《确定一次函数表达式》典型例题

《确定一次函数表达式》典型例题
《确定一次函数表达式》典型例题

第12周 《确定一次函数表达式》

例1 已知一次函数4)36(-++=n x m y ,求;

(1)m 为何值时,

y 随x 增大而减小;

(2)n 为何值时,函数图像与y 轴的交点在x 轴下方; (3)m ,n 分别取何值时,函数图像经过原点;

(4)若3

1

=m ,5=n ,求这个一次函数的图像与两个坐标轴交点的坐标;

(5)若图像经过一、二、三象限,求m ,n 的取值范围.

·

例2 设一次函数)0(≠+=k b kx y ,当2=x 时,3-=y ,当1-=x 时,4=y 。

(1)求这个一次函数的解析式;

(2)求这条直线与两坐标轴围成的三角形的面积。

例3(1)已知一次函数图像经过点(0,2)和(2,1).求此一次函数解析式. (2)已知一次函数图像平行于正比例函数x y 2

1

-=的图像,且经过点(4,3).求此一次函数的

解析式.

例4求下列一次函数的解析式:

(1)图像过点(1,-1)且与直线52=+y x 平行;

[

(2)图像和直线23+-=x y 在y 轴上相交于同一点,且过(2,-3)点.

例5 已知一次函数

b kx y +=的图像与另一个一次函数23+=x y 的图像相交于y 轴上的点A ,且

x 轴下方的一点),3(n B 在一次函数b kx y +=的图像上,n 满足关系式n

n 16

-

=,求这个一次函数的解析式。

'

例6 已知一次函数的图象交正比例函数图象于M 点,交x 轴于点N(-6,0),又知点M 位于第二象限,其横坐标为-4,若△MON 面积为15,求正比例函数和一次函数的解析式.

{

例7 求直线012=++y x 关于x 轴成轴对称的图形的解析式。

例8 如图,ABC ?是边长为4的等边三角形,求直线

AB 和BC 的解析式.

例9 如图,直线y=x +3的图象与x 轴、y 轴交于A 、B 两点.直线l 经过原点,与线段AB 交于点C ,把△AOB 的面积分为2:1两部分.求直线l 的解析式.

即学即练:

1、下面图像中,不可能是关于x 的一次函数)3(--=m mx y 的图像的是( )

2、已知:

)0(≠++=+=+=+c b a k c

b

a b c a a c b ,那么k kx y +=的图像一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限

3、已知直线)0(≠+=k b kx y 与x 轴的交点在x 轴的正半轴,下列结论:①0,0>>b k ;②

0,0<>b k ;③0,0>

A .1

B .2

C .3

D .4

4、正比例函数的图像如图所示,则这个函数的解析式是( )

A .

x y = B .x y -= C .x y 2-= D .x y 21-=

5、已知直线m x y +-=2与两坐标轴围成的三角形面积为4,求这条直线的函数解

析式.

6、已知直线b kx y +=过点(

25,0),且与坐标轴所围成的三角形的面积为4

25,求该直线的函数解析式.

@

小专题:图像的平移规律

1. 直线y=5x-3向左平移2个单位得到直线 。

2. 直线y=22

3

+-

x 向左平移2个单位得到直线 3. 直线y=2x+1向上平移4个单位得到直线 4. 直线y=-3x+5向下平移6个单位得到直线

5. 直线

x y 31

=

向上平移1个单位,再向右平移1个单位得到直线 。 6. 直线14

3

+-=x y 向下平移2个单位,再向左平移1个单位得到直线 。

?

7. 过点(2,-3)且平行于直线y=2x 的直线是 。 8. 过点(2,-3)且平行于直线y=-3x+1的直线是 .

9.把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得到的图像表示的函数是____________; 10.直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________;

过手练习

1、已知直线12)31(-+-=k x k y

1) 当k__________________时,直线过原点;

2) 当k__________________时,直线与y 轴的交点坐标是(0,-2); 3) 当k__________________时,直线与x 轴交于点(

)0,4

3

4) 当k__________________时,y 随x 的增大而增大;

5)

!

6)

当k__________________时,该直线与直线

53--=x y 平行。

2、已知点A )1,2(a a -+在函数12+=x y 的图像上,则a=____________。

3、一次函数

k kx y -=,若y 随x 的增大而减小,则该函数的图像经过 象限。

4、已知一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )

A B C D 5、一次函数y=ax+b 与y=ax+c (a>0)在同一坐标系中的图象可能是( )

A B C D 6、已知直线

m x y +-=2与两坐标轴围成的三角形面积为4,求这条直线的函数解析式.

<

7、已知:函数y = (m+1) x+2 m ﹣6

(1)若函数图象过(﹣1 ,2),求此函数的解析式。

(2)求满足(1)条件的直线与y = ﹣3 x + 1 的交点并求这两条直线 与y 轴所围成的三角形面积

*

【能力提升训练】

1、已知m 是整数,且一次函数(4)2y m x m =+++的图象不过第二象限,则m 为 .

2、若直线y x a =-+和直线y x b =+的交点坐标为(,8)m ,则a b += .

3、函数

3

12

y x =

-,如果0y <,那么x 的取值范围是 4、若直线

11y k x =+与24y k x =-的交点在x 轴上,那么

12

k k 等于( )

.4

A.4

B-

1

.

4

C

1

.

4

D-

:

5、已知关于x的一次函数27

y mx m

=+-在15

x

-≤≤上的函数值总是正数,则m的取值范围是()A.7

m>B.1

m>C.17

m

≤≤D.都不对

6、如图6,两直线1y kx b

=+和

2

y bx k

=+在同一坐标系内图象的位置可能是()

7、已知一次函数2

y x a

=+与y x b

=-+的图像都经过(2,0)

A-,且与y轴分别交于点B,c,则ABC

?的面积为()

A.4 B.5 C.6 D.7

~

参考答案

例1 分析(1)已知一次函数图像上两个点的坐标,代入解析式中可以求k、b值。(2)求出直线与x轴、y轴两个交点,利用这两个交点与坐标轴所围的三角形是直角三角形可求出面积。

解(1)由题意,得

?

?

?

+

-

=

+

=

-

.

4

,

2

3

b

k

b

k

解得

?

?

?

??

?

?

=

-

=

.

3

5

,

3

7

b

k

∴所求一次函数的解析式为.

3

5

3

7

+

-

=x

y

(2)直线

3

5

3

7

+

-

=x

y与x轴交于)0,

7

5

(,与y轴交于)

3

5

,0(.

∴这条直线与两坐标轴围成的三角形的面积为.

42

25

3

5

7

5

2

1

=

?

?

例2 分析由于2

3+

=x

y与y轴的交点很容易求出,因此,要求b

kx

y+

=的解析式,只要再求出b

kx

y+

=上另一点的坐标就可以了,而)

,3(n

B在x轴下方,因此0

<

n,利用

n

n

16

-

=求出n的值就知道B点的坐标了。

解设点A的坐标为)

,0(m,∵点)

,0(m

A在一次函数2

3+

=x

y的图像上,∴2

2

3=

+

?

=

m,即点A的坐标为)2,0(.

(

∵ 点),3(n B 在x 轴下方,∴ 0

2±==

-

=-n n n

n ,,,而0

4-

=n ,点B 的坐标为)4,3(-.

又点)2,0(A ,)4,3(-B 在一次函数b kx y +=的图像上,

??

?-=+=+?.

43,

20b k b k 解得22=-=b k , ∴ 这个一次函数的解析式为.22+-=x y

例3 解 设所求的直线解析式为b kx y +=. ∵ 012=++y x , ∴ .12--=x y

当0=y 时,21-

=x ,即图像过对称轴上)0,2

1

(-点,显然这一点也在b kx y +=上。 在012=++y x 上任取一点P ,如2=x 时,5-=y ,则)5,2(-P 可以知道P 点关于x 轴对称点的坐标为)5,2(P '。

∴ )5,2()0,2

1

(,-都在所求的直线上,∴

?????=+=+-.

52,

02

1

b k b k ∴ ?

??==.1,

2b k ∴ 所求直线的解析式为12+=x y .

%

例4 分析:要确定一次函数的解析式,必须知道图象的两个已知点的坐标,而要确定正比例函数又

必须知道图象上一个点的坐标,但题设中都缺少条件,它们交点坐标中不知道纵坐标的值.已知条件中给出了△MON 的面积,而△MON 的面积,因底边NO 可以求到,因此实际上需要把△MON 的面积转化为M 点的纵坐标

解:根据题意画示意图,过点M 作MC ⊥ON 于C

∵点N 的坐标为(-6,0) ∴|ON|=6

∴MC=5

∵点M 在第二象限 ∴点M 的纵坐标y=5 ∴点M 的坐标为(-4,5)

`

∵一次函数解析式为y=k 1x+b 正比例函数解析式为y=k 2x 直线y=k 1x+b 经过(-6,0)

∵正比例函数y=k 2x 图象经过(-4,5)点,

例5 解:(1)把52=+

y x 变形为52+-=x y .

∵所求直线与52+-=x y 平行,且过点(1,-1).

∴设所求的直线为b x y +-=2,将1,1-==y x 代入,解得1=b . ∴所求一次函数的解析式为12+-=x y .

(2)∵所求的一次函数的图像与直线23+-=x y 在y 轴上的交点相同. ∴可设所求的直线为2+=kx y .

把3,2-==y x 代入,求得25

-=k

.

∴所求一次函数的解析式为22

5

+-=x y .

说明:如果两直线2211,b x k y b x k y +=+=平行,则21k k =;如果两直线

2211,b x k y b x k y +=+=在y 轴上的交点相同,则21b b =.掌握以上两点,在求一次函数解析式时,

有时很方便.

例6 解:(1)由A 可得??

?>-->,

0)3(,

0m m 故30<

由B 可得??

?>=--,

0,

0)3(m m 故3=m ,∴B 可能;

.

由C 可得?

??<--<,0)3(,

0m m 此不等式组无解.故C 不可能,答案应选C.

(2)由已知得???

??=+=+=+,,,

kc b a kb c a ka c b 三式相加得:

0 ,)()(2≠++?++=++c b a k c b a c b a ,

∴2=k

,故直线k kx y +=即为22+=x y .

此直线不经过第四象限,故应选D.

(3)直线b kx y +=与x 轴的交点坐标为:

0,0,0,<>-??

?

??-k b k b k b 即b k ,异号,∴②、③正确,故应选B.

(4)∵正比例函数)0(≠+=k b kx y 经过点(1,-1), ∴x y k -=∴-= ,1,故应选B.

说明:一次函数)0(≠+=k b kx y 中的b k ,的符号决定着直线的大致位置,题(3)还可以通过

b k ,的符号画草图,来判断各个结论的正确性,这类题型历来都是各地中考中的热点题型,同学们一

定要熟练掌握.

#

例7 解:(1)因为

y 随x 增大而减小,

所以036<+m ,解得:2-

(2)因为图像与

y 轴交点在x 轴下方,

所以??

?<-≠+,04,036n m 解得???<-≠.

4,

2n m

所以当2-≠m 且4

(3)因为图像经过原点,

所以??

?=-≠+,04,036n m 解得?

??=-≠.4,

2n m

所以2-≠m 且4=n ,图像经过原点.

(4)把3

1

=

m ,5=n 代入)4()36(-++=n x m y 中得, 17+=x y .

令0=x ,解得1=y ,

所以图像与

y 轴交点为(0,1).

令0=y ,解得7

1

-=x ,

所以图像与x 轴交点为??

?

??-

0,71. (5)因为图像经过一、二、三象限,

所以???>->+,04,036n m 解得?

??>->.4,2n m

所以当2->m 且4>n 时,图像经过一、二、三象限.

说明:主要考查一次函数的知识。

例8 分析:求一次函数

)0(≠+=k b kx y 的解析式,也就是确定k 、b 的值。根据题目已知条件列

出关于k 、b 的二元一次方程组即可.

解:(1)设函数解析式为)0(≠+=k b kx y

因为图像经过(0,2)和(2,1),

所以???+=+?=,21,02b k b k 解得???

??

=-=.

2,21b k

所以所求函数解析式为

22

1

+-=x y ;

(2)设函数解析式为)0(≠+=k b kx y

因为函数图像是平行于

x y 2

1

-=的图像,

所以2

1-=k

.

因为直线过(4,3),

所以.42

1

3b +?-

=所以5=b , 所以所求函数解析式为52

1

+-=x y .

说明:本题考查一次函数的知识,确定一次函数的解析式,必须确定k 、b 的值,根据题目的已知条

件列出关于它们的方程或方程组即可.

例9 解:由图像可知一次函数的图像经过点(-1,0)和(0,-2),可用待定系数法解.

设一次函数的解析式为

b kx y +=,则有

???-==+-,2,0b b k 解得?

?

?-=-=.2,

2b k 所以一次函数的解析式为22--=x y .

故选A.

说明:本题主要考查学生的识图能力。

第七章 微分方程经典例题

第七章 微分方程 例7 有高为1米的半球形容器,水从它的底部小孔流出,小孔横截面积为1平方厘米. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面的高度h (水面与孔口中心间的距离)随时间t 的变化规律. 解 由力学知识得,水从孔口流出的流量为 62.0dt dV Q ?== 孔口截面面积 重力加速度 ,12cm S = .262.0dt gh dV =∴ ① 设在微小的时间间隔],,[t t t ?+水面的高度由h 降至,h h ?+则,2dh r dV π-= ,200)100(100222h h h r -=--= .)200(2dh h h dV --=∴π ② 比较①和②得: ,262.0)200(2dt gh dh h h =--π 即为未知函数得微分方程. ,)200(262.03dh h h g dt --- =π ,1000==t h ,1015 14 262.05?? = ∴g C π 所求规律为 ).310107(265.45335h h g t +-?= π 例10 求解微分方程 .2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=222 2y xy x xy y dx dy ,1222 ? ?? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得? ? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1 )2ln(23)1ln(C x u u u +=----

新人教版八年级数学分式典型例题(供参考)

分式的知识点及典型例题分析 1、分式的定义: 例:下列式子中,y x +15、8a 2 b 、-239a 、y x b a --25、4322b a -、2-a 2、m 1、65xy x 1、21、212+x 、πxy 3、 y x +3、m a 1 +中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 . ⑴275x x -+; ⑵ 123 x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹22 2xy x y +. (2)下列式子,哪些是分式? 5a -; 234x +;3 y y ; 78x π+;2x xy x y +-;145b -+. 2、分式有,无意义,总有意义: 例1:当x 时,分式 51 -x 有意义; 例2:分式x x -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义。 例4:当x 时,分式1 2+x x 有意义 例5:x ,y 满足关系 时,分式 x y x y -+无意义; 例6:无论x 取什么数时,总是有意义的分式是( ) A . 122+x x B.12+x x C.133+x x D.2 5 x x - 例7:使分式2 +x x 有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2

9.3《分式方程》典型例题精析

9.3 分式方程 1.了解分式方程的意义,掌握解分式方程的一般步骤.了解解分式方程验根的必要性. 2.能熟练地解可化为一元一次方程的分式方程,并验根. 3.掌握列分式方程解应用题的基本步骤. 4.能熟练地应用分式方程的数学模型来解决现实情境中的问题.

1.分式方程的概念 (1)分母中含有未知数的方程叫做分式方程. (2)分式方程有两个重要特征:一是方程;二是分母中含有未知数.因此整式方程和分式方程的根本区别就在于分母中是否含有未知数.例如x +1x =2,5y =7y -2,1x -2=x 2 2-x 等都是分式方程,而x 2-2x +1=0,2x +33=x -12,x +a b -x -b a =2(x 是未知数)等都是整式方程,而不是分式方程. 【例1】下列方程中,分式方程有( ). (1)x +1π=3;(2)1x =2; (3)2x +54+x 3=12;(4)2x -2=1x +1 . A .1个 B .2个 C .3个 D .4个 解析:对于方程(1),因为π是常数,所以该方程不是分式方程,是整式方程;方程(3)中的分母不含字母,所以不是分式方程.方程 (2)(4)符合分式方程的概念,都是分式方程. 答案:B 2.分式方程的解法 (1)把分式方程转化为整式方程,然后通过解整式方程,进一步求得分式方程的解,这是解分式方程的关键.本章中,解分式方程都是把分式方程转化为一元一次方程,通过解一元一次方程求解分式方程.分式方程的解题思路如下图:

(2)解可化为一元一次方程的分式方程的一般步骤是: ①去分母,即在方程的两边乘以最简公分母,把原方程化为整式方程. ②解这个整式方程. ③验根:把求得的根代入最简公分母,看它的值是否为零,使它不为零的根才是原方程的根,使它为零的根即为增根,应舍去. (1)增根能使最简公分母等 于0;(2)增根是去分母后所得的整式方程的根. 以上步骤可简记为“一去(去分母)、二解(解整式方程)、三检验(检查求出的根是否是增根)”. 【例2】解分式方程:(1)x x -2+6x +2 =1; (2)7x 2+x -3x -x 2=6x 2-1 . 分析:(1)中方程的最简公分母是(x -2)(x +2);(2)中方程的最

常微分方程习题及答案

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 221xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。 7.y 1 = 所满足的微分方程是 。

8.x y y 2='的通解为 。 9. 0=+x dy y dx 的通解为 。 10.()2511 2+=+-x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043 ='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程3 23y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .2 2x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?= C .()x b x a x y cos sin *+= D . x b x a y sin cos *+= 9.下列微分方程中,( )是二阶常系数齐次线性微分方程。

【习题】第二章一阶微分方程的初等解法

第二章 一阶微分方程的初等解法 x 2-1已知f(x) f(t)dt 1, x 0,试求函数f (x)的一般表达式。 0 x 解 对方程f(x) f (t)dt 1,两边关于x 求导得 x f (x) f (t)dt f 2(x) 0, f (X)丄 f(x) f 2(x) 0 , 分离变量,可求得 代入原方程可得 C 0,从而f(x)的一般表达式为f (x) 评注:本题中常数的确定不能直接通过所给积分方程得到, 确定。 解由导数的定义可得 x(t s) x(t) x (t) lim s 0 s 2 |im x(s) x (t)x(s) s 0 [1 x(t)x(s)]s lim 丄辿型 s 01 x(t)x(s) s 显然可得x(0) 0,故 分离变量,再积分可得 x(t) [1 2 x (t)] !i 叫 x(s) x(0) s x (0) [1 x 2(t)] f(x) 、2(x C)' 1 2x 。 而是需将通解代回原方程来 2-2求具有性质x(t S) x(t) x(s) 1 x(t)x(s) 的函数x(t),已知x (0)存在。

x(t) tan[x(O)t C], 再由x(0) 0,知C 0,从而x(t) ta n[x(0)t]。 评注:本题是函数方程的求解问题,利用导数定义建立微分关系,转化为求解常微分方程的初值问题。 2-3 若M(x,y)x N(x,y)y 0,证明齐次方程M (x, y)dx N(x,y)dy 0 有积分因 1 xM(x,y) yN(x, y) 证方法1用凑微分法求积分因子。 我们有恒等式 M (x, y)dx N (x, y)dy 1 dx dv 2 {(M(x,y)x N(x,v)v)U 寺(M(x,v)x 鱼din (xy), x y 空翌din仝, x y y 所以原方程变为 -{( M (x, y)x N (x, y)y)d ln(xy) (M (x, y)x N (x, y)y)d ln —} 0。 2 y 1 1 M (x, y)x N(x, y)y「x -d ln(xy) d in 0, 2 2 M(x,y)x N(x,y)y y 由于M( x ,y) x N(x, y)y 为零次齐次函数,故它可表成仝的某一函数,记为f (上),M (x,y)x N(x, y)y y y I X MX" N(x,y)y % 巧F(in^), M(x,y)x N(x,y)y y y N (x,y)y)(¥3)} y 用(x,y) 1 M(x,y)x 乘上式两边,得 N(x,y)y

分式及分式方程精典练习题分析

分式及分式方程精典练习题 一、填空题: ⒈当x 时,分式1 223+-x x 有意义;当x 时,分式x x --112的值等于零. ⒉分式ab c 32、bc a 3、ac b 25的最简公分母是 ; ⒊化简:2 42--x x = . ⒋当x 、y 满足关系式________时, )(2)(5y x x y --=-25 ⒌化简=-+-a b b b a a . ⒍分式方程3 13-=+-x m x x 有增根,则m = . ⒎若121-x 与)4(3 1+x 互为倒数,则x= . ⒏某单位全体员工在植树节义务植树240棵.原计划每小时植树口棵。实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务 9、已知关于x 的方程32 2=-+x m x 的解是正数,则m 的取值范围为_____________. 二、选择题: ⒈下列约分正确的是( ) A 、326x x x = B 、0=++y x y x C 、x xy x y x 12=++ D 、2 14222=y x xy ⒉用换元法解分式方程13101x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( ) A .230y y +-= B .2310y y -+= C .2310y y -+= D .2310y y --= ⒊下列分式中,计算正确的是( ) A 、32)(3)(2+=+++a c b a c b B 、b a b a b a +=++122 C 、1)()(22 -=+-b a b a D 、x y y x xy y x -=---1222 ⒋下列各式中,从左到右的变形正确的是( ) A 、y x y x y x y x ---=--+- B 、y x y x y x y x +-=--+-

(完整版)初二数学分式方程经典应用题(含答案)

分式方程应用题 1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的 火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时). 2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为 售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价. 4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一, 这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天 5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工 且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( ) A .66602x x =- B .66602x x =- C .66602x x =+ D .66602x x =+ 6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书 所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量. 7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第 二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( ) A .9001500300x x =+ B .9001500300 x x =- C .9001500300x x =+ D .9001500300x x =- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记 者与驻军工程指挥官的一段对话: 通过这段对话,请你求出该地驻军原来每天加固的米数.

高等数学微分方程练习题

(一)微分方程的基本概念 微分方程:含未知函数的导数或微分的方程,称为微分方程、 微分方程的阶:微分方程所含未知函数的最高阶导数或微分的阶数称为微分方程的阶数、 1、不就是一阶微分方程. A、正确 B、不正确 2、不就是一阶微分方程. A、正确 B、不正确 一阶线性微分方程:未知函数及其导数都就是一次的微分方程d ()() d y P x y Q x x +=称为一阶 线性微分方程、 微分方程的解:如果一个函数代入微分方程后,方程两边恒等,则称此函数为微分方程的解、通解:如果微分方程的解中所含独立任意常数C的个数等于微分方程的阶数,则此解称为微分方程的通解、 特解:在通解中根据附加条件确定任意常数C的值而得到的解,称为特解、 1、就是微分方程的解. A、正确 B、不正确 2、就是微分方程的解. A、正确 B、不正确 3、就是微分方程的通解. A、正确 B、不正确 4、微分方程的通解就是( ). A、 B、 C、 D、

(二)变量可分离的微分方程:()()dy f x g y dx = 一阶变量可分离的微分方程的解法就是: (1)分离变量:1221()()()()g y f x dy dx g y f x =;(2)两边积分:1221()()()()g y f x dy dx g y f x =?? 左边对y 积分,右边对x 积分,即可得微分方程通解、 1、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 2、微分方程的通解就是( ). A 、 B 、 C 、 D 、 3、微分方程的通解就是( ). A 、 B 、 C 、 D 、 4、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 5、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 6、微分方程的通解( ). A 、 B 、 C 、 D 、 7、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 8、 x y dy e dx -=就是可分离变量的微分方程. A 、正确 B 、不正确

微分方程例题选解

微分方程例题选解 1. 求解微分方程3ln (ln )0,|2 x e x xdy y x dx y =+-==。 解:原方程化为 x y x x dx dy 1ln 1=+, 通解为 ?+? ?=-]1[ln 1ln 1C dx e x e y dx x x dx x x ?+=]ln [ln 1C dx x x x ]ln 21[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11 ln ln 2 y x x = +。 2. 求解微分方程22'0x y xy y -+=。 解:令ux y =,u x u y '+=',原方程化为 2 u u u x u -='+, 分离变量得 dx x u du 1 2 =-, 积分得 C x u +=ln 1 , 原方程的通解为 ln x y x C = +。 3. 求解微分方程dy y y x dx xy x )()(3223+=-。 解:此题为全微分方程。下面利用“凑微分”的方法求解。 原方程化为 03 2 2 3 =---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3 2 2 3 --- 42222441 )(2141dy dy x dx y dx -+-= )2(41 4224y y x x d --=, 得 0)2(4 224=--y y x x d , 原方程的通解为 C y y x x =--4 2 2 4 2。 注:此题也为齐次方程。 4. 求解微分方程2''1(')y y =+。 解:设y p '=,则dx dp y ='',原方程化为 21p dx dp +=, 分离变量得 dx p dp =+2 1,积分得 1arctan C x p +=, 于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。 5. 求解微分方程''2'20y y y -+=。 解:特征方程为 0222 =--r r ,特征根为 i r ±=1, 通解为12(cos sin )x y e C x C x =+。

八年级数学经典练习题(分式及分式方程)汇总

一、选择题 1. (广东珠海)若分式 b a a +2的a 、b 的值同时扩大到原来的10倍,则此分式的值 ( ) A .是原来的20倍 B .是原来的10倍 C . 是原来的10 1 倍 D .不变 2. 计算-22+(-2)2-(- 12)-1的正确结果是( ) A 、2 B 、-2 C 、6 D 、10 3. (四川遂宁)下列分式是最简分式的( ) A. a 22 B . a 2 C . 2 2b a + D . 2 22ab a - 5.(丽江)计算10 ()(12 -+= . 6. (江苏徐州)0132--= . 7. (江苏镇江常州)计算:-(- 12)= ;︱-12︱= ; 01()2-= ;11 ()2 --= . 8. (云南保山)计算101 ()(12 -+= . 9. (北京)计算:?-++?--)2(2730cos 2)2 1(1π. 10. 计算:|-3|+20110×2-1. 11. (重庆江津区)下列式子是分式的是( ) A 、 2 x B 、 1x x + C 、2x y + D 、x π 12. (四川眉山)化简m m n m n -÷-2)(的结果是( ) A .﹣m ﹣1 B .﹣m+1 C .﹣mn+m D .﹣mn ﹣n 13.(南充)若分式1 2 x x -+的值为零,则x 的值是( ) A 、0 B 、1 C 、﹣1 D 、﹣2

14. (四川遂宁)下列分式是最简分式的( ) A. b a a 232 B . a a a 32- C . 2 2b a b a ++ D . 2 22b a ab a -- 15. (浙江丽水)计算111 a a a - --的结果为( ) A 、 1 1 a a +- B 、1 a a - C 、﹣1 D 、2 17. (天津)若分式21 1 x x -+的值为0,则x 的值等于 . 18. (郴州)当x= 时,分式 的值为0. 20. (北京)若分式 x 的值为0,则x 的值等于 . 21. (福建省漳州市)分式方程 2 11 x =+的解是( ) A 、﹣1 B 、0 C 、1 D 、3 2 22. (黑龙江省黑河)分式方程 11x x --= ()() 12m x x -+有增根,则m 的值为( ) A 、0和3 B 、1 C 、1和﹣2 D 、3 23. (新疆建设兵团)方程2x +1 1-x =4的解为 . 24. (天水)如图,点A 、B 在数轴上,它们所对应的数分别是﹣4与 22 35 x x +-,且点A 、B 到原点的距离相等.则x = . 25. (海南)方程 2 +x x =3的解是 . (2)解分式方程一定注意要验根. 26. (湖北潜江、天门、仙桃、江汉油田)化简)2()24 2( 2+÷-+-m m m m 的结果是 A .0 B .1 C .—1 D .(m +2)2

初中数学分式方程典型例题讲解

a c=ac,b a c= a p a0=1形如 A 【例1】下列代数式中:x1 x-y ,是分式的有:.π2 x-y,a+b , x+y , (1)x-4 x+4 (2) x2+2 (3) x2-1 (4)|x|-3 (5) a=“ ± . a±ac=bc±da(a≠0,c≠0); 第十六章分式知识点和典型例习题 3.分式的乘法与除法:b ? d bd a÷ c d= b d bd ? ac 【知识网络】 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m●a n=a m+n;a m÷a n=a m-n 6.积的乘方与幂的乘方:(ab)m=a m b n,(a m) n= 7.负指数幂:a-p=1 a mn 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:b c b±c(a≠0) a a 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: B(A、B是整式,且B中含有字母,B≠0)的式子,叫做分式.其中A叫做分式的分子,B 叫做分式的分母. 1 a-b x2-y2x+y , 题型二:考查分式有意义的条件:在分式中,分母的值不能是零如果分母的值是零,则分式没 有意义. 【例2】当x有何值时,下列分式有意义 3x26-x1 x-1 x 2.异分母加减法则:b d bc c=ac± da ac题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义

一阶微分方程典型例题

一阶微分方程典型例题 例1 在某一人群中推广新技术是通过其中掌握新技术的人进行的.设该人群的总人数为N ,在0=t 时刻已掌握新技术的人数为0x ,在任意时刻t 已掌握新技术的人数为)(t x (将)(t x 视为连续可微变量),其变化率与已掌握新技术的人数和未掌握新技术人数之积成正比,比例常数0>k ,求)(t x . 解 由题设知未掌握新技术人数为)(t x N ?,且有 )(x N kx dt dx ?=,00x x t == 变量分离后,有 kdt x N x dx =?)(,积分之,kNt kNt ce cNe x +=1,由00x x t ==,求得 0 0x N x c ?= 例2 求2 sin 2sin y x y x y ?=++′的通解. 解:利用三角公式将方程改写为2sin 2cos 2y x y ?=′.当02 sin ≠y 时,用它除方程的两端,得变量分离方程dx x y dy 2cos 22 sin ?=, 积分之,得通积分 2 sin 44tan ln x c y ?=. 对应于02 sin =x ,再加特解 ),2,1,0(2"±±==n n y π. 在变量分离时,这里假设02sin ≠y ,故所求通解中可能会失去使 02 sin =y 的解.因此,如果它们不能含于通解之中的话,还要外加上这种形式的特解. 例3 求微分方程 x xe y y x =+′ 满足条件11==x y 的特解.

解法1 把原方程改写为x e y x y =+′1,它是一阶线性方程,其通解为 ()11()()1()1dx dx p x dx p x dx x x x x y e q x e c e e e dx c x e c x ????∫∫??∫∫??=+=?+=?+?????????? ∫∫ 用1,1==y x 代入,得 1=c ,所以特解为x e x x y x 11+?=. 解法2 原方程等价于x xe xy dx d =)(,积分后,得c e x xy x +?=)1(. 当 1,1==y x 时, 1=c 故所求特解为x e x x y x 11+?=. 例4 求方程 0)cos 2()1(2=?+?dx x xy dy x 满足初始条件 10 ==x y 之特解. 解 将原方程改写为1 cos 1222?=?+x x y x x dx dy . 于是,通解为 ????????+∫?∫=∫??? c dx e x x e y dx x x dx x x 12212221cos 即 1sin 2?+=x c x y , 由01x y ==,得1c =?,故特解为2sin 11 x y x ?=?. 例5 求方程 4y x y dx dy +=的通解. 解 将原方程改写成以 为未知函数的方程 31y x y dx dy =?. 于是,由一阶线性方程的通解公式,得 ?? ????+=????????+∫∫=∫?c y y c dy e y e x dy y dy y 313131 在判断方程的类型时,不能只考虑以y 为因变量的情况.因有些方程在以 x 为因变量时方能为线性方程或伯努利方程,解题时必须全面分析.

初中数学分式方程典型例题讲解

第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法: b d bd a c ac ?= ,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n 6.积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2 - b 2 ;(a ±b)2= a 2±2ab+b 2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: 形如 A B (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母. 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没 有意义. 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义

微分方程练习题基础篇答案

常微分方程基础练习题答案 求下列方程的通解 1.dy xy dx = 分离变量 dy xdx y =,2 2x y Ce =,C 为任意常数 2.0xydx = 分离变量 dy y = ,y =C 任意常数 3.ln 0xy y y '-= 分离变量 1 ln dy dx y y x =,x y Ce = 224.()()0xy x dx x y y dy ++-= 分离变量 22 11ydy xdx y x =+-,22 (1)(1)y x C +-= 2 5.(25)dy x y dx =++ 令25u x y =++则2du dy dx dx =+,22du dx u =+ 1x C =+ 6.dy x y dx x y +=-,原方程变为11y dy x y dx x + =-,令y u x =,dy du u x dx dx =+,代入得22111u du dx u x -=+ 2arctan ln u u x C -=+ , y u x = 回代得通解 2arctan ln y y x C x x =++ 7.0xy y '-= 方程变形为0dy y dx x =+=,令y u x = dx x = arctan ln u x C =+, y u x = 回代得通解arctan ln y y x C x x =++ 8.ln dy y x y dx x =,方程变形为ln dy y y dx x x =,令y u x =,(ln 1)du dx u u x =-,1 Cx u e +=,1Cx y xe +=

9.24dy xy x dx +=,一阶线性公式法222(4)2xdx xdx x y e xe dx C Ce --??=+=+? 210.2dy y x dx x -=,一阶线性公式法112 3(2)dx dx x x y e x e dx C x Cx -??=+=+? 2211.(1)24x y xy x '++=,方程变形为2 222411x x y y x x '+=++一阶线性公式法3 2 14()13 y x C x =++ 212.(6) 20dy y x y dx -+=,方程变形为312dx x y dy y -=-一阶线性公式法2312y y Cy =+ 2 13.3y xy xy '-=,方程变形为2113dy x x y dx y -=伯努利方程,令12,dz dy z y y dx dx --==-代入方程得 3dz xz x dx +=-一阶线性公式法再将z 回代得23 2 113x Ce y -=- 411 14. (12)33 dy y x y dx +=-,方程变形为4 3 1111(12)33dy x y dx y +=-伯努利方程,令 34, 3dz dy z y y dx dx --==-代入方程得21dz z x dx -=-,一阶线性公式法再将z 回代得3121x Ce x y =-- 15.560y y y '''++=,特征方程为2560r r ++=,特征根为122,3r r =-=-,通解 2312x x y C e C e --=+ 16.162490y y y '''-+=,特征方程为2 162490r r -+=,特征根为1,23 4 r =,通解 34 12()x y C C x e =+

常微分方程基本概念习题附解答

§1.2 常微分方程基本概念习题及解答 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=| )1(|ln 1+x c 3.dx dy =y x xy y 32 1++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=3 1x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c

另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令 x y =u dx dy =u+ x dx du 211 u - du=sgnx x 1dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2e x 3

【典型例题】 第三章 一阶微分方程的解的存在定理

第三章 一阶微分方程的解的存在定理 例3-1 求方程 22y x dx dy += 满足初始条件0)0(=y 的解的逐次逼近)(),(),(321x y x y x y ,并求出h 的最大值,其中h 的意义同解的存在唯一性定理中的h 。 解 函数2 2 ),(y x y x f +=在整个平面上有意义,则在以原点为中心的任一闭矩形区域 b y a x D ≤≤,:上均满足解的存在唯一性定理的条件,初值问题?????=+=0 )0(22y y x dx dy 的解在],[h h -上存在唯一,其中)(max ),, min(22),(y x M M b a h D y x +==∈。 因为逐次逼近函数序列为 ?-+=x x n n dx x y x f y x y 0 ))(,()(10, 此时,2 200),(,0,0y x y x f y x +===,所以 0)(0=x y , ?=+=x x dx x y x x y 03 2 02 13 )]([)(, | 63 3)]([)(7 032 12 2x x dx x y x x y x +=+=?, ?? +++=+=x x dx x x x x dx x y x x y 0 14 1062 2 223)3969 18929()]([)( 59535 20792633151173x x x x +++=。 现在求h 的最大值。 因为 ),, min(2 2b a b a h += 对任给的正数b a ,,ab b a 22 2 ≥+,上式中,当 b a = 时, 2 2b a b +取得最大值

a ab b 21 2= 。 此时,)21,min()2, min(a a ab b a h ==,当且仅当a a 21 = ,即22==b a 时,h 取得最大值为 2 2 。 评注:本题主要考查对初值问题的解的存在唯一定理及其证明过程的基本思想(逐次逼近方法)的理解。特别地,对其中的b y a x D y x f M M b a h D y x ≤≤==∈,:),,(max ),, min(),(等常数意义的理解和对逐次逼近函数列? -+=x x n n dx x y x f y x y 0 ))(,()(10的构造过程的理 解。 例3-2 证明下列初值问题的解在指定区间上存在且唯一。 1) 2 1 0,0)0(cos 2 2≤ ≤=+='x y x y y ,。 2) 32 2 )2 1 (0,0)0(≤≤=+='x y y x y , 。 | 证 1) 以原点为中心作闭矩形区域1,2 1 :≤≤ y x D 。 易验证2 2 cos ),(x y y x f +=在区域D 上满足解的存在唯一性定理的条件,求得 2cos m ax 22),(=+=∈x y M D y x ,则2 1 )21,21min(==h 。 因此初值问题 ?? ?=+='0 )0(cos 2 2y x y y 的解在]21,21[- 上存在唯一,从而在区间]2 1 ,0[上方程 cos 22, x y y +='满足条件0)0( =y 的解存在唯一。 2) 以原点为中心作闭矩形区域b y a x D ≤≤,:。 易验证x y y x f +=2 ),(在D 上满足解的存在唯一性定理的条件,并求得 22),(m ax b a x y M D y x +=+=∈,

分式方程学习知识点及典型例题.doc

第二讲分式方程 【知识要点】 1.分式方程的概念以及解法 ; 2.分式方程产生增根的原因 3.分式方程的应用题 【主要方法】 1. 分式方程主要是看分母是否有外未知数; 2.解分式方程的关健是化分式方程为整式方程; 方程两边同乘以最简公分母 3.解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 题型一:用常规方法解分式方程 解下列分式方程 ( 1) 1 3 ( 2) 2 1 x 1 x x 3 x ( 3)x 1 4 1 ( 4) 5 x x 5 x 1 x2 1 x 3 4 x 题型二:特殊方法解分式方程解下列方程 (1)x4x 4 4 ;(2)x 7 x 9 x 10 x 6 x 1 x x 6 x 8 x 9 x 5 (3) 1 1 1 1 x 2 x 5 x 3 x 4 1

题型三:求待定字母的值 ( 1)若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3 ( 2)若分式方程 2 x a 1 的解是正数,求 a 的取值范围 . x 2 ( 3)若分式方程 x 1 m 无解,求 m 的值。 x 2 2 x ( 4)若关于 x 的方程 x k 2 x 不会产生增根,求 k 的值。 x 1 x 2 1 x 1 ( 5)若关于 x 分式方程 1 k x 2 3 有增根,求 k 的值。 x 2 x 2 4 题型四:解含有字母系数的方程 解关于 x 的方程 (1 ) x a c (c d 0) (2) 1 1 2 (b 2a) ; b x d a x b 2

1a1 b ( 3)(a b) . 题型五:列分式方程解应用题 一、工程类应用性问题 1、一项工程,甲、乙、丙三队合做 4 天可以完成,甲队单独做 15 天可以完成,乙队单独做 12 天可以完成,丙队单独做几天可以完成? 2、某市为治理污水,需要铺设一段全长3000 米的污水输送管道,为了尽量减少施工对城 市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30 天完成了任务,实际每天铺设多长管道? 二、行程中的应用性问题 2、甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车 的平均速度是普通快车平均速度的 1.5 倍.直达快车比普通快车晚出发2h,比普通快车早 4h 到达乙地,求两车的平均速度. 3

相关文档
最新文档