.理论教学:通过讲授理论知识,系统地介绍智能家居的相关原理、技术和应用。

2.实践操作:组织学生进行智能家居设备和系统的实际操作,使他们能够亲自体验并掌握相关技能。

3.项目实训:设计并完成一个智能家居系统项目,包括系统的搭建、调试和功能实现等。

4.案例分析:通过分析实际应用案例,让学生了解不同场景下的智能家居解决方案和挑战。

四、评价与考核:1.平时成绩:包括课堂表现、实践操作、作业等,占总成绩的50%。

2.项目成绩:根据学生完成的智能家居系统项目情况评估,占总成绩的30%。

3.期末考试:考察学生对智能家居理论和技术的理解程度,占总成绩的20%。

五、预期效果:通过本课程的学习,学生将能够全面了解智能家居的基本原理、技术和应用,掌握智能家居系统的设计和实施方法,具备一定的智能家居系统维护和故障排除能力。

毕业设计智能家居控制系统

毕业设计智能家居控制系统

毕业设计智能家居控制系统毕业设计智能家居控制系统,这个话题听上去是不是挺酷炫的?想想,未来的家就像个“超智能管家”,什么事都能帮你搞定。

每天一回到家,门自动打开,灯光就柔柔地亮起来,甚至连你爱吃的零食都能提前放好,简直就像梦一样,对吧?现在的科技真是越来越厉害,连最懒的人也能享受到“科技带来的便利”,就像“宅”这个词,已经成为了新时代的代名词。

想象一下,假如你刚下班,累得像只狗,真是不想动弹。

这时候,家里的智能控制系统就像个贴心的小助手,轻轻一声“开启模式”,整个房子就开始忙碌起来。

空调自动调到你最喜欢的温度,沙发也被调到最舒服的位置。

哇,这种感觉简直不能再爽了!就像在自己家里开了个豪华酒店,想怎么享受就怎么享受。

再也不怕一进门就要忙着开灯、开空调,真是让人心里一阵温暖。

再说说安全问题,现在的智能家居系统也让你高枕无忧。

想想,门窗的监控、红外探测器,晚上出门也不怕。

简直像在家里装了个保安,随时随地盯着你的家。

不用担心有人半夜闯进来,偷偷摸摸。

更妙的是,你可以通过手机随时查看家里的情况,就算在外面,也能心安理得地吃个火锅。

谁说科技让人变得冷漠?这其实是让你更有安全感呢。

说到智能家居,当然少不了那些“聪明”的设备。

智能音箱一喊,家里的灯光就能随你心意变换,蓝色、红色、绿色,想怎么调就怎么调。

尤其是开派对的时候,随便调个灯光,立马变身派对现场,朋友们都赞不绝口。

想象一下,你的朋友们一进门就看到五光十色的灯光,配上你准备的音乐,简直就是“万众瞩目”的风头,谁还记得那尴尬的自我介绍?智能家居的操作其实挺简单的,就像打游戏一样。

你只需轻松点击几下,或是用语音指令,就能搞定一切。

这个时代,真的是“懒人经济”呀,让你无论多懒都能变得高效。

每次看到家里的一切都在听你指挥,心里那种成就感,真是无法言喻,感觉自己简直是个“家居大亨”!不过,听起来好像一切都是美好的,其实也有点小挑战。

比如,有时候设备不太配合,或者连不上网,那感觉简直像是被“打回原形”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X X X X X X X X X X X X X X 嵌入式系统原理及应用实践—智能家居控制系统(无操作系统)学生姓名XXX学号XXXXXXXXXX所在学院XXXXXXXXXXX专业名称XXXXXXXXXXX班级XXXXXXXXXXXXXXXXXXXXXXXXXXXXX指导教师成绩XXXXXXXXXXXXX二○XX年XX月综合实训任务书目录智能家居控制系统设计前言当前,随着科学技术的发展,计算机、嵌入式系统和网络通信技术逐步深入到各个领域,使得住宅和家用电器设备网络化和智能化,智能家居已经开始出现在人们的生活中。

智能家居控制系统(smarthome control systems,简称SCS)。

它以住宅为平台,家居电器及家电设备为主要控制对象,利用综合布线技术、网络通信技术、安全防范技术、自动控制技术、音视频技术将家居生活有关的设施进行高效集成,构建高效的住宅设施与家庭日程事务的控制管理系统,提升家居智能、安全、便利、舒适,并实现环保节能的综合智能家居网络控制系统平台。

智能家居控制系统是智能家居核心,是智能家居控制功能实现的基础。

通过家居智能化技术,实现家庭中各种与信息技术相关的通讯设备、家用电器和家庭安防装置网络化,通过嵌入式家庭网关连接到一个家庭智能化系统上进行集中或异地的监控和家庭事务管理,并保持这些家庭设施与住宅环境的和谐与协调。

家居智能化所提供的是一个家居智能化系统的高度安全性、生活舒适性和通讯快捷性的信息化与自动化居住空间,从而满足21世纪新秀社会中人们追求的便利和快节奏的工作方式,以及与外部世界保持安全开放的舒适生活环境。

本文以智能家居广阔的市场需求为基础,选取智能家居控制系统为研究对象。

1 硬件设计本系统是典型的嵌入式技术应用于测控系统,以嵌入式为开发平台,系统以32位单片机LM3S8962为主控制器对各传感器数据进行采集,经过分析后去控制各执行设备。

硬件电路部分为:微控制器最小系统电路、数据采集电路(光敏电路、温度传感器、霍尔传感器)、输出控制电路(继电器、蜂鸣器、发光二极管)和八位LED数码管显示组成。

LM3S8962布局如图1-1所示,LM3S8962核心板外围电路如图1-2所示。

图 LM3S8962布局图S1C6104C16104C19104VDD3.3R21M VBATC24104图1-2 LM3S8962核心板外围电路ADC 转换数模转换(ADC )外设用于将连续的模拟电压转换成离散的数字量。

StellsrisADC 模块的转换分辨率为10位,并最多可支持8个输入通道以及一个内部温度传感器。

ADC 模块含有一个可编程的序列发生器,它可在无需控制器的干扰的情况下对多个模拟输入进行采样。

Stellaris 系列ARM 集成有一个10位的ADC 模块,支持8个输入通道,以及一个内部温度传感器,ADC 模块含有一个可编程的序列发生器,可在无需控制器干涉的情况下对多个模拟输入源进行采样。

每个采样序列队完全可配置的输入源、触发事件、中断的产生和序列优先级提供灵活的编程。

如输入源和输入模式,采样结束时的中断产生,以及指示序列最后一个采样的指示符。

图为ADC 输入测试电路示意图。

Stellaris 系列MCU 的ADC 模块采用模拟电源VDDA/GNDA 供电。

RW1是音频电位器,输出电压在0V ~之间,并带有手动旋钮,便于操作。

R1和C1组成简单的RC低通滤波电路,能够滤除寄生在由RW1产生的模拟信号上的扰动。

图 A/D转换电路原理图SSI控制数码管显示SSI模块驱动数码管显示,对于Texas Instruments同步串行帧格式,在发送每帧之前,每遇到SSICLK的上升沿开始的串行时钟周期时,SSIFss管脚就跳动一次。

在这种帧格式中,SSI和片外从器件在SSICLK的上升沿驱动各自的输出数据,并在下降沿锁存来自另一个器件的数据。

不同于其它两种全双工传输的帧格式,在半双工下工作的MICROWIRE格式使用特殊的主-从消息技术。

在该模式中,帧开始时向片外从机发送8位控制消息。

在发送过程中,SSI没有接收到输入的数据。

在消息已发送之后,片外从机对消息进行译码,并在8位控制消息的最后一位也已发送出去之后等待一个串行时钟,之后以请求的数据来响应。

返回的数据在长度上可以是4~16位,使得在任何地方整个帧长度为13~25位。

图显示了一次传输的Texas Instruments同步串行帧格式。

在该模式中,任何时候当SSI空闲时,SSICLK和SSIFss被强制为低电平,发送数据线SSITx为三态。

一旦发送FIFO的底部入口包含数据,SSIFss变为高电平并持续一个SSICLK周期。

即将发送的值也从发送FIFO传输到发送逻辑的串行移位寄存器中。

在SSICLK的下一个上升沿,4~16位数据帧的MSB从SSITx管脚移出。

同样地,接收数据的MSB也通过片外串行从器件移到SSIRx管脚上。

然后,SSI和片外串行从器件都提供时钟,供每个数据位在每个SSICLK的下降沿进入各自的串行移位器中。

在已锁存LSB之后的第一个SSICLK上升沿上,接收数据从串行移位器传输到接收FIFO。

图 TI同步串行帧格式(单次传输)图 TI同步串行帧格式(连续传输)图显示了背对背(back-to-back)传输时的Texas Instruments同步串行帧格式。

图为LM3S8962实验板上数码管通过SSI端口连接的电路原理图。

图 SSI端口的数码管电路原理图按键和LED模块图和图分别为LM3S8962实验板上的LED和KEY电路原理图,当有按键按下去时,与KEY对应的端口输出低电平,在程序中,当读取到对应的端口输入低电平时,表示有键被按下了,然后将与之关联的LED输出高电平。

图为LED灯模块。

此模块中有4颗LED灯,阳极分别通过四个保护电阻连接电源正极,阴极分别和PB0~PB3相接,当需要点亮某颗发光二极管时,只需要给相应的引脚写低电平就行了。

四颗发光二极管的供电经过了一个跳线帽J3,使用此模块前需要将此跳线帽盖上。

图为按键模块的原理图。

K1~K4按键一端与公共地相接,另一端与接有高电平的上拉电阻以及MCU的PB4~PB7相接。

当按键断开时,PB4~PB7读取到的是高电平,当有按键闭合时,对应的引脚便会读到低电平,以判断出被按下的键,再有MCU作出相应的相应。

图 KEY电路原理图图 LED电路原理图PWM驱动蜂鸣器PWM,脉冲宽度调制,是一项功能强大的技术,它是一种对模拟信号电平进行数字化编码的方法。

在脉冲调制中使用高分辨率计数器来产生方波,并且可以通过调整方波的占空比来对模拟信号电平进行编码。

PWM发生器模块产生两个PWM信号,这两个PWM信号可以是独立的信号,也可以是一对插入了死区延迟的互补信号。

PWM发生器模块的输出信号在传递到器件管脚之前由输出模块管理。

LM3S8962实验板驱动直流电机和步进电机的电路原理图如图所示,在本电路图中,引出了LM3S8962处理器的六路PWM输出,其中PWM0—PWM3用于驱动四相八拍步进电机,PWM4驱动直流电机,PWM5驱动无源蜂鸣器。

图蜂鸣器电路原理图2 软件设计软件设计主要控制光敏电阻电压采集处理与控制部分、温度采集处理与控制部分、霍尔传感器报警部分和辅助指示部分。

ADC模块数模转换(ADC)外设用于将连续的模拟电压转换成离散的数字量。

StellsrisADC模块的转换分辨率为10位,并最多可支持8个输入通道以及一个内部温度传感器。

ADC模块含有一个可编程的序列发生器,它可在无需控制器的干扰的情况下对多个模拟输入进行采样。

该StellsrisADC提供下列特性:☆最多可支持8个模拟输入通道。

☆单端和差分输入配置。

☆内部温度传感器。

☆最高可以达到1M/秒的采样率。

☆4个可编程采样序列,入口长度1~8,每个序列均带有相应的转换结果GPIO。

☆灵活的触发方式:控制器(软件触发)、定时器触发、模拟比较器触发、GPIO触发、PWM触发。

☆硬件可对多达64个采样值进行平均计算,以便提高ADC转换精度。

☆使用内部3V作为ADC转换参考电压。

☆模拟电源和模拟地跟数字电源和数字地分开。

ADC模块原理描述Stellaris系列ARM集成有一个10位的ADC模块,支持4—8个输入通道,以及一个内部温度传感器。

ADC模块含有一个可编程的序列发生器,可在无需控制器干涉的情况下对多个模拟输入源进行采样。

每个采样序列均对完全可置的输入源、触发事件、中断的产生和序列优先级提供灵活的编程。

▽函数ADCSequenceEnable()和ADCSequenceDisable()用来使能和禁止一个ADC采样序列。

▽函数ADCSequenceDataGet()用来读取ADC结果FIFO里的数据。

▽函数ADCIntEnable()和ADCIntDisable()用来使能和禁止一个ADC采样序列中断。

▽函数ADCIntStatus()用来获取一个采样序列的中断状态。

程序中通过配置ADC,采集光传感器的光照强度并转换,ADC采样完成后触发中断,在中断中修改采样结束控制变量ADC_EndFlag。

ADC模块程序设计流程图SSI 模块SSI总线系统是一种同步串行接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。

外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。

SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。

SSI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。

SSI接口是在CPU和外围低速器件之间进行同步串行数据传输,在主器件的移位脉冲下,数据按位传输,高位在前,低位在后,为全双工通信,数据传输速度总体来说比I2C总线要快,速度可达到几Mbps。

SSI接口是以主从方式工作的,这种模式通常有一个主器件和一个或多个从器件。

SSI模块原理描述Stellaris系列ARM的SSI(Synchronous Serial Interface,同步串行接口)是与具有Freescale SPI(飞思尔半导体)、MicroWire(美国国家半导体)、Texas Instruments(德国仪器,TI)同步串行接口的外设器件进行同步串行通信的主机或从机接口。

SSI具有以下特征:●主机或从机操作。

●时钟位速率和预分频可编程。

●独立的发送和接收FIFO,16位宽,8个单元深。

相关文档
最新文档